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Retinoblastoma is a common pediatric intraocular cancer, originating from cone
precursors. The development of immunotherapies can help eradicate the tumor
without vision loss, which would largely improve the quality of life of patients with
retinoblastoma. Investigation of the tumor immune microenvironment provides
knowledge for developing novel immunotherapies in cancer. However, the immune cell
infiltrative landscape of retinoblastoma is unknown. Here, we compared the relative
expression of immune gene signatures among 59 patients with retinoblastoma. The
patients were divided into two subgroups according to the 28 types of immune cell
infiltration (ICI) scores. We found that a subgroup with high ICI scores had increased
expression levels of late cone markers, while the other subgroup exhibited larger tumor
size and metastasis propensity. Furthermore, hypermethylated genes in the high-ICI
subgroup were associated with immune regulation in the tumor microenvironment,
suggesting that DNA methylation may play a vital regulatory role in retinoblastoma
immunity. Our study provides a comprehensive framework for the systemic analysis of
the influences of epigenetic events on the tumor immune microenvironment. We anticipate
that our assay can not only provide insights into tumor immune regulation but also open up
the perspectives for the identification of novel immunotherapy targets for retinoblastoma.
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INTRODUCTION

Retinoblastoma is one of the most common primary ocular malignancies in children with an
incidence of 1:16000–1:18000 (Dimaras et al., 2015). It is usually initiated by biallelic retinoblastoma
gene (RB1) mutation. Despite the significant improvement in treatments including cryotherapy,
radiotherapy, ophthalmic artery chemosurgery, and intravitreous chemotherapy, some
retinoblastoma patients eventually develop metastases due to invasion of the central nervous
system through the optic nerve and dissemination through the sclera to the orbit (Gündüz
et al., 2006; Abramson et al., 2015; Lu et al., 2019). Over the past several decades, cancer
immunotherapy, including immune checkpoint blockade, vaccination, and adoptive T-cell
therapy, has brought significant improvement for patients in terms of survival and quality of life
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(Esfahani et al., 2020). However, compared with other cancer
types, few immunotherapies have been applied to patients with
retinoblastoma (Schefler and Kim, 2021). Therefore, a systematic
investigation of the tumor immune microenvironment is
essential for the development of effective anti-tumor
immunotherapies.

With the help of novel technologies such as single-cell RNA
sequencing (scRNA-seq), the critical role of the tumor
microenvironment (TME) in tumor genesis, invasion,
metastasis, and relapse has been revealed (Schelker et al., 2017;
Steele et al., 2020; Lim et al., 2021; Mani et al., 2022). The TME in
retinoblastoma contains numerous immune cells, including
dendritic cells, monocytes, macrophages, and T-lymphocyte
cells (Sarver et al., 2021). For example, a previous study has
shown that reduced retinoblastoma cell proliferation was
associated with increased immune cell infiltration (Sarver
et al., 2021). Moreover, bioinformatics algorithms are
developed for an immune infiltration estimation of a series of
cancer tissues based on their transcriptional data (Hänzelmann
et al., 2013; Yoshihara et al., 2013; Newman et al., 2015). These
methods have significantly promoted our understanding of the
TME and have been applied to hepatocellular carcinoma (Liu S.
et al., 2021), clear cell renal cell carcinoma (Zhang et al., 2021),
pancreatic adenocarcinoma (Liu et al., 2020), and so on.
However, the application of retinoblastoma has not been fully
elucidated.

DNA methylation has proved its role as the crucial epigenetic
regulator in cancer progression by regulating genome sequence
stability and gene expression (Feinberg et al., 2016). It is
commonly known that the inactivation of certain tumor-
suppressor genes occurs as a consequence of hypermethylation
within the promoter regions (Kulis and Esteller, 2010). Moreover,
abnormal methylation events were observed in retinoblastoma
(Stirzaker et al., 1997; Berdasco et al., 2017). However, the
relationship between DNA methylation and the immune
microenvironment of retinoblastoma has not been broadly
interrogated.

In this study, based on the immune profile of 28 types of
immune cells, we identified two immunological subgroups of
retinoblastoma. These two subgroups of retinoblastoma patients
have distinct clinical characteristics and gene expression profiles.
Next, we systematically examined the distinct DNA methylation
patterns between these two subgroups. Moreover, we screened 6
differentially methylated and expressed genes as hub genes, which
may provide new insights into the molecular pathogenesis and
the clinical immunotherapy of retinoblastoma.

