
Published online 27 February 2020 Nucleic Acids Research, 2020, Vol. 48, No. 8 e46
doi: 10.1093/nar/gkaa120

Quantitative comparison of within-sample
heterogeneity scores for DNA methylation data
Michael Scherer 1,2,3, Almut Nebel4, Andre Franke4, Jörn Walter 3, Thomas Lengauer1,
Christoph Bock 5,6,‡, Fabian Müller 7,*,†,‡ and Markus List 8,*,†,‡

1Computational Biology, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken,
Germany, 2Graduate School of Computer Science, Saarland Informatics Campus, 66123 Saarbrücken, Germany,
3Department of Genetics/Epigenetics, Saarland University, 66123 Saarbrücken, Germany, 4Institute of Clinical
Molecular Biology, Kiel University, 24105 Kiel, Germany, 5CeMM Research Center for Molecular Medicine of the
Austrian Academy of Sciences, 1090 Vienna, Austria, 6Department of Laboratory Medicine, Medical University of
Vienna, 1090 Vienna, Austria, 7Department of Genetics, Stanford University School of Medicine, Stanford,
CA 94305, USA and 8Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life
Sciences, Technical University of Munich, 85354 Freising, Germany

Received January 15, 2020; Editorial Decision February 09, 2020; Accepted February 14, 2020

ABSTRACT

DNA methylation is an epigenetic mark with impor-
tant regulatory roles in cellular identity and can be
quantified at base resolution using bisulfite sequenc-
ing. Most studies are limited to the average DNA
methylation levels of individual CpGs and thus ne-
glect heterogeneity within the profiled cell popula-
tions. To assess this within-sample heterogeneity
(WSH) several window-based scores that quantify
variability in DNA methylation in sequencing reads
have been proposed. We performed the first sys-
tematic comparison of four published WSH scores
based on simulated and publicly available datasets.
Moreover, we propose two new scores and provide
guidelines for selecting appropriate scores to ad-
dress cell-type heterogeneity, cellular contamination
and allele-specific methylation. Most of the measures
were sensitive in detecting DNA methylation hetero-
geneity in these scenarios, while we detected differ-
ences in susceptibility to technical bias. Using re-
cently published DNA methylation profiles of Ewing
sarcoma samples, we show that DNA methylation
heterogeneity provides information complementary
to the DNA methylation level. WSH scores are power-
ful tools for estimating variance in DNA methylation
patterns and have the potential for detecting novel
disease-associated genomic loci not captured by es-

tablished statistics. We provide an R-package imple-
menting the WSH scores for integration into analysis
workflows.

INTRODUCTION

DNA methylation plays an important role in the regula-
tion of gene expression, X-chromosome inactivation, ge-
nomic imprinting, and allele-specific expression (1–3), and
it has been associated with a wide range of pathological
states, such as cancer, developmental defects, premature
aging diseases and healthy human aging (4–8). In mam-
malian cells, DNA methylation is predominantly found
in CpG dinucleotides. Bisulfite sequencing captures DNA
methylation states of individual cytosines (9,10) covering
roughly 90% of CpGs in whole-genome (WGBS) and ap-
proximately 10–20% in reduced-representation bisulfite se-
quencing (RRBS). A single cytosine on a given DNA strand
is either methylated or unmethylated and the DNA methy-
lation level is quantified as the proportion of methylated
molecules. However, about 2% of 26.9 million CpGs in the
human genome exhibit intermediate DNA methylation val-
ues at the level of bulk samples or tissues (11), which can
be attributed to within-sample heterogeneity (WSH) (12).
Potential sources of heterogeneity include cell-type com-
position (13,14), cellular contamination, technical issues,
allele- and strand-specific DNA methylation (ASM and
hemimethylation), and DNA methylation erosion, i.e. the
stochastic loss of DNA methylation at a given locus (Fig-
ure 1).
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Figure 1. Sources of WSH and their manifestation in bisulfite sequencing reads. Each line represents a sequencing read. Characteristics of different WSH
targeted at quantifying inter-molecule and intra-molecule heterogeneity are outlined below. (A) Cell-type heterogeneity: a sample comprises different cell
types with different DNA methylation patterns. (B) Cellular contamination: sample preparation does not yield a pure population of cells of interest. (C)
ASM: alleles differ in their DNA methylation states. (D) DNA methylation erosion: cells lose DNA methylation in a stochastic process. Epipolymorphism,
Entropy, FDRP and qFDRP describe inter-molecule WSH (scenarios A–C), while PDR and MHL describe intra-molecule WSH (scenario D).

While these heterogeneous methylation patterns can be
deconvolved by physically separating cell types (5,15) or
by in-silico approaches (16–18), we note that information
about differences in DNA methylation heterogeneity be-
tween cell populations is valuable for understanding dif-
ferences between phenotypes (12,19–20). Although single-
cell bisulfite sequencing can be used to infer DNA methyla-
tion states of individual cells, high costs and technical is-
sues such as low read numbers per cell currently prevent
genome-wide heterogeneity analyses in larger studies. Al-
ternatively, local deep amplicon sequencing can be used to
reconstruct the probability distribution of DNA methyla-
tion patterns (21,22) but does not afford genome-wide cov-
erage (23).

Various scores have thus been proposed for quantifying
WSH from bulk bisulfite sequencing data: The Proportion
of Discordant Reads (PDR) introduces the concept of lo-
cally disordered DNA methylation patterns (24) to quan-
tify DNA methylation erosion (Figure 1D). Guo et al. (25)
presented Methylation Haplotype Load (MHL) by defining
methylation haplotypes as stretches of consecutively methy-
lated CpGs. Epipolymorphism (26) and Methylation En-
tropy (27) (referred to as Entropy in the following) compute
entropy in DNA methylation patterns of fixed size across
sequencing reads. Notably, Epipolymorphism and Entropy

take into account windows of multiple CpGs and therefore
assume relative proximity of neighboring CpGs and neglect
regions with low CpG density. To mitigate this, we propose
the Fraction of Discordant Read Pairs (FDRP) and quanti-
tative FDRP (qFDRP) which are the first scores for quanti-
fying WSH at the level of individual CpGs. We particularly
focus on scores that use raw bisulfite sequencing reads as
input and do not discuss scores that quantify heterogeneity
from processed DNA methylation data, such as the propor-
tion of sites with intermediate methylation (PIM) or Shan-
non Entropy of particular markers (12,28–29).

