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Breast cancer (BC) is one of the leading causes of cancer-associated death in

women. Despite the progress in therapeutic regimen, resistance and

recurrence of breast cancer have affected the overall survival of patients.

The present signatures, such as PAM50 and Oncotype DX, do not segregate

the Indian breast samples based on molecular subtypes. This study aims at

finding signatures of long noncoding RNA (lncRNA) and mRNA in Indian breast

cancer patients using RNA-seq. We have analyzed the survival based on the

menopausal and hormone status of 380 Indian breast cancer patients, and of

these, we have sequenced and analyzed matched tumor–normal

transcriptome of 17 (pre- and postmenopausal) Indian breast cancer patients

representing six different subtypes, namely, four patients in triple-positive, three

patients in estrogen receptor–positive (ER+ve), three patients in estrogen and

progesterone receptors–positive (ER+ve, PR+ve), two patients in human

epidermal growth factor receptor (Her2+ve), three patients in triple-

negative, and one patient in ER+ve and Her2+ve subtypes. We have

identified a 25 mRNA–27 lncRNA gene set, which segregated the subtypes

in our data. A pathway analysis of the differentially expressed genes revealed

downregulated ECM interaction and upregulated immune regulation, cell cycle,

DNA damage response and repair, and telomere elongation in premenopausal

women. Postmenopausal women showed downregulated metabolism, innate

immune system, upregulated translation, sumoylation, and AKT2 activation. A

Kaplan–Meier survival analysis revealed that menopausal status, grade of the

tumor, and hormonal status displayed statistically significant effects (p < 0.05)

on the risk of mortality due to breast cancer. Her2+ve patients showed low
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overall survival. One of the unique lncRNA-mRNA pairs specific to the

EP-subtype, SNHG12 and EPB41, showed interaction, which correlates with

their expression level; SNHG12 is downregulated and EPB41 is upregulated in EP

samples.

KEYWORDS

transcriptomics, long noncoding (lnc) RNA, breast cancer, gene expression, overall
survival

Introduction

Breast cancer accounts for 25% of all cancers and exhibits

heterogeneity with varied molecular and clinical characteristics

(Hwang et al., 2019). The incidence and mortality rates for breast

cancer, according to GLOBOCAN in 2020, were 34,65,951 new

cases and 11,21,413 deaths worldwide and 1,204,532 new cases

and 436,417 deaths in India (Sung et al., 2021), respectively.

Breast cancer is broadly classified based on a hormonal status

analysis using immunohistochemistry as luminal A

[progesterone receptor (PR)–positive, estrogen receptor (ER)–

positive, and human epidermal growth factor 2 (Her2)–negative]

and luminal B (ER-positive, PR-positive/negative, and Her2-

positive) being the estrogen-positive subtypes, Her2 enriched,

and triple-negative breast cancer (Perue et al., 2000; Yeh and

Mies, 2008; Penault-Llorca and Viale, 2012). The fifth subtype is

normal-like, resembling normal breast tissue features. Another

distinctive subtype that shows lower claudin, epithelial to

mesenchymal markers, and immune receptor expression has

been recently identified using molecular analysis (Fedele et al.,

2017; Manjunath and Choudhary, 2021).

Gene expression signatures have been used in the past decade for

prognosis and to guide treatment in hormone-positive breast cancer

patients (Villarreal-Garza et al., 2020). Oncotype DX, MammaPrint,

and prediction analysis of microarray 50 (PAM50) are some

commercially available genomic signatures used in the clinics

(Paluch-Shimon et al., 2017; Andre et al., 2019; Cardoso et al.,

2019). MammaPrint categorizes patients by low and high risks based

on the 70-gene profile from the microarray (Van De Vijver et al.,

2002; Van’t Veer et al., 2002). Oncotype DX is based on the 21 gene

expression from the FFPE samples. The relative expression of these

genes gives a recurrence score, grouping patients into low,

intermediate, and high risk (Paik et al., 2004; Sparano et al.,

2015). Prosigna or the PAM50 test depends on the expression of

a 50-gene panel that distinguishes the tumor intomolecular subtypes

and provides the risk of recurrence score (ROR) (Parker et al., 2009;

Nielsen et al., 2014). However, these tests have shown success only in

Caucasian postmenopausal patients and not in younger womenwith

the disease (Paluch-Shimon et al., 2017; Andre et al., 2019). Also,

these sets have been shown to segregate samples only in the

microarray data and not in the RNA-seq data.

Our understanding of the molecular features of cancer has

been revolutionized due to recent advances in next-generation

sequencing technology (Casamassimi et al., 2017), enabling

global profiling of mRNAs and noncoding RNAs such as long

ncRNAs (lncRNAs), microRNAs, and circular RNA. lncRNAs

have now been well studied in gene regulation and are known to

participate in the development and prognosis of cancer (Prensner

and Chinnaiyan, 2011; Huarte, 2015; Rao et al., 2017). Specific

mRNA and lncRNA signatures have been associated with

different molecular subtypes of breast cancer (Deva

Magendhra Rao et al., 2019). An Indian cohort study on

543 patients showed that 47% of the BC patients were below

50 years of age. In addition, 60% of the cohort presented HER2+

or TNBC disease (Thumsi et al., 2014). The advanced stages of

the disease, 51% and 45% of stage III and stage IV, belonged to

the HER2+ subtype. Recurrence was most frequently observed in

HER2+ and TNBC (Thumsi et al., 2014). In the present study, a

survival analysis coupled with Cox has been performed to find

the prognostic markers. The Kaplan–Meier log-rank test and Cox

proportional hazard regression are powerful and widely used

survival analyses approach (Therneau and Grambsch, 2000;

Karrison, 2016). The molecular heterogeneity of the Indian

cohort has not been explored in the subtypes of breast cancer.

This study aims to identify signatures that can stratify BC

patients and guide their therapy based on altered pathways;

furthermore identifying lncRNA-mRNA regulatory pairs and

analyzing the probable mechanism of lncRNA involvement in

breast cancer progression using in silico tools.

Methodology

Study cohort and sample classification

The breast cancer patient samples used for the study were

procured from the BGS Global Hospital, Bengaluru, Karnataka,

India. The tumor tissue (n = 17) and their respective matched

normal (n = 16) samples were later collected in RNA, accounting

for a total of 33 samples. TRIzol was added to the samples and

stored at −80 until further processing. The samples obtained for

the study were histologically classified as invasive ductal

carcinoma (IDC) (except for one sample, which was

mucinous). The obtained 17 breast cancer patient samples

could be classified into six different subtypes based on the

expression of estrogen, progesterone, and Her2, which are

summarized in Table 1. Samples and matched normal samples

were also used as a validation cohort. The study was performed
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TABLE 1 Table depicting sample details of Indian breast cancer patients. Odd numbers are matched normals and even numbers are tumor samples. There are a total six subtypes (ER, EH, EP, EPH, Hmod,
and TNBC) classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and epidermal growth factor receptor (Her2). IDC, invasive ductal carcinoma.

Patient
No.