MATERIALS AND METHODS

Data Collection From GEO Databases
Gene expression arrays from 59 samples diagnosed with
retinoblastoma were obtained from GEO databases with
accession code GSE58780. The DNA methylation array from
retinoblastoma patients was obtained from GEO databases with
accession code GSE58783. Clinical data of all samples were
downloaded from https://static-content.springer.com/esm/art%

3A10.1038%2Fs41467-021-25792-0/MediaObjects/41467_2021_
25792_MOESM4_ESM.xlsx. scRNA-seq data from
retinoblastoma patients were obtained from GEO databases
with accession code GSE174200.

Immune Cell Infiltration Analysis
We performed a single-sample Gene Set Enrichment Analysis
(ssGSEA) by using the GSVA (version 1.34.0) (Hänzelmann
et al., 2013) R package based on the default parameters to
calculate the immune infiltration level of 28 immune cell
types (Charoentong et al., 2017). Among these immune cells,
the activated CD4+ T cell, activated CD8+ T cell, central memory
CD4+ T cell, central memory CD8+ T cell, effector memory
CD4+ T cell, effector memory CD8+ T cell, type 1 T helper cell,
type 17 T helper cell, activated dendritic cell, CD56bright natural
killer cell, natural killer cell, and natural killer T cell are
considered to have anti-tumor capacities. Regulatory T cell,
type 2 T helper cell, CD56dim natural killer cell, immature
dendritic cell, macrophage, MDSC, neutrophil, and
plasmacytoid dendritic cell are considered to have pro-tumor
capacities. We also used the Estimation of STromal and Immune
cells in MAlignant Tumors using Expression data (ESTIMATE)
algorithm of the estimate (version 1.0.13) (Yoshihara et al.,
2013) R package to calculate the stromal and immune scores and
tumor purity of each sample.

Clustering Analysis Based on Immune Cell
Infiltration Analysis
By using the stats (version 3.6.0) R package, we performed an
unsupervised hierarchical clustering (based on Euclidean distance
andWard’s linkage) to cluster retinoblastoma samples based on a
sample-signal matrix including 28 types of immune cells of 59
retinoblastoma samples. Fifty-nine samples were divided into
high and low infiltration subgroups. The visualization of K-means
clustering result was performed by the pheatmap (version 1.0.12)
R package, and comparison between the two subgroups in terms
of their signal enrichment score of 28 immune cell types was
computed using a two-sided t-test and visualized by the ggpubr
(version 0.3.0) R package.

Principal Component Analysis
We performed a principal component analysis (PCA) on the
sample-signal matrix using FactoMineR (version2.4) R package
with default parameters. The result from the PCA was visualized
by the factoextra (version 1.0.7) R package.

Differential Expression Analysis
The sample-gene gene expression matrix was input into the
limma (version 3.42.2) (Ritchie et al., 2015) R package for the
identification of differentially expressed genes between the high-
ICI subgroup and low-ICI subgroup. We determined
differentially expressed genes (DEGs) with the criteria of
absolute fold change >1.5 and false discovery rate (FDR)
adjusted p < 0.05. Clusters of DEGs were identified by an
unsupervised hierarchical cluster analysis (based on Euclidean
distance and Ward’s linkage).
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Enrichment Analysis
An enrichment analysis was performed using the clusterProfiler
(version 3.14.3) (Yu et al., 2012) R package with the “enricher”
and “GSEA” function, and the FDR adjusted to p < 0.05 was
considered as statistically significant. All gene sets were obtained
from the Molecular Signatures Database (MSigDB) using the
msigdbr (version 7.2.1) R package.

DNA Methylation Array Processing and
Differential Methylation Analysis
After obtaining the microarray data from GSE58783, we used the
“champ.filter” function of the ChAMP (version 2.16.2) (Tian et al.,
2017) R package to remove probes which are located in sex
chromosomes and near SNP to eliminate the influence of sex and
SNP, respectively. We used the “champ.DMP” function of the
ChAMP R package with the criteria of absolute Δβ > 0.2 and FDR
adjusted p < 0.05 for the identification of differentially methylated
probes (DMPs) between the high-ICI subgroup and low-ICI
subgroup. We next excluded the genes which had both
hypermethylated and hypomethylated probes. Genes with
either a hypermethylated probe or hypomethylated probe were
considered as hypermethylated genes or hypomethylated genes,
respectively.