Previous studies highlight the value of including WSH
scores in standard DNA methylation analysis. For instance,
PDR and Entropy were shown to be associated with gene
expression (24) and transcriptional heterogeneity (30), as
well as with important clinical parameters such as tu-
mor size, progress-free survival and tumor location (12,31).
However, choosing the most appropriate score for an anal-
ysis is not straightforward as a systematic review of WSH
scores is currently missing in the literature. We therefore
evaluated PDR, MHL, Epipolymorphism, Entropy, FDRP
and qFDRP in the context of simulated and publicly avail-
able bisulfite sequencing data. We employed three criteria to
evaluate performance: first, we tested if WSH scores cover
different sources of heterogeneity (Figure 1). Second, we as-
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sessed robustness of WSH scores with respect to CpG den-
sity and technical biases such as sequencing coverage and
read length. Third, we investigated the potential of WSH
scores for revealing novel regulatory regions in particular
those that are not apparent on the average DNA methyla-
tion level.

MATERIALS AND METHODS

Definitions of WSH scores

PDR. The PDR (24) models the local discordance be-
tween CpGs. It classifies each read as concordant if it shows
consistent DNA methylation states at all CpG positions
covered or as discordant otherwise. PDR is defined for a
CpG c as:

PDR(c) =

∑

r∈Rc

I(∃i, j ∈ r s.t. xi,r �= xj,r )

|Rc|
r = set of CpG positions (representing a read)

Rc = set of all reads r covering c

xi,r ∈ {0, 1} = methylation state of CpG i in read r

Note that the indicator function I is 1, if any two positions
on the read (i, j) do not reflect the same DNA methylation
state, i.e. the read is discordant and 0 otherwise. By defini-
tion reads are only included in the read set R if they contain
at least four CpG sites.

MHL. The MHL (25) calculates the fraction of substrings
of all possible lengths that are fully methylated in each of the
reads. It is defined for a given CpG c as:

MHL(c) =

L∑

l=0

(l + 1)

∑

r∈Rc

|r |−l∑

i=1

I(xi,r = 1 ∧ · · · ∧ xi+l,r = 1)

∑

r∈Rc

|r | − l

L∑

l=0

l + 1

xi,r ∈ {0, 1} = methylation state of CpG i in read r

Rc = set of all reads r covering c

|r | = number of CpGs in read r

l = number of consecutive CpGs of the same

methylation state

L = max
r∈Rc

(|r |) − 1

Epipolymorphism and Methylation Entropy. Epipolymor-
phism (26) and Methylation Entropy (27) are based on epi-
alleles, i.e. configurations of methylation states in four-CpG
windows. The frequency of each of the 24 possible epialle-
les is determined from the reads and Epipolymorphism for

window w is calculated as:

Epipolymorphism(w) = 1 −
16∑

k=1

p2
k

pk =

∑

r∈Rw

I(∀i ∈ ck : xi,ck = xi,r )

|Rw|
ck ∈ {(0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1)}(epiallele)

r = set of CpG positions (representing a read)

Rw = set of all reads r containing

all four CpGs in w

xi,r ∈ {0, 1} = methylation state of CpG i in read r

xi,ck ∈ {0, 1} = methylation state of CpG i in epiallele ck

w = window of four consecutive CpGs

Using the above definitions, methylation entropy is calcu-
lated as:

Entropy(w) = −1
4

16∑

k=1

pk ∗ log2 pk

FDRP and qFDRP. The FDRP captures within-sample
DNA methylation heterogeneity at single CpG resolution.
FDRP is defined as:

FDRP(c) =

∑

rs∈Rc

∑

rt∈Rc,t>s

I(∃i ∈ {rs ∩ rt} s.t. xi,rs �= xi,rt )

(|Rc |
2

)

Rc = set of all reads r covering c

rs, rt = sets of CpG positions (representing reads)

s, t ∈ [1, |Rc|] = indices of reads

xi,r ∈ {0, 1} = methylation state of CpG i in read r

FDRP is calculated from all read pairs that cover the se-
quence position of interest (c). We call a read pair discor-
dant, if there is a CpG position in their overlap such that
the methylation states differ. FDRP is normalized by the
number of read pairs.

The quantitative FDRP (qFDRP) is derived from
FDRP:

qFDRP(c) =

∑

rs∈Rc

∑

rt,t>s

∑

i∈{rs∩rt}
I(xi,rs �= xi,rt )

|{rs ∩ rt}|
(|Rc |

2

)

Rc = set of all reads r covering c

rs, rt = sets of CpG positions (representing reads)

s, t ∈ [1, |Rc|] = indices of reads

xi,r ∈ {0, 1} = methylation state of CpG i in read r

In contrast to FDRP, qFDRP balances the discordance
using the Hamming distance (Supplementary Data 1, Ta-
ble S1). Note that the number of pairwise comparisons in-
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creases exponentially with coverage, necessitating a sub-
sampling strategy (see ‘Implementation’ section).

Implementation

FDRP and qFDRP were implemented in R (R-versions
newer than release 3.2). We randomly sampled 40 reads
at CpGs with coverage higher than 40 to avoid combina-
torial explosion. We discarded read pairs with an overlap
less than 35 bp, which removes reads with low information
content. To account for different read lengths, we created
a fixed-sized window (50 bp) around the CpG site of inter-
est. We used RnBeads (32) data structures for storing DNA
methylation, coverage and sample metadata. FDRP and
qFDRP were calculated for sites having coverage at least
10 for the experimental data. In our freely available imple-
mentation, these parameters can be changed according to
specific dataset characteristics.

