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Abstract: Ruthenium(II) alkylidene complexes such as the
Grubbs’ 1st and 2nd generation catalysts undergo a
ligand substitution with 2,2’-bipyridine, which readily
leads to the common photoredox catalyst Ru(bpy)3

2 + . The

application of this catalyst transformation in sequential
olefin metathesis/photoredox catalysis is demonstrated by

way of ring-closing metathesis (RCM)/photoredox ATRA re-
actions.

In sequential catalysis,[1] which may also be referred to as “as-

sisted tandem catalysis”,[2] a single catalytically active metal
center is utilized in two (or more) consecutive orthogonal cata-
lytic reactions. Key to this sustainable approach to catalysis is a
sufficiently mild ligand substitution of a given metal catalyst in

the presence of a respective organic reaction intermediate,
which by contrast to conventional multistep synthesis is not

isolated between the individual steps, yet avoiding its labor-in-
tensive and waste-generating purification (Scheme 1 a). In the

context of sequential catalysis, ruthenium-based catalysts, in-

cluding RuII–alkylidenes,[3] have received particular attention.
Owing to their large number of stable oxidation states ranging

from @2 to + 8, ruthenium catalysts can mediate a plethora of
synthetically highly useful organic transformations,[4] and the

particularly desired catalytic species are usually readily accessi-
ble by relatively simple chemical manipulations.

During the last decade, photoredox catalysis has emerged
as a highly useful addition to the chemist’s toolbox of synthet-

ic methods, often enabling the synthesis of target structures
which are difficult to access by classical approaches.[5] Howev-

er, hardly any examples of tandem or sequential catalytic pro-
tocols have been disclosed to date which encompass a photo-

redox reaction as key step. We demonstrated[6] the successful
sequential combination of a photoredox-induced radical cat-

ionic Diels–Alder reaction[7] with an oxidative 1,n-diene cycliza-
tion.[8] An in situ oxidation of the photoredox catalyst

Ru(bpz)3
2 + to the strong oxidant RuVIII oxide allowed sequenc-

ing of the two orthogonal photochemical and thermal trans-

Scheme 1. a) Concept of sequential catalysis. b) and c) former and current
contributions.

Scheme 2. Ligand substitution of Grubbs’ 1st and 2nd generation catalysts
with 2,2’-bipyridine (bpy) to photocatalyst Ru(bpy)3

2 + . a) Time course of the
reaction between catalyst G-2 and bpy in the presence of AgBF4 analyzed
by UV/Vis; c [Ru] = 3.1 V 10@4 m in DCE. b) Time-dependent development of
the absorption at 455 nm for catalysts G-1 and G-2. DCE = Dichloroethane.
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formations in a one-pot procedure, to eventually synthesize
highly functionalized O-heterocyclic products (Scheme 1 b).

Here, we report the reverse approach: we successfully se-
quenced a thermal reaction with a consecutive photoredox

transformation. An olefin metathesis reaction[9] was combined
in one pot with a photocatalytic radical alkene 1,2-difunctional-

ization;[10] this new protocol was enabled by the in situ trans-
formation of a RuII–alkylidene to Ru(bpy)3

2 + (Scheme 1 c).
We investigated the ligand substitution of Grubbs’ 1st and

2nd generation catalysts, G-1 and G-2, with 2,2’-bipyridine

(bpy) by UV/Vis monitoring (Scheme 2). For this purpose,
dilute solutions of both RuII–alkylidenes were treated with

larger excess of bpy in different solvents at elevated tempera-
tures.

Upon reacting catalyst G-1, we observed that the phos-
phines as well as the carbene ligand were rapidly displaced.

However, the thermal reactions of G-1 with bpy (10 up to
150 equiv with respect to RuII) in dichloroethane (DCE) at
80 8C, or even in dimethylformamide (DMF) at 140 8C in a

sealed tube, would come to a halt at the relatively stable cis-

Table 1. One-pot sequential RCM/photoredox chlorosulfonylation reactions.