Protein–Protein Interaction Network
We used STRING (version 11.5) (Szklarczyk et al., 2019) with
default parameters to construct the protein–protein interaction
(PPI) network. The generated PPI networks were visualized by
Cytoscape software (version 3.9.0) (Shannon et al., 2003). In
Cytoscape, we used cytoHubba (Chin et al., 2014) to screen
hub genes by the Maximal Clique Centrality (MCC) method.

Statistical Analysis
All analyses were performed by R software (version 3.6.0). An
unpaired two-tailed t-test was used to compare two subgroups of
continuously distributed variables. The correlations of the
retinoblastoma subgroups and clinical characteristics were
analyzed using the chi-square test. p ≥ 0.05 (n.s.), p < 0.05 (*),
p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).

Code Availability
All custom computer codes used in this study are freely available
at https://github.com/jiawei-zhong/Mao_et_al_RB/

RESULTS

Identification of Immune-Related Gene
Subtypes in Retinoblastoma Based on
Immune Cell Infiltration
To study immune cell infiltration (ICI) of retinoblastoma, we
performed the single-sample Gene Set Enrichment Analysis
(ssGSEA) of 59 retinoblastoma patients from GSE58780
(Hänzelmann et al., 2013; Liu J. et al., 2021). Using gene sets
which are related to 28 types of immune cells (Charoentong et al.,

2017), the immune infiltration levels of all immune cell types were
calculated (Figure 1A). Among these 28 types of immune cells, 12
types of immune cells, such as activated CD4 T cell and activated
CD8 T cell, are considered to execute anti-tumor immunity; while
8 types of immune cells, such as regulatory T cell and type 2 T
helper cell are considered having immune-suppressive functions
(Jia et al., 2018). We used an unsupervised hierarchical clustering
algorithm to assign the retinoblastoma samples into two clusters
(high-ICI subgroup and low-ICI subgroup) based on immune
infiltration levels (Figure 1A). The principal component analysis
(PCA) of the retinoblastoma samples by immune infiltration
levels confirmed the rationality of the result of hierarchical
clustering (Figure 1B). The normalized enrichment score
(NES) of each immune cell was then compared between the
two subgroups, and the NES of 24 immune cells was significantly
higher in the high-ICI subgroup (Supplementary Figure S1A).
Subsequently, leveraging the ESTIMATE algorithm, we found
that the stromal, immune, and ESTIMATE scores were relatively
higher in the high-ICI subgroup (Figures 1C–E), whereas the
tumor purity in the high-ICI subgroup was lower than that in the
low-ICI subgroup (Figure 1F) (Yoshihara et al., 2013).

To prove that a higher ICI score represents a higher ICI level,
we applied the ssGSEA to retinoblastoma scRNA-seq data from
GSE174200 (Norrie et al., 2021), and the retinoblastoma samples
were divided into two subgroups (Supplementary Figure S2A).
Consistently, the high-ICI subgroup exhibited a higher immune
cell percentage, indicating the robustness of the classification
(Supplementary Figure S2B).

We next explored the differences in the clinical and
pathological features between the two subgroups. The tumor
diameter of the high-ICI subgroup was significantly smaller
(mean diameter = 14.56 versus 15.8 mm, Supplementary
Figure S1B). Patients with a high ICI score were significantly
more likely to be hereditary forms (RB1mutation), whereas most
of the patients with a low ICI score were non-hereditary
(Supplementary Figure S1C). In the high-ICI subgroup, 60%
of the patients were bilateral, higher than that in the low-ICI
subgroup (Supplementary Figure S1D). Other characteristics
(e.g., growth pattern, necrosis, optic nerve invasion, and choroid
and sclera invasion) exhibited no statistical significance between
the two subtypes (Supplementary Figures S1E–H).

Altogether, by estimating the immune infiltration levels in
patients with retinoblastoma, we identified two different
retinoblastoma subtypes with distinct immune features. We
also found that the two subtypes exhibited significant
differences in tumor size, RB1 mutation, and laterality.