PDR was computed with custom R scripts. Epipoly-
morphism and Methylation Entropy were calculated using
methclone (version 0.1, (33)), which determines blocks of
four adjacent CpGs and counts the epialleles found, using
the following parameters: methylation difference 0, distance
cutoff 50 bp and coverage threshold 10. The final scores were
computed using custom R scripts. MHL was calculated by
Perl scripts downloaded from the publication’s website (25).

The processing pipeline was implemented in python
using pypiper (https://github.com/epigen/pypiper)
and looper (https://github.com/epigen/looper) on a
high-performance computing cluster. The pipeline
scripts are available from GitHub (https://github.com/
MPIIComputationalEpigenetics/WSHScripts). We provide
an R package available from GitHub (https://github.
com/MPIIComputationalEpigenetics/WSHPackage) im-
plementing the scores discussed here together with an
extensive vignette and manual on how to compute the
scores from bisulfite sequencing data. FDRP/qFDRP
calculation requires aligned reads in a bam file and genomic
annotation through an RnBiseqSet or GRanges object
(34) as input.

Simulation of bisulfite sequencing reads and evaluation of
WSH scores

Setup. We simulated bisulfite sequencing reads from the
human reference genome ‘hg38’ (chromosome 22, X and
Y excluded) using the Sherman tool (see Supplementary
Data for details; https://www.bioinformatics.babraham.ac.
uk/projects/sherman/). Sherman allows for controlling the
methylation probability through the --CG conversion
parameter, which implicitly controls sample heterogeneity.
We used different parameter settings for the different sce-
narios (Supplementary Data 1, Table S2).

Simulated reads were aligned to the reference genome
‘hg38’ with bismark (http://www.bioinformatics.babraham.
ac.uk/projects/bismark/, version 0.13.0, (35)) to create bam
files. DNA methylation scores were extracted and processed
with RnBeads using default parameters. Bam files were
sorted and indexed with samtools ((36), version 1.3).

Simulated heterogeneity. For each heterogeneity scenario
(Figure 1), we simulated bisulfite sequencing reads in 1000

randomly selected genomic regions of length 50 kb using
Sherman (read length: 50/100 bp; error level: 1%). For each
region, we created different subpopulations of reads rep-
resenting different cellular states which were subsequently
merged to generate simulated samples for each region and
scenario (Supplementary Data 1, Figure S1). For each sub-
population of reads, we assumed either a fully methylated
or fully unmethylated (with error level 1%) background as
baseline and introduced the opposite methylation state in a
subset of CpGs within a randomly selected subregion. To
assess the potential of each score to quantify heterogeneity,
we performed a t-test comparing the different scores at each
CpG in the background to the subregion. Additionally, we
simulated negative cases in which no change in DNA methy-
lation state for the subregion was introduced. In total we
created 1000 simulated regions, which comprise a truly het-
erogeneous region (THR) in about half of the regions for
each simulation scenario separately. We used these defini-
tions to determine the numbers of true positives, true nega-
tives, false positives and false negatives, as well as resulting
Receiver Operating Characteristic (ROC) curves for each
score and scenario (Supplementary Data 1, Figure S2).

In the cell-type heterogeneity scenario, we merged be-
tween 2 and 10 simulated cell types (read subpopulations).
The subregions in which the methylation state changed to
the inverse state were selected at random for each cell type
individually. For each region, the THR was defined as the
maximum segment at which any of the cell types changes
from baseline DNA methylation level. Then, we computed
the average WSH score for each of the 1000 regions indi-
vidually and correlated this quantity with the number of
cell types in this particular region to determine if the scores
quantify the degree of heterogeneity in a sample. Cellular
contamination was simulated using two distinct cell types,
which were then mixed with a random proportion between
1.0 and 0.5. ASM was simulated analogously using 0.5 as a
fixed proportion.

To simulate DNA methylation erosion, we first generated
fully methylated regions for one cell type. For each region
we randomly selected a subregion in which we demethy-
late CpGs with probability �. Since the eroded segments are
passed on to all daughter cells in cell replication, we sam-
pled from these demethylated reads between 2 and 10 times
(parameter � ).

For methylation switching domains (MSDs), we modeled
a single cell type with a baseline DNA methylation level. At
a randomly selected position, the cell type changes its DNA
methylation state.

Technical biases. To simulate coverage dependency, we
randomly selected 1000 regions of size 50 kb and simu-
lated different numbers of reads. Average DNA methyla-
tion levels were estimated from the blood cohort (see ‘Ex-
perimental Data’ section) with an overall average of 62.5%,
where 42.4% of all sites had methylation level of at least
95% and 26.4% had a DNA methylation value of at most
5%. We thus set the methylation probability to 62.5% and
the --CG conversion parameter to 95 and 5 for the
methylated and unmethylated states, respectively. For each
of the regions, we selected between 5000 and 50 000 reads
(step size 5000) for modeling coverage between roughly 5-
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and 50-fold. Then, we applied different read lengths (--
length parameter) increasing from 40 to 150 bp (step
size 10). To keep the simulated read coverage constant, we
changed the number of reads generated according to the
length parameter. We also employed different error lev-
els (1–10%, step size 1%) to simulate sequencing errors.
Note that the --error rate parameter in Sherman em-
ploys an exponential decay model for each nucleotide with
higher error probability for the 5’ than for the 3’ end (cf.
Sherman manual at https://www.bioinformatics.babraham.
ac.uk/projects/sherman/).

Experimental data

RRBS data for 239 whole blood samples covering 5 606
227 CpGs at average read depth 7.5 from a healthy co-
hort (37) were obtained from the PopGen Biobank (https:
//www.uksh.de/p2n/). The dataset was used to validate sim-
ulation results and to estimate parameters for the simulation
scenarios.