Sample Label Age
(years)

Menopause
status

ER PR Her2 Subtype
label

Type Recurrence Status Ki67 Grade

Patient 1 Normal P1 56 Pre Positive Positive Positive EPH IDC No Alive Low II

Tumor P2

Patient 2 Normal P3 56 Pre Positive Positive Positive EPH Mucinous No Alive Low II

Tumor P4

Patient 3 Normal P5 41 Pre Negative Negative Negative TNBC IDC No Alive High II

Tumor P6

Patient 4 Normal P7 41 Pre Positive Negative Negative EP IDC No Alive Low II

Tumor P8

Patient 5 Normal P9 62 Post Positive Negative Negative ER IDC No Alive Low II

Tumor P10

Patient 6 Normal P11 38 Pre Positive Negative Negative ER IDC No Alive NA NA

Tumor P12

Patient 7 Normal P13 48 Pre Positive Negative Negative EH IDC No Alive High II

Tumor P14

Patient 8 Normal P15 48 Pre Positive Negative Negative EH IDC Yes Alive Low NA

Tumor P16

Patient 9 Normal P17 29 Pre Negative Negative Negative TNBC IDC No Alive High II

Tumor P18

Patient 10 Normal P19 50 Post Negative Negative Positive Hmod IDC No Alive Low NA

Tumor P20

Patient 11 Normal P21 35 Pre Positive Positive Positive EPH IDC Yes Alive Low II

Tumor P22

Patient 12 Normal P25 60 Post Negative Negative Positive Hmod IDC No Alive High II

Tumor P26

Patient 13 Normal P27 60 Post Negative Negative Negative TNBC IDC No Alive High II

Tumor P28

Patient 14 Normal P29 58 Post Positive Negative Negative ER IDC No Alive High II

Tumor P30

Patient 15 Normal P42 60 Post Positive Positive Negative EP IDC No Alive NA II

Patient 16 Normal P43N 65 Post Positive Positive Negative EP IDC No Alive NA II

Tumor P43T

Patient 17 Normal P44N 72 Post Positive Positive Negative EPH IDC No Alive NA II

Tumor P44T
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under ethical approval from the BGS Global Hospitals and IBAB

(IEC/Approval/2018-05/06/01A).

RNA isolation and library preparation

Total RNA was extracted using the standard TRIzol method

from matched tumor and normal samples. RNA was quantitated

using QUBIT, and the quality was checked using TapeStation.

mRNA libraries were prepared using Illumina TruSeq RNA

Library Prep Kit v2.

In brief, mRNA was isolated using oligo-dT beads, followed by

fragmentation. Fragmented RNA was then converted to cDNA, and

adaptor ligation was performed. Size selection was performed on

adaptor-ligated libraries using AMPure beads. The libraries were

amplified and checked on a tape station to determine the library size.

RNA sequencing and data analysis

The samples were sequenced in-house using Illumina

HiSeq 2500 to acquire 100 bp paired-end reads. Samples

had reads >10 million (Supplementary Table S1). The

quality of the reads was checked using the FastQC tool

(Wingett and Andrews, 2018). The reads were quantile

normalized using the normalize.quantiles function in R.

The reads were then aligned to the reference

hg38 [downloaded from the University of California, Santa

Cruz (UCSC) genome browser] using bowtie2 with default

parameters (Langmead and Salzberg, 2012). A sequence

alignment map (SAM) format file was obtained as an

output of bowtie2. A binary alignment map (BAM) file was

obtained using SAMtools (Li et al., 2009) from the SAM file.

The hg38refseq.bed annotation file was downloaded from

UCSC, and read counts were generated using bedtools

(Quinlan and Hall, 2010). The read counts for each

matched normal and tumor pair were given as the input to

DESeq, an R package to obtain differentially expressed genes

(DEGs) (Anders and Huber, 2010). Groupwise differential

gene expression was performed for each subtype between

normal and tumor samples using DESeq2.

Pathway enrichment analysis

A cutoff of p-value less than 0.05 and log2 fold change

(<−1 and >+1) was used to obtain a significant DEG list for

each normal tumor sample pair. For groupwise DESeq2 among

the subtypes, FDR-corrected p-value less than 0.05 and log2 fold

change (<−1 and >+1) were put as cutoff. Significant DEGs

common to all patients in a subtype were taken out and subjected

to the Reactome pathway analysis (https://reactome.org/) to

obtain subtype-specific upregulated and downregulated

signature pathways. Also, premenopause and postmenopause

signature pathways, and pathways with a false discovery rate

of less than 0.1 have been plotted in a bubble plot using ggplot2,

an R package.

lncRNA analysis

The Bam files obtained for each tumor and their

respective matched normal samples from SAMtools were

given as an input to bedtools with the

gencode.v34.long_noncoding_RNAs.gtf annotation file

obtained from GENCODE (https://www.gencodegenes.org/

human/release_34.html). The read count file for each

tumor–normal pair was given as the input to DESeq (R

package) to obtain differentially expressed (DE) lncRNAs.

lncRNAs were then compared against the Lnc2cancer

database (Ning et al., 2016), and the known breast

cancer–related lncRNAs were selected.

The bedtools intersect function was used to screen for

overlaps between two sets of genomic features. To obtain

lncRNA-mRNA pairs for each subtype, the list of unique

lncRNAs with information on the genomic regions and the

NCBI RefSeq hg38 reference was given as the input to

bedtools intersect. To generate potential overlapping

(antisense) lncRNA-mRNA pairs, a window of greater than

1,000 bases was selected.

Euclidean distance calculation

The “dist” function in R was used to calculate the

Euclidean distance between samples. A principal

component analysis (PCA) was performed on all patient

samples using the PCA function of the DESeq2 plot with

the different subtypes as the variables of interest. Significant

genes from different patient samples with DEGs were sorted

based on the p-value and log2 fold change. A heat map was

plotted for the filtered genes using the pheatmap function

with default Euclidean distance parameters. Hierarchical

clustering was performed to determine the overall

similarity and signature of breast cancer patient subtypes

using gene expression profiles and was visualized using the

pheatmap function.

Survival analysis

To investigate the impact of the clinical parameters, such as

menopausal status, age, stage, and grade of tumor, and therapy

on the prognostic survival of breast cancer patients, a KM

survival curve analysis was carried out and hazard ratio (HR)

and 95% confidence intervals (CIs) were estimated by using the
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Cox proportional hazards regression model. Clinical parameters

of 381 Indian breast cancer patients were obtained from the BGS

Global Hospital (out of which 17 samples were sequenced).

Univariate and multivariate Cox analyses were carried out

with survminer (https://github.com/kassambara/survminer)

and survival packages of R (Therneau and Grambsch, 2000).

Extraction of breast cancer expression
data from The Cancer Genome Atlas

The RSEM values for 946 breast cancer patient files

(BRCA.rnaseqv2 illuminahiseq_rnaseqv2 unc_edu

Level_3 RSEM_genes_normalized data.data.txt) were downloaded

from The Cancer Genome Atlas (TCGA; http://firebrowse.org/?

cohort=BRCA#). The file having barcode information for each

patient was also procured from TCGA (https://portal.gdc.cancer.

gov/) to obtain hormone receptor subtype information.