The Two Subgroups Displayed Differences
in the Expression of Photoreceptor Markers
and Proliferation Genes
To investigate the genes associated with immune cell infiltration,
we performed a differential expression analysis to detect
differentially expressed genes (DEGs) between the two
subtypes by using the limma R package (Ritchie et al., 2015).
Five-hundred fifty five and 320 genes were upregulated in the
high-ICI subgroup and low-ICI subgroup, respectively
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(Figure 2A, Supplementary Table S1). Photoreceptor-specific
genes, such as OPN1SW and PDC, were specifically expressed in
the high-ICI subgroup, whereas proliferation markers (e.g.,
MKI67, TOP2A, CENPE, CENPF, and TTL) were highly
expressed in the low-ICI subgroup (Figure 2A). By
performing an unsupervised hierarchical clustering, these
DEGs were classified into three main gene clusters, including
two upregulated in the high-ICI subgroup and one upregulated in
the low-ICI subgroup (Figure 2B). We next performed a Gene
Ontology (GO) enrichment analysis of each gene cluster. The
genes in cluster 1 were enriched for “visual perception,” “sensory
perception of light stimulus,” and “phototransduction”
(Figure 2C). The genes of cluster 2 were associated with
immune/inflammation signature (e.g., “neutrophil activation,”
“response to interferon-gamma,” and “MHC protein
complex”) (Figure 2D). The genes of cluster 3 were related to
“chromosome segregation,” “mitotic nuclear division,” and
“tubulin binding” (Figure 2E). The enrichment analysis of
these three gene clusters using other databases (KEGG,
HALLMARK, PID, and REACTOME) exhibited enrichments
in similar pathways (Supplementary Figures S3A–C).
Altogether, our data showed that the low-ICI subgroup
presented a high proliferation potential.

Next, we used a gene set enrichment analysis (GSEA) to obtain
deeper insights into the function of immune infiltration in

retinoblastoma. For example, the high-ICI subgroup was
enriched for “senescence and autophagy in cancer” and
“retinal cone cell differentiation” (Figures 2F,G). The low-ICI
subgroup was enriched for “retinoblastoma gene in cancer”
(Figure 2H). Taken together, our results suggest that
retinoblastoma in the high-ICI subgroup maintains a cone-
differentiation state, and the overexpression of proliferation
markers which we found in the low-ICI subgroup may result
in a higher propensity for metastasis.

DNA Methylation Analysis Based on
Different Immune Subtypes of
Retinoblastoma
To interrogate the differences in the epigenome between the two
immune subtypes of retinoblastoma, we analyzed DNA
methylation with DNA methylation arrays from GSE58783.
There were 16 and 37 cases corresponding to the high-ICI
subgroup and low-ICI subgroup respectively. Leveraging the
ChAMP R package, a total of 3,940 significantly differentially
methylated probes (DMPs) were detected, including 3,217 and
723 hypermethylated probes in the high-ICI subgroup and low-
ICI subgroup, respectively (Figure 3A, Supplementary Table S2)
(Tian et al., 2017). Next, we explored the distributions of these
DMPs. By considering the CpG island and the adjacent context,

FIGURE 1 | Landscape of immune cell infiltration in retinoblastoma. (A) Heatmap showing the normalized enrichment scores of each retinoblastoma sample on 28
immune cell types. (B) Scatter plot showing the distinct subgroups of retinoblastoma divided by PCA. (C–F)Boxplot showing the difference of stromal score (C), immune
score (D), ESTIMATE score (E), and tumor purity (F) between two retinoblastoma subtypes.
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FIGURE 2 | Identification and functional annotation of DEGs between two subtypes. (A) Volcano plot depicting the DEGs in two subtypes. Specific genes were
indicated. (B) Heatmap of the gene expression value of DEGs on each sample. (C–E) Dot plots of the top-ranked GO terms of genes in gene cluster 1 (C), gene cluster
2 (D), and gene cluster 3 (E). (F–H) Enrichment plot showing upregulation of the “senescence and autophagy in cancer” (F), “retinal cone cell differentiation” (G), and
downregulation of the “retinoblastoma gene in cancer” (H) in the high-ICI subgroup.
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FIGURE 3 | Differential methylation analysis of DNA methylation array data based on two subtypes. (A) Heatmap of the β value of DMPs on each sample. (B) Bar
plot showing the number of high-ICI hypermethylated probes distributed to different regions. (C) Pie plot representing the composition of high-ICI hypermethylated
probes. (D) Bar plot showing numbers of low-ICI hypermethylated probes distributed to different regions. (E) Pie plot representing the composition of low-ICI
hypermethylated probe. (F–G)Upset graph showing the distribution of high-ICI (F) and low-ICI (G) hypermethylated probes on different genomic regions. Dot plots
of the top-ranked GO terms of high-ICI hypermethylated genes (H) and low-ICI hypermethylated genes (I) are shown.
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hypermethylated probes in the high-ICI subgroup were mostly
located in the open sea (41.50%), followed by N-Shore (17.87%)
and S-Shore (16.54%) (Figures 3B,C), while hypermethylated
probes in the low-ICI subgroup were mostly located in the open
sea (60.44%), followed by the CpG island (10.51%) and N-Shore
(9.68%) (Figures 3D,E). After removing the probes in the
intergenic region, the distributions of hypermethylated probes
in the high-ICI subgroup in various functional genomic regions
are shown in Figure 3F. The majority of the probes were
discovered to be located in the gene body (54.62%), TSS1500
(200–1,500 bp upstream of the TSS, 18.72%) and 5′UTR
(11.21%). The distributions of hypermethylated probes in the
low-ICI subgroup were similar to those in the high-ICI subgroup,
but some changes were observed. For example, the ratio of the
probes across the gene body was higher (62.84%), but that across
the 5′UTR area was lower (15.98%) (Figure 3G).