For further validation irrespective of the sequencing
technology used, we collected WGBS data from the Ger-
man Epigenome Program DEEP (http://www.deutsches-
epigenom-programm.de), and we artificially created a ho-
mogeneous sample comprising hepatocyte populations
from two distinct donors and a heterogeneous sample com-
prising mixed WGBS data from a hepatic cell line (Hep-
aRG) and a primary hepatocyte sample. Primary data pro-
cessing was performed according to the DEEP WGBS pro-
cess documentation (https://github.molgen.mpg.de/DEEP/
comp-metadata). Reads were trimmed using seqprep
(https://github.com/jstjohn/SeqPrep), alignment was per-
formed using methylCtools/bwa (38,39), and duplicates
were removed using Picard (http://broadinstitute.github.io/
picard/). The final dataset covered 23 290 153 sites at aver-
age read depth 24.1.

A Ewing sarcoma RRBS dataset (GSE88826) was used
to illustrate the applicability of WSH scores in a disease
context. This dataset comprised 188 samples with 140 Ew-
ing tissue samples, 16 Ewing cell lines (Ewing CL), 21
mesenchymal stem cells extracted from healthy donors
(MSCs) and 11 MSCs extracted from Ewing sarcoma
patients (eMSCs) and covers 2 217 786 sites at average
read depth 14.7. Both RRBS datasets were trimmed us-
ing TrimGalore (http://www.bioinformatics.babraham.ac.
uk/projects/trim galore) and aligned to reference genome
version ‘hg38’ using bsmap (40).

Quantification of WSH scores, tumor purity and differential
heterogeneity

For all bisulfite datasets, we computed WSH scores as ma-
trices of CpG-sites×samples. Scores were aggregated across
samples or across annotated functional elements accord-
ing to the Ensembl Regulatory Build (41). We discarded
11 formalin-fixed and paraffin-embedded (FFPE) samples
from the Ewing tissue group, since they showed lower qual-
ity in the original publication (12). To predict tumor purity
levels of the Ewing sarcoma dataset, we used the LASSO
implemented in the glmnet R-package (42) to select sites
linked to annotated purity levels for 81 of the 129 sam-
ples. Tumor purity levels were estimated from genetic data

as described in (12). We used 10 random initializations of
sample orderings and then employed 10-fold cross valida-
tion with different �-values ranging from 0 to 1. We subse-
quently repeated the process using sample permutations to
further validate our findings. Predictive CpG sites were se-
lected if they were on average present in five or more folds
of the cross validation (Supplementary Data 1, Supplemen-
tary Text).

We transformed scores to M-values to call differentially
methylated and differentially heterogeneous regions be-
tween two groups using limma (43) (both on single CpGs
and after aggregation). After adjusting the resulting P-
values for multiple testing with the Benjamini–Hochberg
method (44), we set a FDR threshold of 0.01 and conducted
enrichment analysis using GOstats (45) and LOLA (46). We
report run time (wallclock time on a Debian 7 machine with
32 cores and 128 GB main memory) for each step (Supple-
mentary Data 2).

RESULTS

Different WSH scores are designed to capture different bio-
logical sources of DNA methylation heterogeneity

The WSH scores discussed here are conceptually different
(Figure 1; see ‘Materials and Methods’ section for mathe-
matical definitions), and can be divided into two broad cat-
egories:

Intra-molecule scores like PDR and MHL are moti-
vated by DNA methylation erosion and quantify the
(dis)agreement between DNA methylation states of individ-
ual CpGs on the same read. PDR conceptualizes locally dis-
ordered DNA methylation patterns. A maximum score of 1
is obtained when all reads that cover a specific CpG contain
both methylated and unmethylated CpGs. Conversely, PDR
is 0 if all reads are consistently methylated/unmethylated.
MHL defines DNA methylation haplotypes based on the
CpG methylation states on a read. It is at its maximum (1) if
all reads are fully methylated and at its minimum (0) if they
are completely unmethylated. MHL does not increase lin-
early with the number of methylated CpGs but rather quan-
tifies stretches of adjacently methylated CpGs.

Inter-molecule scores describe the variance in DNA
methylation patterns at a given locus and are thus able to
quantify cell-type heterogeneity. Epipolymorphism and En-
tropy utilize the concept of epialleles which describe pat-
terns of DNA methylation states within four-CpG windows.
They therefore assume spatial proximity of CpGs and they
reach their maximum value (Epipolymorphism: 1 − 1

16 =
0.9375, Entropy:− 1

4 ∗ 16 ∗ 1
16 ∗ log2( 1

16 ) = 1), if all 16 epi-
alleles occur at the same frequency. Both scores are 0 if only
a single pattern is represented. FDRP and qFDRP quantify
the pairwise disagreement in methylation states of sequenc-
ing reads. They are at their maximum (1) if no two reads
reflect the same DNA methylation pattern and are 0 if all
reads show identical methylation patterns.

We expect scores of the same class to show similar re-
sults (Figure 2). For example, Epipolymorphism and En-
tropy both compute epiallele frequencies and estimate epi-
allele variance using entropy. MHL, which directly quanti-
fies stretches of consecutively methylated CpGs, is concep-

https://www.bioinformatics.babraham.ac.uk/projects/sherman/
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http://www.bioinformatics.babraham.ac.uk/projects/trim_galore
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Figure 2. Comparison of average DNA methylation level and WSH scores for different sequencing read configurations.

tually different from the other scores. In a local context, the
human genome is mostly fully methylated or unmethylated.
Hence, MHL and DNA methylation level describe similar
characteristics.