LASSO regression model

The LASSO regression for the 25 genes obtained from our

Indian cohort data was performed in TCGA samples, as

described previously (Desai et al., 2021). In brief, LASSO-Cox

regression was used with the data set to predict the possible

features responsible for a death event using sksurv and scikit-

survival modules of scikit-learn in Python. We performed this

regression to obtain a model, with significant genes and their

coefficient values with respect to the death event. These

coefficient values were used with the respective gene values to

estimate the risk score and perform a survival analysis using the

Kaplan–Meier estimate in R library packages survival and

survminer. The immune profiling was performed for the gene

signature obtained from the LASSO model using CIBERSORT

(Chen et al., 2018). Also, drug–gene interactions were predicted

using DGIdb (The Drug Gene Interaction Database) (Cotto et al.,

2018) for the LASSO model gene signatures.

First-strand cDNA synthesis

Once the intact RNA was obtained, complementary DNA

(cDNA) synthesis was initiated. For synthesizing cDNA from

mRNA, random hexamers were used. A total of 4 µg of RNA was

taken from each patient sample from the validation cohort for

making cDNA. To remove DNA contamination, the RNA

samples were treated with DNase I (37°C, 10 min) and cDNA

was synthesized using M-MuLV reverse transcriptase (37°C, 1 h).

Initially, the RNA samples were incubated with adaptor primers

and dNTPs for 1 h at 37°C (Tzanetakis et al., 2005). A reaction

without reverse transcriptase (RTase) was kept as a negative

control for each sample.

Real-time polymerase chain reaction for
investigating the expression of marker
genes

Real-time PCR was conducted using SYBR® Green chemistry

(Ponchel et al., 2003). BCL2, BRCA1, TP53, CD44l, CD44s,

ALDH1A, and HOTAIR genes were used with GAPDH

primer as an internal control. The sequences of the primers

are described in the Table 2. The initial denaturation was at 95°C

for 5 min, followed by 40 cycles of 95°C for 20 s, 53°C–55°C for

20 s, and 72°C for 20 s, and a melt curve analysis was carried out.

Here, the relative gene expression was calculated by correlating

the expression of the housekeeping gene and the expression of

the target gene in the control/normal sample (Deepak et al.,

2007). Ct is the cycle number at which the fluorescence crosses

the threshold level (Livak and Schmittgen, 2001; Schmittgen and

Livak, 2008). The equation for relative quantitation (RQ) value is

RQ � 2−ΔΔCt

where

ΔΔCt � ΔCt (Tumor sample) − ΔCt (Normal sample),
and
ΔCt (Normal sample) � Ct (target gene of normal sample) −Ct (housekeeping gene of normal sample),
ΔCt (Tumor sample)� Ct (target gene of tumor sample)−Ct (housekeeping gene of tumor sample)

Graphs showing relative quantification for all the samples

were plotted using the GraphPad Prism software (Swift, 1997).

Statistical analysis

Statistical analyses and graphing were carried out using

GraphPad Prism 7.0 software (GraphPad, San Diego, CA,

United States) and R packages. DESeq2 uses the Wald test

statistic with a probability to generate a significant gene list.

The Benjamini–Hochberg false discovery rate (FDR)method was

used for choosing significant pathways from the Reactome

database. For a comparative qRT-PCR analysis, a two-tailed

t-test was applied to calculate the significance. If the p-value

was less than 0.05, the results were significant.

Results

Her2-positive patients and recurrent
disease subgroup had poor survival
among breast cancer subtypes in Indian
cohort

The Kaplan–Meier plots depict survival for different clinical

parameters of Indian breast cancer patients. Properties such as

menopausal status, hormone receptor status, tumor grade,
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recurrence, and stages were analyzed among the cohort. There

were 381 patients with data available for menopause status, and

among them, there were two groups: pre (n = 216) and post (n =

159). A mildly significant (p = 0.11) low survival was observed for

premenopausal patients when compared to postmenopausal

patients (Figure 1A). A multivariate Cox proportional hazards

TABLE 2 Sequences of primers used for RT-PCR validation.

Gene Primer sequence

Forward Reverse

GAPDH 5’-CCCTTCATTGACCTCAACTACAT-3’ 5’-CTGGAGATGGTGATGGGATTT-3’

BCL2 5’-AGAGACTCACCAGGGTCTGC-3’ 5’-GCACTACCTGCGTTCTCCTC-3’

BRCA1 5’ CTGCCGTCCAAATTCAAGAAGT-3’ 5’-CTTGTGCTTCCCTGTAGGCT-3’

TP53 5’-CTGCTTGCCACAGGTCTC-3’ 5’-TGGATGGGTAGTAGTATGGAAG-3’

ALDH1A 5’-ACTTACCTGTCCTACTCA-3’ 5’-GGATGAAGGTCCTGCTTTCCTT-3’

CD44l 5’-CAGGTGGAAGAAGAGACCCAAA-3’ 5’-GGATGAAGGTCCTGCTTTCCTT

CD44s 5’-TCCAACACCTCCCAGTATGACA-3’ 5’-GGCAGGTCTGTGACTGATGTACA-3’

HOTAIR 5’-GGTAGAAAAAGCAACCACGAAGC-3’ 5’-ACATAACCTCTGTCTGTGAGTGCC-3’

FIGURE 1
Kaplan–Meier survival plots showing differences in probabilities between various clinical parameters. (A) This plot depicts a low survival for
postmenopausal samples compared to premenopausal women samples. (B) Cox-proportional hazard ratios plot showing significant variations
between pre- and postmenopausal status. (C) This survival plot shows differential probabilities between different types of recurrent and
nonrecurrent samples. (D)Cox-proportional hazard ratios plot showing significant variations between triple-negative, Her2-positive, andHer2-
negative subtypes of breast cancer. (E) Survival plot for triple-negative, Her2-positive, and Her2-negative subtypes of breast cancer. (F) Survival plot
for different stages of breast cancer. (G) The plot is for displaying different survival probabilities for samples belonging to different tumor grades.
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analysis of the menopause status revealed that postmenopausal

patients displayed a hazard ratio of 0.51, indicating that this

group had half the risk of death when compared to

premenopausal patients (Figure 1B). When the disease

recurrence parameter was checked, the recurrent patients were

divided into local, distant, distant + regional, and local + distant +

regional based on where the recurrence occurred. When all these

categories were compared, the local + distant + regional group

had poor survival (p-value< 0.0001), followed by distant

recurrence and local recurrence (Figure 1C). Breast cancer is

classified commonly based on the expression of hormone

receptors. Within the hormone receptors subtypes, Her2-

positive subtype had worse prognosis (p = 0.026 < 0.05)

(Figure 1E). A multivariate Cox proportional hazards analysis

of the hormone receptor subtypes indicated that Her2-positive

patients displayed a significant (p-value 0.097) hazard ratio of 2.4,

indicating that this subtype has a high risk of death (Figure 1D).