Next, we inquired about the potential biological processes
related to DMPs. We mapped them to their corresponding genes
and identified 1,519 hypermethylated genes in the high-ICI
subgroup and 402 hypermethylated genes in the low-ICI
subgroup (Supplementary Figure S4A). Surprisingly, by using
an enrichment analysis, we observed that the hypermethylated
genes in both subgroups were related to “neurogenesis,” “neuron
differentiation,” and “neuron development” (Figures 3H,J).
Moreover, some immune-related genes were included in the
hypermethylated genes of the high-ICI subgroup, such as
CD83, HLA-DOA, IRF4, DOK3, and CXCR1. Similarly, we also
found that the hypermethylated genes of the high-ICI subgroup
were significantly enriched for some biological processes related
to immune regulation (e.g., T cell activation and B cell receptor
signaling pathway), but no immune-related pathway was
observed to be enriched by hypermethylated genes in the low-
ICI subgroup (Supplementary Figure S4B). These results suggest
that DNA hypermethylation is associated with the tumor
immune microenvironment of retinoblastoma.

Identification of Differentially Methylated
and Expressed Genes and PPI Networks
Given that DNA methylation is a major epigenetic factor
influencing gene expression, we further investigated which
DEGs underwent methylation or demethylation (Moore et al.,
2013). Subsequently, the overlapping of DEGs and differentially
methylated genes (DMGs) was performed, then 66 and 39
hypermethylated downregulated genes were found in the high-
ICI subgroup and low-ICI subgroup, respectively (Figure 4A). To
further understand the underlying functions of differentially
methylated and expressed genes, these genes were inputted
into the STRING to build protein–protein interaction (PPI)
networks (Szklarczyk et al., 2019). The PPI network consisted
of 48 nodes and 66 edges. Using cytoHubba, we removed the
nodes with a low connectivity score (less than 2), and the biggest
module was retained (Figure 4B) (Chin et al., 2014). In this
module, six nodes (BIRC5,CDCA2, SMC4,CDC20,NCAPD2, and
KIFC1) had more than 20 connectivity scores, which were further
screened and identified as hub genes.

DISCUSSION

Over the past several years, immune cell infiltration in tumors has
been found to be of crucial importance in precision medicine,
which can be attributed to the deep understanding of the tumor
microenvironment (Yang, 2015; Tamborero et al., 2018).
Immunotherapy has been successfully applied to various types
of cancers (Havel et al., 2019). A recent study has proved the
efficacy of immunotherapy in eliminating retinoblastoma cells
whilst preserving the mouse vision (Wang et al., 2020). However,
the treatment of advanced retinoblastoma remains challenging,
thus, further therapeutic development is needed (Abramson et al.,
2015). Therefore, elucidation and understanding of the immune
landscape of tumors may not only provide insights into tumor

FIGURE 4 | Protein–protein interaction network on differentially methylated and expressed genes. (A) Flower plot showing the overlap of DEGs and DMGs. (B)
Protein–protein interaction (PPI) network of differentially methylated DEGs. Hub genes were presented at the middle of network. The color and area of nodes reflect the
score which is calculated by cytoHubba.
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immune dysregulation, but also lay the foundation for identifying
novel immunotherapy targets.

In the present study, we characterized immune cell infiltration
patterns in retinoblastoma using GEO databases. We used the
ssGSEA method which is suitable for cross-platform evaluations
of the landscape of 28 types of immune cells in retinoblastoma,
and found two distinct subgroups. Patients with retinoblastoma
in the high-ICI subgroup highly express late-stage cone markers
(e.g. GUCA1A and OPN1SW) (Welby et al., 2017), whereas
patients in the low-ICI subgroup highly express proliferation
genes (e.g.,MKI67 and TOP2A) and retinoblastoma-related genes
[e.g., TTK (Zeng et al., 2020) and CDC25A (Singh et al., 2015)],
suggesting that immune cell infiltration is associated with
retinoblastoma migration and metastatic progression.
Consistent with the high expression of proliferation genes in
patients with a low-ICI score, patients in the low-ICI subgroup
exhibited a larger tumor diameter. Our study also showed that
there was no significant difference in other clinical features (e.g.
growth pattern, necrosis, optic nerve invasion, and choroid and
sclera invasion) between the two subgroups. Further experiments
are needed to confirm this result.