Although defined as an intra-molecule score, PDR shares
characteristics with qFDRP and FDRP (Figure 2; Supple-
mentary Data 1, Table S1). All three scores rely on concor-
dance between neighboring CpGs on the same read (PDR)
or for the same CpG on different reads (FDRP/qFDRP).
Nevertheless, the scores are designed to capture different bi-
ological phenomena: DNA methylation erosion (PDR) and
cell-type heterogeneity (FDRP/qFDRP), respectively.

If a pair of reads contains many overlapping CpGs, the
probability of detecting a single difference increases and re-
sults in a DNA methylation state mismatch in the FDRP
definition. The qFDRP therefore computes the Hamming
distance to quantify pairwise read differences and is thus
less susceptible to DNA methylation fluctuations occurring
at single CpGs.

Inter-molecule WSH scores capture cell-type heterogeneity,
cellular contamination and ASM in simulation experiments

Cell-type heterogeneity, cellular contamination and ASM.
Cell-type heterogeneity poses a challenge in bulk bisul-
fite sequencing of tissues. In our first scenario, we there-
fore merged 2–10 simulated cell types and evaluated the
WSH scores’ ability to detect THRs. In the ‘cell-type hetero-
geneity’ scenario, we considered cell types at equal propor-
tions while in the ‘cellular contamination’ scenario two cell
types were mixed at different proportions. We found that
the DNA methylation level, Epipolymorphism, Entropy,
FDRP and qFDRP correctly identified the THRs in which
the cell types exhibited distinct DNA methylation patterns
(Figure 3), while the intra-molecule heterogeneity scores
PDR and MHL were less accurate. Since Epipolymorphism
and Entropy both require four CpGs per read, they were
limited in their ability to quantify global WSH and could
be quantified in only 70 out of the 1000 regions compared
to FDRP/qFDRP which were quantifiable in 912 regions
(Supplementary Data 1, Table S3). Furthermore, we found
positive Spearman correlation coefficients of the average
WSH scores per region and the number of simulated cell
types for FDRP (0.61), qFDRP (0.61) and Epipolymor-
phism (0.28), but not for the average DNA methylation level
(−0.03, Supplementary Data 1, Figure S3), suggesting that

the WSH scores are better suited to capture the degree of
heterogeneity compared to DNA methylation level alone.

Cell sorting methods do not always achieve a perfect sep-
aration, leading to the contamination of samples by non-
target cell types. We therefore evaluated whether the WSH
scores could detect such contamination in our simulated
regions. qFDRP, FDRP, Epipolymorphism and Entropy
quantified increased heterogeneity within the THR when
we introduced between 0 and 50% cell type contamination
in silico. In contrast, MHL consistently exhibited high val-
ues in the background of the simulated regions, resulting in
low AUC values. We observed higher scores for FDRP and
PDR in CpG-dense regions (Figure 3). Similarly, the aver-
age DNA methylation level had high discriminatory power.
Of note, due to their limitation to four contiguous CpGs,
Epipolymorphism and Entropy were limited in their abil-
ity to quantify heterogeneity across all regions (Figure 3).
MHL and PDR showed low accuracy in differentiating be-
tween THR and background. Correlating the mean WSH
score with the simulated sample purity level per region, we
found significant negative associations for FDRP (−0.47),
qFDRP (−0.48), Epipolymorphism (−0.26) and Entropy
(−0.47), but not for DNA methylation, PDR and MHL
(Supplementary Data 1, Figure S3).

The diploid nature of mammalian genomes leads to ad-
ditional complexity in DNA methylation patterns beyond
cell-type heterogeneity. In particular, allele-specific methy-
lation has been associated with allele-specific gene expres-
sion (3). In order to evaluate the scores’ capabilities to dis-
cern ASM from homogenous methylation, we simulated
two artificial cell types (here representing alleles) at a 1 : 1
ratio similar to the two mixing scenarios above. With the
exception of MHL and PDR, the WSH scores as well as
the DNA methylation level accurately identified the THR
in the majority of the 1000 regions. Notably, the above find-
ings where consistent, when we changed the simulated read
length from 50 to 100 bp (Supplementary Data 1, Figure
S4).

DNA methylation erosion. We modeled erosion of DNA
methylation originating from repeated cell divisions by in-
troducing stochasticity in DNA methylation patterns in
particular subregions. We found that the inter-molecule het-
erogeneity scores, which are designed to capture cell-type
heterogeneity, also capture DNA methylation erosion in
around two thirds of the simulated regions (Supplemen-
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Figure 3. WSH scores in five simulation scenarios (50 bp reads): cell-type heterogeneity, cellular contamination, ASM, DNA methylation erosion and
methylation switching domains. A positive (A) and negative (B) example is shown as snapshot for the scores and DNA methylation levels of single cell
types (gray) and cellular mixture (black) for each scenario. 1000 regions of size 50 kb were simulated in total. (C) ROC curves represent whether the
score/DNA methylation reliably differentiates THRs from the background using the P-value of a t-test.
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tary Data 1, Table S3). PDR, which was specifically de-
signed for intra-molecule heterogeneity, performed more
accurately than in the cell-mixture scenarios. When correlat-
ing the scores to the simulation parameters (Supplementary
Data 1, Figure S1), we expected PDR, which is designed
for detecting DNA methylation erosion, to be highest at �
values close to 50 and for low � values. Consequently, we
found a positive correlation of �, the stochasticity param-
eter quantifying the degree of DNA methylation erosion,
for PDR, but also for FDRP, qFDRP, Epipolymorphism
and Entropy (Supplementary Data 1, Figure S3). However,
we detected negative correlations between � , the replica-
tion parameter specifying how often a particular pattern is
found in the reads, and FDRP, qFDRP, Epipolymorphism
and Entropy as expected, but not for PDR.