Among the different stages in our cohort, it was observed that

stage IV exhibited worse survival than the others, with a

significance of p-value < 0.0001 (Figure 1F). Patients falling in

grades 1, 2, and 3 were plotted to analyze the survival based on

the tumor grade. Patients with a higher grade had low survival

when compared to grades 1 and 2 (p-value = 0.011) (Figure 1G).

Among the 381 samples used for analysis, 17 matched

tumor–normal samples were subjected to RNA sequencing

analysis to identify DEGs and pathways regulated in the

presence/absence of hormone and pre- and postmenopausal

samples irrespective of hormone status.

Gene expression and unique pathway
alterations segregate six breast cancer
subtypes

A differential gene expression analysis was performed on tumor

andmatched-normal ER (3 pairs), EP (3 pairs), triple-positive (EPH,

4 pairs), Hmod (2 pairs), EH (2 pairs), and TNBC (3 pairs) patients.

Among six subtypes, the ER subtype had a maximum alteration in

gene expression where 2,572 genes were uniquely significantly

downregulated, while 1,324 were upregulated (log2 fold change ≤
and ≥

͢͢
1) followed by EP (543 down and 795 up), Hmod (514, 373),

EPH (183 and 243), and TNBC (116 and 173) and was the least in

EH (31 and 37) (Figure 2A). As expected, a minimal overlap was

observed between the subtypes, with ER having maximum overlap

with EPH, EP, and EH (Figure 2B). It is well known that a balance tilt

in oncogenic (ONC)/tumor suppressor (TSG) drives oncogenesis;

we checked for alterations in ONC and TS across the subtypes. The

DE genes were subjected to an oncogene/tumor suppressor analysis

using breast cancer–specific oncogenes (https://oncovar.org/) and

tumor suppressors (https://bioinfo.uth.edu/TSGene/). Each of the

subtypes was analyzed for upregulated oncogenes and

downregulated tumor suppressors. Most downregulated TSGs,

and upregulated oncogenes, were observed in EH (16% TSG and

27% ONC), followed by TNBC (7.7% TSG and 5.6% ONC). The

fewest alterations were observed in Hmod (0.97% TSG and 1.3%

ONC), followed by EPH (4.37% TSG and 4.9% ONC), EP (6.9%

TSG and 2.7% ONC), and ER (2.7% TSG and 5% ONC), indicating

differences in the alterations in oncogenes and tumor suppressors

among breast cancer subtypes (Figure 2C). Figure 2D depicts the list

of significantly upregulated oncogenes and downregulated tumor

suppressor genes in each subtype. Oncogenes such as MYC, SIRT6,

IL7R, CCNE1, PAX8, and BCL11A were upregulated and TSGs

DUSP1, AGTR1, NOTCH2, CREBBP, and ITGA7 were

downregulated in the subtypes.

Furthermore, to identify the deregulated pathways, the

upregulated and downregulated genes for each subtype were

given as an input separately to the Reactome database, and the

results were filtered for p-value < 0.01, and the pathways with a

gene count of more than three were selected. The top results were

represented in a bubble plot. Among the notably affected

pathways were downregulated keratinization and RUNX3-

related pathways among the ER samples; downregulated

ubiquitination and upregulated FGFR signaling among Hmod;

ECM interactions and notch signaling downregulated in TNBC;

and upregulated collagen and cellular pathways. AP2-related

genes were regulated in opposite directions in ER and Hmod

(Supplementary Figures S1, S2). Ki67 is a well-known marker for

tumor cell proliferation, therefore, based on the expression of

Ki67, we classified Indian breast cancer patients into Ki67-high

and Ki67-low groups and performed pathway analysis. Ki67-high

patients displayed upregulation of matrix metalloprotease,

platelet activation, and DNA methylation as the significant

pathways. In Ki67-low patients, the noncanonical NF-kB

pathway, interleukin signaling, and PI3k signaling were

significantly upregulated suggesting that the observed

pathways are independent of the cell cycle.

For the differences observed in survival between pre- and

postmenopausal patients and understanding that premenopausal

breast cancer is aggressive, we checked for pathways that regulate

these phenotypes.

Pre- and postmenopausal samples show
unique pathway signatures

The breast cancer patient samples were divided into two

categories, pre- and postmenopausal, based on the menopause

data from the clinical features procured from the hospital. Genes

with log2 fold change <1 and >−1 were filtered out for each patient.

The common DEGs were pulled out from patients from each group

and then further analyzed. Vennwas performed to identify common

and unique genes among the two types (SupplementaryMaterial S1).

Premenopausal samples showed 72 downregulated and

71 upregulated genes, whereas postmenopausal samples displayed

380 downregulated and 311 unique upregulated genes. Among the

common genes analyzed, 1 was downregulated and 2 were
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upregulated (Figure 2F). These unique genes were then checked for

chromosome distribution, and it was found that downregulated

genes were on chromosomes 5, 17, and 2 in the post- and

premenopausal samples, respectively (Figure 2E). The upregulated

genes were primarily present on chromosome 1 for both post- and

premenopausal samples, with chromosome 12 being additional for

the postmenopausal samples. These unique significant upregulated

and downregulated genes were given as input separately to the

Reactome database to obtain deregulated pathways. In the samples of

postmenopausal breast cancer women patients, the pathways related

to metabolisms such as phospholipid metabolism, amino acid

metabolism, and glycogen metabolism were downregulated, and

the cell cycle processes connected to transcription and translation

were upregulated. In the case of samples of premenopausal breast

cancer women patients’, extracellular matrix regulation and

collagen-dependent pathways were downregulated. Single- and

double-stranded DNA repair and immune-related pathways were

upregulated (Figure 2G), indicating deregulated cell cycle and

metabolism as the reason for cancer progression in

postmenopausal BC patients. By contrast, deregulated DNA

damage and repair and altered immune signaling led to cancer

progression in premenopausal BC patients.

Furthermore, to check whether RNA-seq can be used for

subtyping breast cancer in the Indian cohort, using the

existing PAM50, MammaPrint, and Oncotype DX, PCA

was performed.

FIGURE 2
(A) Table showing the number of differentially expressed genes that are common to all patients in a subtype and unique genes when compared
to other subtypes of breast cancer. (B) Venn diagram showing common and unique genes among different subtypes of breast cancer patients.
(C) A bar graph depicting the number of upregulated oncogenes and downregulated tumor suppressor genes in six subtypes of Indian breast
cancer patient samples. (D) A tablewith a list of upregulated oncogenes and downregulated tumor suppressor genes. (E) Venn diagram showing
common and unique genes among pre- and postmenopausal Indian breast cancer patient samples. (F) Bar graphs depicting gene distribution on
chromosomes in pre- and postmenopausal Indian breast cancer patient samples. (G) Bar graphs representing significantly upregulated and
downregulated pathways in pre- and postmenopausal Indian breast cancer patient samples. The y-axis shows pathway terms and the x-axis is the
gene count. The color gradient of the bar is based on the p-value.
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25-Gene set identified for Indian breast
cancer cohort

Although gene expression patterns are unique for each

subtype, no segregation was observed when the PCA was

performed. We performed PCA using gene sets of PAM50,

MammaPrint, and Oncotype DX. We did not observe clear

segregation of the subtypes in the Indian cohort, possibly due

to differences in the microarray and the RNA-DESeq–based

analysis (Figures 3A–C). To check if the absence of

segregation can be due to differences in the technology used,

we downloaded RNA-seq data from TCGA and analyzed for

these gene sets; clear segregation was observed among hormone-

positive and hormone-negative samples (Supplementary Figure

S3A–C) in the PCA, suggesting that it was not dependent on the

technology used. The samples from TCGA mainly belong to the

Caucasian population, showing a distinct separation. The panels

are designed primarily for a specific population, suggesting

population-specific expressions that may underlie observed

differences.