# 1,n-diene RCM product Step 1 yield [%] Photoredox product Step 2 yield [%] Combined yield S1 V S2 [%] Sequential yield [%]

1 86 80 69 57

2 96 82 79 68

3 97 38 37 36

4 85 69 59 41

5 88 52 46 51

6 80 80 64 69

7 70 57 40 56

8 83 31 26 32

9 65 63 41 18

Experiments were conducted on 0.20 mmol scale. Sequential reactions: Step 1: diene 1 (0.20 mmol), 5 mol % G-1 (10 mmol), DCE, R.T. , 17 h, then bpy
(0.10 mmol) and AgBF4 (25 mmol), 80 8C, 3 h. Step 2: TsCl (0.20 mmol), hv 460 nm LED, acetone, R.T. , 48 h. Yields refer to isolated yields after chromatogra-
phy.
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[Ru(bpy)2Cl2][11] (Figure S2). On the other hand, the desired
global ligand substitutions of G-1 and G-2 could be achieved

in the presence of silver(I) tetrafluoroborate (AgBF4) at 80 8C in
DCE (Scheme 2 a and Figures S3, S4). In both cases, the charac-

teristic absorption band of Ru(bpy)3
2 + at 455 nm evolved rap-

idly and G-2 was almost fully converted after 30 min. In case of

G-1, the reaction required a longer period of 120–150 min
and it also generated the blue oxo-bridged dimer
[(bpy)2(Cl)RuORu(Cl)(bpy)2]2+ as a byproduct, which we identi-

fied by its absorption spectrum[12] and which was probably
formed by hydrolysis of cis-[Ru(bpy)2Cl2] with trace amounts of
H2O, followed by AgI-mediated oxidative dimerization[13] (Fig-
ure S3). Despite the presence of this side product after the

ligand substitution on catalyst G-1, the resulting solutions
were photochemically active as we could subsequently dem-

onstrate.

The transformation of Grubbs’ 1st generation catalyst (G-1)
to Ru(bpy)3

2 + was successfully utilized in tandem olefin meta-

thesis/photoredox reactions. As shown in Table 1, ortho-allyl-
styrenes and further 1,n-dienes 1[14] were converted to the in-

denes and cyclic alkenes 2 by ring-closing metathesis (RCM) in
DCE. Subsequent addition of 2,2’-bipyridine (in a reduced

excess of 10 equiv with respect to G-1) and AgBF4 (2.5 equiv

relative to G-1) and heating to 80 8C for 3 h induced the ligand
substitution of the RuII–alkylidene in the presence of the or-

ganic intermediate 2. The resulting reaction mixtures were
concentrated to dryness, where after tosyl chloride (TsCl,

1.0 equiv) was added, and acetone as the optimal solvent for
the adjacent photoredox step. Irradiation of the homogeneous

solutions with blue LED light resulted in the clean chlorosulfo-

nylation of the intermediary alkenes 2 by way of a redox neu-
tral ATRA reaction[15b, 16] of the sulfonyl halide with the alkene.

While the presence of silver(I) salts showed no inhibitory effect
on the photoredox-induced reaction, the exchange of solvent

was found necessary due to the limited solubility of the cata-
lyst Ru(bpy)3(BF4)2 in DCE. When the sequence was carried out

in DCE alone, product 3 a was formed in just 26 % compared

to 57 % overall yield using acetone. trans-configured prod-
ucts 3 were obtained exclusively in all cases, with the excep-
tion of the tetrahydrobenzo[7]annulene 3 i which was formed
as a 5:1 mixture of diastereomers. Overall, the sequential pro-

tocol generated the 2-chlorosulfones 3 in moderate to good
isolated yields of up to 69 %, while one C@C and two C@het

bonds were consecutively installed. The overall yields are well-
correlated with the combined isolated yields of the two indi-
vidual steps, which were determined in independent experi-

ments after chromatographic purification (see Supporting In-
formation).

In summary, we demonstrated for the first time the combi-
nation of olefin metathesis with photoredox catalysis in se-

quential one-pot protocols, enabled by the in situ ligand sub-

stitution of RuII–alkylidenes to ruthenium(II)-tris(bipyridine). The
2-chlorosulfone products 3 were conveniently prepared by

way of exemplary tandem RCM/photoredox ATRA reactions in
moderate to good overall yields. Further applications of this

concept are currently under investigation.
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