Methylation switching domains. WSH scores were de-
signed to quantify complex DNA methylation patterns
rather than simply identifying domains with distinct DNA
methylation levels. Given that the average DNA methyla-
tion level could be used to accurately detect THRs in the
above scenarios, we tested whether WSH scores specifi-
cally capture heterogeneity rather than switches in the DNA
methylation level. We therefore assessed each score’s perfor-
mance in detecting methylation switching domains (MSDs),
i.e. regions that change the methylation state from fully
methylated to unmethylated or vice versa, which is typically
the case at boundaries of active regulatory elements. We
simulated a single cell type and expected low WSH scores
as MSDs do not represent DNA methylation heterogene-
ity. Consistent with this expectation, we observed a substan-
tially inflated false-negative rate (Figure 3; Supplementary
Data 1, Table S3) thus illustrating that WSH scores indeed
contribute additional information to the DNA methylation
level. We then checked whether the results obtained on these
heterogeneity scenarios were confounded by differences in
CpG-wise coverage or CpG density of the regions. Coverage
was constant at 15× and only few regions showed very high
or low coverage. The average number of CpGs per kb was
10, while few regions showed substantially higher density,
probably representing CpG islands (Supplementary Data 1,
Figure S5).

Inter- and intra-molecule WSH scores share information

In order to quantify similarities between the different
WSH scores, we merged all regions from the scenarios
above and computed pairwise correlation coefficients (Sup-
plementary Data 1, Figure S6). We observed relatively
high correlation of qFDRP, FDRP, Epipolymorphism and
Entropy with the intra-molecule WSH score PDR. This
indicates shared information between locally disordered
DNA methylation and inter-molecule differences. Correla-
tion coefficients of 0.65–0.67 between FDRP/qFDRP and
Epipolymorphism/Entropy indicate that the two groups of
scores largely describe similar aspects of the DNA methy-
lation landscape, while there are also distinct regions show-
ing differences across the scores. MHL was unrelated to the
other scores. With the exception of MHL and PDR, the

WSH were generally higher in regions exhibiting overall in-
termediate methylation (Supplementary Data 1, Figure S6).

qFDRP and MHL are robust with respect to technical biases

Next, we systematically simulated bisulfite sequencing reads
from samples with differences in technical setup including
read coverage, read length and sequencing errors, as well as
CpG density. We disregarded differences in absolute values
between the scores and focused on the scores’ relationship
with respect to varying technical parameters.

Coverage differences in samples present a major chal-
lenge for downstream analysis of bisulfite sequencing
data (47). We therefore simulated bisulfite sequencing data
at different read depths and determined the minimal cover-
age needed as well as potential coverage bias in WSH scores.
Epipolymorphism and Entropy required coverage higher
than 10-fold (Figure 4A). While FDRP, Epipolymorphism
and Entropy increased with coverage, MHL, PDR and qF-
DRP were more consistent in their quantification across dif-
ferent coverage values. These results were consistent when
we used 100 bp instead of 50 bp reads (Supplementary Data
1, Figure S7). Since coverage can vary considerably across
the genome, we computed Spearman’s rank correlation of
the coverage at individual CpGs and the WSH scores in an
individual dataset (i.e. an individual region with a defined
number of reads). None of the scores showed a dependency
on CpG-wise coverage (Supplementary Data 1, Figure S8),
indicating that all scores are applicable to comparing het-
erogeneity in regions with potentially different coverages,
but some are not applicable to comparing datasets with dif-
ferent average coverage.

Since the length of sequencing reads can differ between
bisulfite sequencing datasets, we investigated dependencies
of the scores on read length. When we simulated reads with
lengths between 40 and 150 bp, PDR and FDRP increased
with longer reads while qFDRP and MHL appeared more
independent of read length (Figure 4B). Epipolymorphism
and Entropy had no obvious relation to read length but
their values fluctuated for shorter reads.

Similarly, we investigated sensitivity of the scores to se-
quencing errors. FDRP and qFDRP were consistent in their
quantifications up to an error level of 7%, when they started
to show inflated scores due to sequencing errors (Figure
4C). Epipolymorphism, Entropy and PDR exhibited this
behavior at a lower error level. qFDRP, MHL, Epipolymor-
phism and Entropy were stable up to 5% error level before
different DNA methylation states caused by sequencing er-
rors were considered as heterogeneity.

For modeling potential dependencies of WSH scores on
genomic base composition, we correlated the local CpG
density as the number of CpGs in 50 bp sliding windows
with the average WSH score. FDRP, PDR and MHL were
correlated with local CpG density (Figure 4B; Supplemen-
tary Data 1, Figures S7 and 8), indicating a dependency on
the number of CpGs that could potentially bias these scores
in certain sequence contexts. qFDRP, which was designed
to mitigate this issue, as well as Epipolymorphism and En-
tropy did not depend on local CpG density in our simula-
tion experiments.
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Figure 4. Effect of technical parameters on WSH scores in simulation experiments with 50 bp reads. Mean WSH scores are plotted against (A) the mean
coverage across simulated regions, (B) the length of the simulated reads, (C) the simulated sequencing error level in percent and (D) the least squares
regression line for the number of CpGs in a 50 bp window (CpG density). Error bars indicate standard error. (E) Spearman correlation coefficients to
technical parameters are shown with ellipses that are directed toward the upper right for positive, and to the lower right for negative correlations. The color
represents the magnitude of correlation and significant correlations (P-values < 0.01) are indicated by bold borders.

WSH scores computed for bisulfite sequencing datasets cor-
roborate simulation experiments

We validated the findings of our simulations on a human
whole blood cohort of healthy individuals assayed with
RRBS (37). First, we found that most of the computing time
was used for MHL’s computation (Supplementary Data
2). Correlations detected among the scores, especially be-
tween intra- and inter-molecule scores, were even higher
than those on simulated data, further emphasizing that lo-
cally disordered methylation and variety in DNA methyla-
tion patterns coincide (Supplementary Data 1, Figure S9).
While Epipolymorphism and Entropy were highly corre-
lated to qFDRP and FDRP, we found that qFDRP and
FDRP captured more than twice as many regions (Supple-
mentary Data 1, Table S4). Next, we constructed a homo-
geneous and heterogeneous sample in-silico by mixing simi-
lar (hepatocytes) or distant (hepatocytes and liver cell lines)
cell types using WGBS data. Our results showed that all
scores, except for MHL, exhibit elevated heterogeneity in
the heterogeneous sample (Supplementary Data 1, Figures
S10 and 11).