Because no clear segregation of the BC subtypes in the

Indian cohort was obtained with existing panels, and to

narrow the gene set down that might segregate the

subtypes, the list of genes based on log2 fold change,

p-value, and a significant DEG list for each patient was

obtained. For each subtype, significant common genes

were obtained by comparing all the patients belonging to

that subtype. This set of genes was then compared among the

subtypes, and a unique DEG list was obtained for each

subtype. Among the unique DEG list, the genes already

known in the literature relevant to cancer were narrowed

down. The PCA and heat maps were iteratively used to

narrow these lists into combinations that segregated the

patient samples into their different hormone

receptor–based subtypes. Twenty-five mRNAs were

identified specific to our data (Figures 4A,B). The selected

mRNAs showed proper segregation in the PCA of hormone

subtypes in the Indian cohort (Figure 4C). Also, the candidate

gene set was used to evaluate segregation between pre- and

postmenopausal women samples in the Indian cohort.

Postmenopausal breast cancer samples showed better

segregation in the PCA of the subtypes than did the

premenopausal samples (Figure 4D). To check whether the

25-gene sets could segregate BC subtypes of the TCGA

FIGURE 3
Principal component analysis of Indian breast cancer patient samples with the (A) PAM50, (B) MammaPrint, and (C) Oncotype DX gene sets.

Frontiers in Genetics frontiersin.org09

Manjunath et al. 10.3389/fgene.2022.932060

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.932060


cohort, RSEM-normalized values for 946 individuals were

downloaded from TCGA. The samples were segregated into

pre- and postmenopausal PCA plots for a 25-gene set plotted

for the TCGA samples. Surprisingly, we observed that

premenopausal samples showed better segregation than did

postmenopausal samples. The existing gene sets (PAM50,

MammaPrint, and Oncotype DX) could only segregate

postmenopausal TCGA samples. Hence, the 25-gene set

could be used for segregating the BC subtypes of

premenopausal women in the Caucasian population

(Supplementary Figure S3D). The genes responsible for

differential segregation of the pre- and postmenopausal BC

patients in the Indian cohort and the TCGA were dependent

on differential expression of genes such as CNR2 (Luminal B),

LRRC3B, EYA4, TMEFF2 (Luminal A), ESR2, GRIN2A, ERBB4,

andNNAT (ER−ve akaHmod and TNBC). These are, therefore, of

particular interest as population-specific markers.

Since we did not find segregation of the premenopausal

samples and to check if adding lncRNA to the panel

improves segregation of the breast cancer subtypes, we

performed a differential lncRNA analysis across subtypes.

Unique lncRNA expression pattern in
Indian breast cancer subtypes

LncRNA regulates gene expression and is known for its

tissue-specific expression (Jiang et al., 2016; Perron et al.,

2017). To identify subtype-specific lncRNA, DESeq was

performed using matched normal/tumor pairs for each

sample, and lncRNAs which were either upregulated or

downregulated in all samples of a group were obtained.

Among the subtypes, ER showed the most significant

number of alterations in lncRNA as was observed for

mRNA, followed by Hmod and EP, and the least in EH.

Triple-negative and triple-positive cancer showed

comparable alterations in both upregulated and

downregulated lncRNAs (Figure 5A). To obtain

commonly regulated differential lncRNAs, Venn was used.

No common lncRNA to all subtypes was observed

(Figure 5B), indicating subtype specificity of lncRNAs.

TRG-AS1, MAFA-AS1, and MELTF-AS1 in EPH; TET-

AS1, ZNF26-DT, and C4A-AS1 in TNBC; FZD4-AS1,

CHL1-AS1, and B4GALT1-AS1 in Hmod; HOTAIR,

FIGURE 4
(A) Table depicting unique mRNAs with potential as Indian-specific biomarkers derived from different subtypes. (B)Heat map of uniquemRNAs
chosen as potential biomarkers in the Indian population. Blue represents downregulated genes and red represents upregulation. (C) PCA plot
showing segregation of Indian patients with selected mRNAs. (D) PCA plots showing segregation with selected mRNAs between pre- and
postmenopausal Indian breast cancer patients.
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EGOT, FOXN3-AS2, and TMEM12-AS1 in ER; DOCK9-

AS1, MORC1-AS1, and GASAL1 in EP were some of the

uniquely upregulated lncRNAs in a subtype-specific manner.

ARNTl2-AS1, ELMO-AS1, and NAMA in EPH; B4GALT1-

AS1, HOXB-AS1, and EP300-AS1 in TNBC; NCF4-AS1,

ZSWIM8-AS1, and DICER1-AS1 in Hood; NRIR,

TP53TG1, and DDX11-AS1 in ER; MYLK-AS1, ADNP-

AS1, SNHG12, and HNF4A-AS1 in EP (Supplementary

Material S2) were some of the uniquely downregulated

lncRNAs in subtypes.

To identify DE lncRNA between pre- and postmenopausal

samples, DE lncRNA was obtained from the pre- and

postmenopausal samples. Shared long intergenic noncoding

RNA (lincRNA) and unique lncRNAs to pre- and

postmenopausal patients were obtained. AL357054.2 was the

only lncRNA commonly upregulated in the postmenopausal

samples. LINC02306, AL442163.1, AC124947.1, and

AC016831.1 were commonly downregulated, while

AC024958.1 and AC011447.3 were commonly upregulated in

premenopausal samples (Supplementary Material S1).

As in mRNA analysis, the oncogenes and tumor suppressors

regulate tumorigenesis; we also classified the lncRNA as ONC

and TSG and identified subtype-specific lncRNA (Figure 5F).

The unique lncRNAs were analyzed for each subtype and were

compared against the Lnc2cancer database, and the known breast

cancer-related lncRNAs were selected. A set of 27 lncRNAs was

identified from the data (Figure 5C). This gene set was devised

iteratively following the removal of frequent outliers. It was

observed that most lncRNAs were upregulated in Hmod,

whereas the same had negligible expressions in all other subtypes.