Many bioinformatics tools are being developed for the immune
infiltration estimation of various cancer tissues based on their
transcriptional data (Hänzelmann et al., 2013; Yoshihara et al.,
2013; Newman et al., 2015). However, for validation, the
application of a protein analysis on the single-cell level, including
flow cytometry and immunostaining, on analyzed samples is
required, which is essential to increase the reliability.

DNA methylation has proved its role as a significant epigenetic
driving factor in cancer progression, development, and metastasis
(Fleischer et al., 2014; Feinberg et al., 2016; Fleischer et al., 2017; Sina
et al., 2019). Although evidence of DNA methylation regulating the
immune microenvironment in breast cancer (Fleischer et al., 2017),
glioma (Briand et al., 2019), and gingivo-buccal oral cancer (Das
et al., 2019) has been presented, the role of DNA methylation in the
retinoblastoma immune environment has not been completely
explored. We systematically analyzed DNA methylation based on
the two subgroups. Further analysis of DNAmethylation differences
between the two subgroups of retinoblastoma patients showed that a
global DNAhypermethylation pattern was presented in the high-ICI
subgroup (3,217 hypermethylated probes versus 723
hypomethylated probes). The enrichment analysis of these
differentially methylated genes showed that these genes were
remarkably related to the immune regulation in the tumor
microenvironment including T cell activation, B cell receptor
signaling pathway, and cytokine signaling in the immune system.
These results implied that alterations in DNAmethylation may play
a crucial role in retinoblastoma immune cell infiltration.

The PPI network of differentially expressed and methylated
genes provided a comprehensive observation of their functional
connections, and screened hub genes. We identified a total of six
hub genes: BIRC5, CDCA2, SMC4, CDC20, NCAPD2, and KIFC1.
Among the hub genes, BIRC5 (also named survivin) is a well-
known cancer therapeutic target (Li et al., 2019). BIRC5
immunotherapy-related clinical trials have been applied in
patients with colorectal cancer (Tsuruma et al., 2004),
malignant glioma (Fenstermaker et al., 2016), and melanoma

(Becker et al., 2012). The role of BIRC5 in retinoblastoma has also
been investigated before. Exposure to carboplatin, topotecan, or
radiation resulted in the elevated expression of BIRC5 in the
retinoblastoma cell line (Ferrario et al., 2016). A previous study
showed that Dnmt1, Dnmt3a, and Dnmt3b can regulate the
methylation status of BIRC5 in glioblastoma multiforme
(Hervouet et al., 2010). Our result extended and enriched the
knowledge about the relationship between BIRC5 and DNA
methylation in tumors.

This study is not devoid of limitations. First, all our results were
theoretical and validation based on patients or animal samples is
lacking. Second, we had not found another dataset that includes
DNA methylation data, so a validation cohort to confirm our
conclusions is needed. Third, gene expression is a complex
process involving numerous steps and many other regulatory
elements, such as DNA methylation, nucleosome positioning and
composition, 3D structural interactions, and histone modification
can alter gene expression (Carter and Zhao, 2021). However, because
of the lack of other multi-omics data, here we only elaborated on the
relationship between gene expression and DNA methylation.
Fourth, we only focused on hypermethylated downregulated
genes and hypomethylated upregulated genes, which is a
generally accepted regulative paradigm between DNA
methylation and gene expression (Esteller, 2002; Ehrlich, 2009;
Witte et al., 2014). However, recent efforts identified subtle
changes in the relationship between DNA methylation and gene
expression, beyond the classical dogma (Wan et al., 2015; Liu A.
et al., 2021). Therefore, further analysis is required to evaluate
contra-regulated genes. Fifth, we did not apply single-cell-level
protein profiling, which is able to provide solid evidence to
measure the infiltration level, on retinoblastoma to investigate the
infiltration pattern.

In summary, by comprehensively assessing the immune cell
infiltration in retinoblastoma, we highlight the differences between
the two subgroups in gene expression and DNA methylation levels.
The retinoblastoma immune landscape analysis may help clinicians
develop novel immunotherapeutic targets.
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