Unexpectedly, Epipolymorphism showed a negative asso-
ciation with coverage and MHL showed a strictly bimodal

distribution (Supplementary Data 1, Figure S12). Hetero-
geneity was preferentially located in distal, rather than prox-
imal regulatory elements defined by the Ensembl Regula-
tory Build (Supplementary Data 1, Figures S10 and 12).

qFDRP identifies differentially heterogeneous regions in can-
cer

To investigate to what extent WSH scores are informative
in a disease context, we quantified DNA methylation het-
erogeneity in a dataset comprising Ewing sarcoma sam-
ples (Figure 5; Supplementary Data 1, Figures S13–19).
We stratified samples into Ewing tissue, Ewing cell lines
(CL), and normal mesenchymal stem cells (MSC) as the
potential cell-of-origin population for Ewing tumors (48).
We distinguish between MSCs, which were obtained from
healthy donors, and eMSCs, which originate from Ewing
sarcoma patients (12). When we compared Ewing sarcoma
to the healthy samples from the blood cohort, qFDRP indi-
cated higher overall heterogeneity in the set of cancer sam-
ples (Figure 5A). In particular, we detected highest het-
erogeneity in MSCs and slightly higher values in eMSCs
(mean: 0.229) compared to normal MSCs (mean: 0.214).
Lower qFDRP values were found in the Ewing CLs (mean:
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Figure 5. WSH in Ewing sarcoma samples. (A) Box- and violin plot of qFDRP values for different sample groups. (B) Heatmap of CpG-wise qFDRP scores
(Ewing tissue samples without FFPE samples) for the 26 sites associated with tumor purity. Both samples (rows) and CpGs (columns) were hierarchically
clustered according to Euclidean distance and complete linkage. The color code for the samples indicates predicted and annotated tumor purity levels, as
well as the average qFDRP value across the selected sites. (C) Volcano plot of qFDRP values aggregated over genes in Ewing tissue samples versus MSCs.
Positive values on the x-axis indicate higher WSH in MSCs. Each point is a gene, which is marked brown/purple if it has FDR-adjusted P-value not more
than 0.01. (D) LOLA (46) enrichment analysis of MSC-hyper-heterogeneous genes. Histograms indicate negative logarithm of the enrichment p-value.
TFBS: transcription factor binding sites, MCF-7: breast cancer cell line, FDR: false discovery rate, CNV: copy number variation

0.185) and Ewing tissue samples (mean: 0.184). MSCs were
consistently the most heterogeneous samples across all the
scores (except for MHL), and lowest heterogeneity was de-
tected in healthy blood samples using PDR, FDRP and qF-
DRP (Supplementary Data 1, Table S5). Furthermore, low-
est WSH was detected in TSS for all scores, including the av-
erage DNA methylation level (Supplementary Data 1, Fig-
ures S13–19).

Estimates of tumor purity are crucial for downstream
analysis in cancer research but are not always annotated.
This motivated us to test whether tumor purity can be pre-
dicted reliably using WSH scores. We trained a LASSO
model that selected 26 sites significantly associated with tu-
mor purity (Supplementary Data 1, Table S6). Using qF-
DRP, we could demonstrate good prediction performance
with an overall cross-validated (CV) mean absolute error
of 0.027 at a correlation of 0.966. This result was substan-
tially better than the results obtained using other scores and
the DNA methylation level (Supplementary Data 1, Table
S7). Subsequently, we used this model to predict tumor pu-
rity levels of the 48 samples lacking annotation and found
that they clustered well with the remaining samples (Figure
5). Overall, we found that the clustering was mainly driven
by the tumor purity levels as expected, and that the qF-
DRP values of the selected sites were significantly higher in
the low purity cluster than in the high purity cluster (mean
0.133 versus 0.291, t-test P-value < 2.2*10−16). When re-
peating this analysis with random sample label permuta-
tions, results were poor (CV correlation: 0.02, CV mean
absolute difference: 0.13), demonstrating that our model in
fact captured tumor purity.

In order to identify differential WSH between MSCs
and Ewing tissue samples, we conducted differential anal-
yses using hierarchical linear models (43). MSCs (both nor-
mal MSCs and eMSCs) exhibited globally higher hetero-
geneity than tissue samples. Genes that had higher aver-

age qFDRP in MSCs compared to Ewing tissue (hyper-
heterogeneous in MSCs; Figure 5C, Supplementary Data
3) enriched for DNase-hypersensitive regions in various
cell types. Intriguingly, we detected enrichment for DNase-
hypersensitive sites linked to Ewing sarcoma for qFDRP
and the DNA methylation level (cf. Figure 5D). We found
different enrichments of qFDRP and methylation level in
transcription factor binding sites (TFBS): while qFDRP en-
riched for MafK, differential DNA methylation levels were
detected in binding sites of c-MYC, c-FOS and GATA3
(Supplementary Data 1, Figure S19), which further empha-
sized that qFDRP captures a different aspect of the DNA
methylome.

DISCUSSION

We evaluated the performance of six scores for captur-
ing within-sample heterogeneity in both simulation experi-
ments and bisulfite sequencing datasets. In the simulations,
the power of scores to detect heterogeneity varied depend-
ing on their design motivation. For instance, PDR did not
capture inter-molecule heterogeneity, since it was created
to capture intra-molecule heterogeneity. Intriguingly, PDR
did not perform better than inter-molecule heterogeneity
scores in detecting DNA methylation erosion in our simu-
lation experiments. MHL identifies DNA methylation hap-
lotype blocks in bisulfite sequencing reads and might thus
not be suitable for capturing WSH according to our def-
inition. PDR, Epipolymorphism and Entropy require four
CpGs per sequencing read, which potentially masks regions
of low CpG content. Other scores such as the qFDRP do
not possess this limitation by definition and are thus more
robust to technical variation.