Similarly, ER showed downregulated lncRNAs, which were

upregulated in other subtypes. The expression pattern using

lncRNA showed an apparent demarcation among the

subtypes, as shown in the heat map (Figure 5D). Figure 5C

FIGURE 5
(A) Table showing the number of differentially expressed lncRNAs that are common to all patients in a subtype and unique lncRNAs when
compared to other subtypes of breast cancer. (B) Venn diagram showing common and unique lncRNAs among different subtypes of breast cancer
patients. (C) Table depicting unique lncRNAs with potential as Indian-specific biomarkers derived from different subtypes. (D) Heat map of unique
lncRNAs chosen as potential biomarkers in the Indian population. Blue represents downregulated genes and red represents upregulation. (E)
PCA plot showing segregation of Indian patients with selected lncRNAs. (F) Table showing onco and tumor suppressor lncRNAs segregated subtype
wise. (G) PCA plot of combined signature of mRNA and lncRNA for Indian breast cancer patient samples.
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shows that ATXN8OS, UCA1, SNHG12, SNHG5, LINC02487,

TCL6, TET2-AS1, and PTENP1-AS were the identified lncRNA

sets from our data. The selected LncRNA segregated different

breast cancer subtypes in our cohort (Figure 5E). When the same

lncRNA set was compared in pre- and postmenopausal women

samples, Hmod and ER subtypes segregated better in the

postmenopausal sample, and premenopausal samples did not

show any clear pattern in the PCA (Supplementary Figure S3E).

Since lncRNA signatures also segregated the subtypes only in

postmenopausal samples, we combined the mRNA and lncRNA

list and checked for the segregation of subtypes of BC.

25 mRNA and 27 lncRNA signatures
segregate breast cancer subtypes in Indian
cohort

The PCA of the patients shows an immediate improvement

over the existing standard gene sets (PAM50, MammaPrint, and

Oncotype DX) in the segregation of hormone receptor subtypes

in the PCA with mRNA and lncRNA signature from our data.

The clear separation of Hmod (moderate Her2 expression, ER/

PR negative) from the other subtypes is noted, as is also visible in

the heat map of lncRNAs. These are particularly interesting as

they are Her2-specific lncRNAs (Figure 5G). Furthermore, the

triple-negative (TNBC) and triple-positive (EPH) subtypes

surprisingly cluster close together. The two luminal A groups,

ER and EP, do not cluster closely, indicating the heterogeneity

observed within luminal A tumors. When the combined list was

checked for pre- and postmenopausal samples, the pattern

observed for only the previous lncRNA signature list repeated

as Hmod and ER was seen as a distinct cluster in the

postmenopausal samples, and an improvement from the

previous signatures was observed in the premenopausal

samples where the EPH subtype segregated from other

subtypes (Supplementary Figure S3F) in the PCA.

Furthermore, to understand if the mRNA-lncRNA

signatures could also have prognostic value, we performed

LASSO-Cox. We selected luminal subtype signatures obtained

from the Indian cohort and validated the performance of the

signatures in luminal A subtype from the TCGA data set.

Combined mRNA and lncRNA signature
predicts survival in luminal A breast cancer
subtype in TCGA data set

We performed LASSO-Cox using 25 genes obtained as the

signature from the Indian cohort analysis to check its prognostic

performance. Only six mRNAs showed mild correlation with

survival. When the analysis was performed with lncRNAs

obtained from the Indian cohort and tested in the TCGA

cohort, no lncRNA showed correlation with survival. We

checked for lncRNA correlation in other subtypes of breast

cancer. We observed lncRNA TCL6 associated with survival

in Her2+ve cancers in the TCGA cohort with a CI of 0.86

(Supplementary Figures S4Ai, ii). Furthermore, we merged the

gene list of lncRNAs and mRNAs and performed LASSO

(Supplementary Figures S4Bi), and we obtained three gene

signatures which performed better than the mRNAs alone in

prediction of survival. We also performed univariate and

multivariate Cox analyses and identified three gene signatures.

The three gene signatures consisted of LRRC3B, GRIN2A, and

SNHG12. To check whether the three genes’ performance in

predicting survival was significant, we used the risk score of genes

and lncRNAs (Supplementary Figure S4Bii) and categorized the

patients into two groups of low risk and high risk and performed

a survival analysis using the KM plot (p-value −0.0093)

(Supplementary Figure S4Biii), suggesting the prognostic

performance of the combined lncRNA and gene. Also, when

these three genes were checked for interactions with

chemotherapeutic drugs in DGIdb (Cotto et al., 2018), an

interaction score of 1.37 was returned for GRIN2A with the

drug dizocilpine (North et al., 2010).

Having identified the lncRNAs specific to each subtype and

their added prognostic value, we checked for the lncRNA-mRNA

pairs that were co-expressed in all subtypes of breast cancer to

understand the functional significance of the lncRNA in breast

cancer pathogenesis.

Unique lncRNA-mRNA signature in breast
cancer subtypes

To identify potential functions of the lncRNAs, we identified

potential cis-acting lncRNA-mRNA pairs on the basis of their overlap

on the chromosomes. Although lncRNA regulates gene expression in

cis and trans, we focused on the lncRNA-mRNA pairs in cis with an

overlap of 1,000 bp. Hmod showed a maximum number of cis-acting

lncRNA-mRNA pairs (809 downregulated) (909 upregulated),

followed by ER (524 downregulated and 565 upregulated), which

was in contrast to mRNA expression alone. The gene-lncRNA pair

found in the same orientation (5′-3′-5′-3′) vs. opposite orientation

(5′-3′-3′-5′) is presented as a bar graph in Figure 6A.We performed a

Pearson correlation to correlate the overall expression of mRNA and

lncRNA in a subtype-specific manner. We found a minimal

correlation in ER (r = 0.15, p = 8e−11), and other subtypes had

no significant correlation. Interestingly, 91% correlation in the EPH

subtype was observed when a Pearson correlation analysis was

performed using downregulated and upregulated cis lncRNA-

mRNA pairs separately. All other subtypes did not show a

significant correlation.

Furthermore, subtype-specific lncRNA-mRNA pairs with a

Pearson correlation of at least 90% were segregated (Figure 6B).

The lncRNA was checked in the TANRIC database for expression

status and subtype specificity. Subtype-specific differences were
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observed in WAS-AS1, expressed highly in basal in the TCGA. By

contrast, it is specific to Hmod and was not observed in basal in the

Indian cohort. SNHG12 is highly basal in the TCGAdata sets, whereas

it is downregulated in EP in the Indian cohort. Linc00861 showed a

downregulated expression pattern in both the TCGA and Indian

cohort, whereas SLC39A8was high in the TCGAdata and EP subtype

in the Indian cohort and was associated with better survival.

The genes-lncRNA pair from each subtype was subjected to

pathway analysis, and unique pathways were regulated in each

subtype (Figures 6A,C). The downregulated pathways were zinc

efflux transporters in EPH, whereas zinc influx was upregulated in

the EP subtype. Some of the underrepresented subtypes in mRNA

were observed when the lncRNA-mRNA analysis was carried out. A

combined analysis of lncRNA-mRNA returned some of the critical

players in oncogenesis. To find out the lncRNA regulation of mRNA,

several tools are available which can be used to identify the mode of

action of lncRNA. We had noted that TSG SNHG12 was

downregulated, and the cis gene ONC EPB41 was upregulated; we

sought to narrow down the mechanism using in silico methods.

SNHG12 may regulate EPB41 specific to
the EP subtype

To identify potential functions of the lncRNAs, potential cis-acting

lncRNA-mRNApairswere identified on the basis of the overlap on the

chromosomes. Among the lncRNAs, SNHG12 is oncogenic and

participates in proliferation, invasion, and metastasis in breast

cancer tumors (Wang et al., 2017; Tamang et al., 2019; Zimta

et al., 2020). In our cohort, SNHG12 was deregulated in the EP

subtype. This lncRNA was picked up and its mRNA pairs identified

(Figure 6B). Erythrocytemembrane protein band 4.1 (EPB41)was one

of the interesting targets as it is known to play a role in the invasion of

other cancers (Yang et al., 2016; Zhao et al., 2020; Yuan et al., 2021).

We wanted to see its binding and interaction with SNHG12.

The IntaRNA tool was used to check for the binding between

lncRNA SNHG12 and EPB41. The results indicate a feasible binding

between the two (Figure 6D). While various regulatory functions of

SNHG12 and EPB41 have been elucidated, the potential interaction

between them remains unexplored and is a potential direction for

FIGURE 6
(A) Bar graphs depicting number of lncRNA-mRNA pairs in different subtypes of Indian breast cancer patient samples. (B) Table shows lncRNA
and its corresponding mRNA pair obtained from different subtypes that are common to all the patients in the group. (C) Table depicting subtype-
specific pathways obtained from lncRNA-mRNA pairs. (D) A potential binding site between EPB41 (Target) and SNHG12 (Query) was identified by
IntaRNA. The heat map shows potential binding sites between EPB41 and SNHG12 in blue. (E) Survival plot for high and low SNHG12 and
EPB41 levels in the TCGA data set.
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further research. Similarly, to find potential proteins that can bind to

SNHG12 RNA, the eCLIP-validated proteins were collated from the

RNAct database (Lang et al., 2019) and checked for possible loss of

oncogenic protein/PRC binding, which would block oncogene

expression. We found 137 proteins that could bind to

SNHG12 from the RNAct database, of which 5 (GTF2F1,

APOBEC3C, DKC1, SUGP2, and TIA1) were present in the gene

list common to all EP patients.

One of the hallmarks of cancer is evasion of immune

response, and EPB41, a cytoskeletal protein, has a role in

dendritic cell synapse and its role in the immune system

involves antigen presentation (Zhao et al., 2020). EPB41 has

also been shown to increase cell proliferation and invasion (Zeng

et al., 2016). SNHG12 may have a role in polarization of immune

cells, providing advantage for cancer cell growth (Tamang et al.,

2019, 12). Therefore, we checked for any association that

SNHG12 and EPB41 may have with immune cell function.

SNHG12 and EPB41 expression status may
regulate immune cell function

SNHG12 showed significant association with survival (HR:

p-value < 0.064) in luminal A subtype of breast cancer in the

TCGA cohort, while EPB41 had no correlation with survival.

Since we hypothesized that these genes might be co-expressed

and have a combined effect on survival, we performed the

survival analysis with EPB41 high and SNHG12 low vs.

EPB41 low and SNHG12 high conditions, and we found an

association with survival at p-value-0.1) (Figure 6E).

Furthermore, to test whether the change in survival might

have an association with the immune cell status, we

performed a CIBERSORT analysis (Chen et al., 2018). We

found that SNHG12 low and EPB41 high had relatively low

macrophages, high Tregs, and plasma cells (Supplementary

Figure 4C), which might be associated with poor survival.

Furthermore, we also checked the status of immune cells in

normal breast tissue and found that in SNHG12 low and

EPB41 high, Tregs was significantly high (p-value-

0.00000000666), and dendritic cells (p-value-0.01451) and

plasma cells (p-value-0.00000000000221) among other

immune cells were significantly higher indicating further that

the genes might be involved in polarization of the immune cells

which might contribute to the differences in survival.

Validation of known cancer genes in
Indian breast cancer patients

We selected five breast cancer–relevant genes, namely,

ALDH1A, BRCA, TP53, BCL2, and CD44, for validation, using

SYBR Green real-time PCR assays in n = 10 IDC samples. We

observed that 40% of patients showed upregulation of ALDH1A

and TP53. BCL2, an anti-apoptotic gene, was overexpressed in

50% of the patients. BRCA1 was commonly seen upregulated in

80% of the patients (Figure 7A). CD44 long- and short-form levels

were checked. It was observed that 60% of the patients showed

upregulation of CD44 long and short (CD44l and s) forms.

Commonly deregulated lncRNA in breast cancer HOTAIR

levels were also checked, and it was observed that 77% of the

patients showed a higher expression than the normal samples.

When the patients were analyzed for CD44l and s forms separately,

it was seen that 50% of the patients had high levels of CD44l form

and low levels of CD44s form, and 30% of the patients had high

levels of CD44s form and low levels of l form (Figure 7B).

Conclusion

A transcriptome sequencing and analysis of 17 Indian breast

cancer tumors and matched normal showed that already existing

microarray gene signatures failed to segregate the samples into

their subtypes using the PCA. Every subtype showed a unique gene

and pathway signature withminimum overlap. A unique set of DE

FIGURE 7
(A) Real-time PCR dot plot depicting relative quantification for known breast cancer genes in Indian breast cancer patients. (B) Scatter plot for
checking co-expression of CD44l and s forms.
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onco and tumor suppressor lncRNA was identified for each

subtype. Our data identified an mRNA-lncRNA gene set that

could segregate pre- and postmenopausal women with breast

cancer. This is the first study reporting subtype-specific mRNA

and lncRNA expression in Indian breast cancer patients. However,

all these results need validation with a bigger sample size.

Discussion

Breast cancer is heterogenous and one of the major causes of

death in women worldwide (Manjunath and Choudhary, 2021).

Better insight into the molecular basis of this is possible when new

approaches like next-generation sequencing are used (Casamassimi

et al., 2017).Most of the breast cancer data available in the repositories

are from the Caucasian population (Bhattacharyya et al., 2020). The

gene signatures already available are from this population, and

population-specific changes are not very well addressed. Therefore,

region-specific data generation with subtype information is necessary.

One of the aims of our studywas to generate breast cancer patient data

for the Indian population categorized into six different subtypes based

on the hormone receptor status and to check for subtype-specific gene

and lncRNA signatures. Our RNA-seq data from 17 samples showed

subtype-specific changes. The number of samples sequenced is a

limitation of this study. However, the results obtained could be further

validated in the larger data set. Maximum alteration was observed in

ER with 2,572 downregulated genes and 1,324 upregulated genes

followed by EP, Hmod, EPH, TNBC, and finally EH. Among the

deregulated pathways, ER-positive subtypes showed keratinization,

and RUNX3 and AP2 family of genes regulating transcription and

metabolism pathways. ER-negative tumors showed deregulation of

ubiquitination, FGFR signaling, ECM interactions and notch

signaling, and collagen and cellular pathways. Very few gene

expression studies have been reported from India to date. One of

the very early studies by Thakkar et al. (2010) showed 108 DEGs in

31 ER-positive breast tumors using microarray analysis. They found

that these genes were mostly involved in mRNA transcription and

cellular differentiation pathways. Another study also used microarray

technology and sequenced 29 tumors categorized into luminal, basal,

and Her2, and 9 normal samples. They showed cell cycle, DNA

replication, lipid metabolism PPAR signaling, focal adhesion, and

metastasis to be deregulated in Indian samples (Malvia et al., 2019).