Since read lengths shorter than 50 bp are rarely used,
qFDRP, MHL, Epipolymorphism and Entropy can be ap-
plied to datasets of any read length and also for compari-
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Table 1. General guidelines for WSH scores

Score Concept Strengths Drawbacks Application scenario

PDR Locally disordered
methylation

Detects DNAm erosion;
CpG-wise score; Fast
computation

Simulated heterogeneity not
detected; Dependency on
read length and CpG density

Addressing locally disordered
DNA methylation in large cancer
datasets

MHL Methylation
haplotypes

CpG-wise score; Robust to
technical setup

Simulated heterogeneity not
detected; Slow computation

Linking genetically detected
haplotypes to DNA methylation
haplotypes

Epipoly Variance among the
reads

Simulated heterogeneity
detected; Robust to
technical setup

no CpG-wise score; Few
regions captured

Segmentation into highly and
lowly variably methylated regions
for large bisulfite sequencing
datasets

Entropy Variance among the
reads

Simulated heterogeneity
detected; Robust to
technical setup

no CpG-wise score; Few
regions captured

Segmentation into highly and
lowly variably methylated regions
for large bisulfite sequencing
datasets

FDRP Variance among the
reads

Simulated heterogeneity
detected CpG-wise score

Dependency on coverage,
read length and CpG density;
Rather slow computation

Linking CpG-wise methylation
values to epigenetic heterogeneity
in large bisulfite sequencing
datasets

qFDRP Variance among the
reads

Simulated heterogeneity
detected; Robust to
technical setup; CpG-wise
score

Rather slow computation Linking CpG-wise methylation
values to epigenetic heterogeneity
in large bisulfite sequencing
datasets

son of datasets with different read lengths. All scores were
sensitive to sequencing errors in our simulations, but toler-
ated error levels up to 5%, which is below error percentages
reported for Illumina sequencing (0.5–2%, (49)). We note
that the influence of experimental biases such as different
laboratories, restriction enzymes, differences in the genomic
coverage of WGBS and RRBS, or PCR duplication artifacts
were not part of our simulations and remain to be investi-
gated.

To validate simulation results and to show potential ap-
plications in a clinical setting, we analyzed three experimen-
tal datasets. We showed that tools developed for identify-
ing differential DNA methylation levels between groups of
samples, such as hierarchical linear models, can also be ap-
plied for quantifying differential heterogeneity. Using these
methods, we found that the mesenchymal stem cells used
here showed higher WSH than tumor samples. This can be
explained by stem cells forming heterogeneous populations
of cells, whereas tumor cells follow a more clonal behavior,
or by technical issues in sample preparation. Another expla-
nation are DNA methylation oscillations in primed ESCs,
which are caused by increased expression of DNMT3A/B
together with high expression of TET enzymes (50). We
showed that qFDRP can be used to accurately predict tu-
mor purity levels estimated from genetic data, which can be
valuable if such data is missing. Moreover, qFDRP was the
the best score to reliably predict tumor purity levels. As ex-
pected, higher heterogeneity was detected in those samples
that had lower tumor purity estimates.

We found elevated WSH scores in regions not yet an-
notated to a functional category in the Ensembl regula-
tory build in all three bisulfite sequencing datasets as re-
ported in (51). These regions could not be detected using
the average DNA methylation level and their functional
role and connection to diseases warrant further investiga-
tion. We envision that WSH scores can be used to segment
the genome into regions with particularly high or low het-
erogeneity which can be characterized subsequently. PDR

could also be employed to quantify reduced correlation of
neighboring CpGs in cancer (52). To investigate to what ex-
tent cell-type heterogeneity influences WSH, the scores pro-
posed here could be used in conjunction with DNA methy-
lation based cell-type deconvolution tools (17,18).

Recommendations and guidelines

Table 1 summarizes strengths and limitations of WSH
scores in capturing different characteristics of heterogene-
ity. PDR is well suited for detecting locally disordered re-
gions in large cancer datasets. However, one should be
aware of its dependency on data quality and local base
composition, especially read length and CpG density. Ad-
ditionally, its dependency on four CpGs in a window limits
its applicability to shorter read lengths. PDR and FDRP
showed sensitivity to technical setup because of the strict
classification of each read (pair) as discordant/concordant.
qFDRP is particularly suitable for identifying regions ex-
hibiting high heterogeneity due to cell-type differences, and
complements CpG-level DNA methylation measurements.
It also proved to be robust with respect to technical noise
in our simulation setup. Epipolymorphism and Entropy are
suitable for region-based analysis while they fail to capture
heterogeneity in CpG-sparse regions. Like PDR, they are
restricted to regions with at least four CpGs per read. MHL
was less specific in quantifying WSH. While it was robust to
technical variation in synthetic data, it did not correlate to
the DNA methylation level and was only weakly correlated
to the other scores.

CONCLUSION

WSH scores provide insights into sample composition
and cell subpopulations. Thus, they complement the DNA
methylation level by revealing differences among individual
cells and alleles with unknown functional impact. Neverthe-
less, to date WSH is rarely considered in epigenomic stud-
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ies. Here, we provide the first systematic and comprehen-
sive evaluation of WSH scores that capture DNA methyla-
tion pattern variations directly from the sequenced reads.
Based on simulations and experimental data, we provide
guidelines for selecting the WSH score most appropriate
for complementing DNA methylation levels as surrogate of
heterogeneity. Our results indicate that WSH scores are suit-
able for the identification of genomic regions in which DNA
methylation heterogeneity drives phenotypic changes in de-
velopment and disease.
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