Furthermore, pathways related to collagen, focal adhesion, and ECM

were reported to be deregulated in various cancers such as breast

tumors in other populations (Bergamaschi et al., 2008; Lee et al., 2008;

Luo and Guan, 2010; Oskarsson, 2013; Acerbi et al., 2015; Insua-

Rodríguez and Oskarsson, 2016).

lncRNAs are a class of noncoding RNAs with lengths between

200 and 200,000 bases (Huarte, 2015). They lack protein-coding

features such as open-reading frames. They bear many similarities

to mRNAs, often having multiple exons and undergoing

posttranscriptional changes such as splicing, polyadenylation,

and 5′-capping (Prensner and Chinnaiyan, 2011). In several

cases, the dysregulation of lncRNAs has been found to be

directly or indirectly associated with the hallmarks of cancers,

mediated by other interacting partners such as proteins, other

noncoding RNAs, transcription factors, and histone complexes

(Zimta et al., 2020). Studies done previously from the western

population have shown HOTAIR lncRNA to be overexpressed in

HER2+ breast cancers and HOTAIRM1 in basal-like breast

cancers (Su et al., 2014). LINC160 and DSCAM-AS1 were seen

to be highly expressed in luminal A and B, respectively (Jonsson

et al., 2015; Vu et al., 2016). H19, MALAT, BC200, XIST, and ATB

are the other lncRNAs frequently deregulated in breast cancer

(Iacoangeli et al., 2004; Sirchia et al., 2009; Hansji et al., 2014; Kim

et al., 2018, 1). However, there is a dearth of explicitly Indian

population-specific research evaluating lncRNAs in breast cancer.

We analyzed our sequenced data for lncRNAs and found

uniqueness in DE lncRNA in different subtypes. The ER

subtype had the highest alterations in lncRNA followed by

Hmod, EP, and EH. TNBC and triple-positive (EPH) cancer

showed comparable levels of DE lncRNAs. ATXN8OS, UCA1,

SNHG12, SNHG5, LINC02487, TCL6, TET2-AS1, PTENP1-AS

were some of the unique lncRNAs found in our cohort from

different subtypes that were deregulated. Another study on Indian

breast cancer showed ADAMTS9-AS2, EPB41L4A-AS1, WDFY3-

AS2, RP11-295M3.4, RP11-161M6.2, RP11-490M8.1, CTB-

92J24.3, and FAM83H-AS1 to be deregulated in early-stage

breast cancer (Deva Magendhra Rao et al., 2019). Among the

DE lncRNAs in our data, SNHG12 (small nucleolar host gene 12),

a lncRNA present on chromosome 1 at the p35.3 region, was

looked into further. The length of SNHG12 is ~1,867 bases coding

for SNORA16A, SNORA61, SNORA66, and SNORD99 (Zhai

et al., 2015; Lan et al., 2017, 12). SNHG12 has been implicated

in various cancers, such as gastric cancer, triple-negative breast

cancer, glioma, and osteosarcoma. In triple-negative breast cancer,

gastric cancer, and glioma, SNHG12 is high in expression (Lan

et al., 2017; Wang et al., 2017; Zhang and Lu, 2018, 12; Zhou et al.,

2018, 12; Tamang et al., 2019, 12). ER-positive breast tumors in the

TCGA data showed low expression of SNHG12 that correlated

with our studies (Li et al., 2015). This also indicates tumor- and

subtype-specific expression of SNHG12. In our data, SNHG12 was

downregulated in the EP subtype hinting at a possible dual role as

both oncogene and tumor suppressor which needs to be further

investigated. Through eCLIP data from the RNAct database (Lang

et al., 2019), we found proteins that could bind to SNHG12, and

among them, GTF2F1, APOBEC3C, DKC1, SUGP2, and

TIA1 genes were found in our list for the EP subtype. The role

of the immune system in cancer is well established (Loose and Van

de Wiele, 2009). Immune escape by the tumor is promoted by

activation of tumor microenvironment features such as tumor-

associated macrophages (TAMs), abnormal antitumor immune

cells such as dendritic cells, natural killer cells, and regulatory

T cells (Togashi et al., 2019; Wylie et al., 2019). Various lncRNAs

are known to participate in interactions between a cancer cell and

immune cells (Pi et al., 2021). Small nucleolar RNA host gene
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(SNHG) family members are known to regulate the biological

function of immune cells. SNHG1, SNHG12, and

SNHG16 regulate Treg cells and promote immune escape (Pei

et al., 2018, 1; Tamang et al., 2019, 12; Ni et al., 2020, 1; Pi et al.,

2021). Blocking SNHG12 might cause depolarization of refractory

immune cells that are primed by tumor in non–small-cell lung

cancer (Huang et al., 2022, 12). SNHG12 is known to promote

immune escape in ovarian cancer cells (Qian et al., 2020, 12).

EPB41 gene expression silencing has been known to elevate cell

surface antigen in dendritic cells (Zhao et al., 2020).

From the clinical analysis of our data, recurrent samples and

grade 3 and stage 4 samples showed poor survival that correlated

with the other population data. Her2-positive cancers showed

poor survival in our data. A study from India with 3,453 patients

showed a 5-year overall survival to be 96.11% (95.12–97.1) in

hormone receptor–positive/HER2-negative, 92.74% (90.73–94.8)

in TNBC, and 90.62% (88.17–93.15) in HER2 subgroups (Doval

et al., 2020). However, in a study conducted by Pan et al. (2020),

with Asian breast tumors, Her2-positive cancers with an

enriched immune score showed better survival. Low-grade

HER2-positive breast cancer patients showed poor survival

outcomes in European populations (Tovey et al., 2009).

Our RNA-seq data failed to segregate PCA PAM50, Oncotype

DX, and MammaPrint. However, when we separated pre- and

postmenopausal samples, we could see minimum segregation.

DNA microarray data from Indian breast cancers had shown

segregation for the PAM50 gene set in the study by Malvia S

et al. Multiple breast cancer patient RNA-seq studies involving

western populations have shown segregation for PAM50 gene set.

A 25-mRNAand 27-lncRNAgene set was derived fromour data after

iteratively performing segregation. There aremultiple studies available

from the western population having gene signatures for breast cancer

(Lee et al., 2008; Rathnagiriswaran et al., 2010; Arranz et al., 2012;

Nielsen et al., 2014, 50; Dieci et al., 2016, 50; Kothari et al., 2020) but

none for the Indian population. The limitation of this study is the

sample size. Nevertheless, it is the only study that shows an mRNA-

lncRNA gene signature for the Indian population that is subtype

specific. This definitely shows some potential and a foundation for

further studies. A larger sample size for sequencing and validation

could be utilized next to strengthen the signatures obtained.
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