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Reward associations do not explain transitive inference
performance in monkeys
Greg Jensen1,2*, Yelda Alkan2,3, Vincent P. Ferrera2,3,4, Herbert S. Terrace1*

Most accounts of behavior in nonhuman animals assume that they make choices to maximize expected
reward value. However, model-free reinforcement learning based on reward associations cannot account
for choice behavior in transitive inference paradigms. We manipulated the amount of reward associated with
each item of an ordered list, so that maximizing expected reward value was always in conflict with decision
rules based on the implicit list order. Under such a schedule, model-free reinforcement algorithms cannot
achieve high levels of accuracy, even after extensive training. Monkeys nevertheless learned to make correct
rule-based choices. These results show that monkeys’ performance in transitive inference paradigms is not
driven solely by expected reward and that appropriate inferences are made despite discordant reward incen-
tives. We show that their choices can be explained by an abstract, model-based representation of list order,
and we provide a method for inferring the contents of such representations from observed data.
INTRODUCTION
According to Keynes, “Part of our knowledge we obtain direct; and part
by argument” (1). Although few have put it as succinctly, he was hardly
the first to observe that humans learn from experience as well as
through logical inference. It is widely accepted that animals also learn
from experience, but most studies of nonhuman animals assume
that their choices depend chiefly on the expected reward value as-
sociated with choices (2–4). Rigorous demonstrations of “logical”
learning in animals are rare (5, 6) because reward associations are a
nearly ubiquitous confound. Furthermore, despite growing evi-
dence that nonhuman animals can manipulate representations by
way of model-based learning (7–9), those representations are still
derived from subjects’ direct experience of the world, rather than from
inferred relationships.

Transitivity is a property of ordered sets that, if exploited, can
greatly reduce the amount of evidence needed to learn how any two
items relate to one another. “Transitive inference” (TI) broadly refers
to this nonassociative learning ability (10), and it has been displayed in
every vertebrate species in which it has been tested (11). To demon-
strate TI, subjects are first trained to choose between pairs of stimuli
belonging to an ordered list (e.g., “ABCDEFG”). If subjects are trained
onlywith adjacent pairs (e.g., AB, BC, etc.) but are subsequently able to
judge the order of nonadjacent pairs (e.g., BD, CE, etc.), it appears as if
they have acquired knowledge of the underlying list order as well as an
understanding that the list order obeys transitivity. However, the in-
terpretation of behavioral performance during TI tasks is controver-
sial, and some theories posit that computations based on reward value
play an important role. In the current study, we present a critical test of
these hypotheses.

TI is a behavioral phenomenon whose underlying mechanism re-
mains a topic of active debate. We use the term to refer to decision-
making where preferences appear to rely on the transitive property of
some ordering among the stimuli and cannot be explained by a reward-
maximizing model-free learning process. Experiments using both
human and nonhuman subjects have shown that performance on test
pairs cannot be explained by expected reward value (12, 13). Thus, the
literature is unambiguous that behavior consistent with TI occurs in a
wide range of species. What remains unclear is what cognitive mecha-
nism might support this behavior. In addition, given the efficacy of
model-free learning in many applied contexts, efforts to explain TI en-
tirely in terms of reward associations have been remarkably persistent
(14). An objective of the current study is to present subjects with an
experimental procedure that cannot be solved by reward associations
alone. By this, we mean that a model-free algorithm based on expected
reward value should be unable to perform the task, regardless of the type
or amount of training it receives.

We conjecture that the full scope of published TI results can only be
explained if nonhuman animals perform inferences bymanipulating an
abstract representation of list order. Choices can be well approximated
by treating each stimulus as having a position along a continuum and
for the uncertainty of those positions to be described by probability dis-
tributions (12). This continuum is not derived from any specific proper-
ties of sensory experience, as we and others have used TI tasks that
provide no spatial, temporal, or reward-based cues on which associa-
tions can be built. To demonstrate the efficacy of a model based on es-
timated position, we use it to describe TI performance when reward
associations directly conflict with task performance, such that stimuli
that are correct more often yield smaller rewards when chosen. Under
these circumstances, a theory based on expected value would predict
low overall accuracy.

We tested the ability of macaque monkeys (N = 4) to make infer-
ences about the implied ordering of pairs of stimuli (Fig. 1, A and B).
Subjects were always rewarded for choosing the stimulus with a lower
implied rank. However, the amount of reward (water) was varied to dis-
tort expected value (Fig. 1C). In the “reverse reward gradient” condition,
stimuli that were correct in more pairings yielded smaller rewards, such
that inmost pairings, the correct itemhad a lower overall expected value
than the incorrect item. Expected value was a nonlinear function of list
position, shaped like an inverted U. The conflict between the frequency
with which a stimulus is correct and its reward size when it is correct
should limit the efficacy of any strategy based on reward associations. In
the “concordant reward gradient” condition, items that were correct
more often yielded larger rewards, giving early items an exaggerated
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Fig. 1. Experimental and analytic procedure. (A) Subjects learned the ordering of seven-item lists, consisting of images (A, B, C, etc.). The correct item is always the
item that occurs early in the list (e.g., B is correct for the pair BC). (B) Trial structure. After touching a start stimulus, subjects see two images. Touching the correct
stimulus yields rewards of varying magnitude. Incorrect responses yield no reward and a brief time-out period. (C) Stimuli were presented in pairs. Training sessions
presented only adjacent pairs, outlined in blue. Testing sessions presented all pairs. Reward amounts depended on the rank of the correct stimulus. The “reverse gradient”
delivered one drop of water for correct responses to A, two drops for correct responses to B, etc. This gradient is labeled “reverse” because the overall expected value of
F exceeds that of E, although choosing F when the EF pair is presented results in no reward. Thus, expected value cannot be used to guide which choice is correct. The
“concordant gradient” delivered six drops for correct choices of A, five for B, etc. Therefore, the stimulus with the higher expected value is concordant with the correct
choice. (D) Bayesian model for estimating stimulus position from observed response accuracy. Subjects are presumed to make use of a linear representation with
uncertain stimulus positions. We assume that this representation takes the form of a normal distribution with some mean and SD for each stimulus. To infer these
parameters, we estimated p(correct) for each pair and transformed this to the area above zero of some z distribution. Inferring the parameters in our representation is
then done as a simultaneous estimation problem, implemented using Stan. Stimuli adapted from images in the public domain.
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expected value. Across all pairs, this produced a scallop-shaped
expected value function. Since reward is a useful cue in this condition,
high levels of accuracy are expected.

To consistently solve the task under both conditions, subjects had to
learn the list position of each itemwhile simultaneously disregarding its
expected value. We have previously shown that such learning can be
supported by representing the position of each stimulus along a
continuum (12). Using the patterns of response accuracy among the
stimulus pairs, onemay infer the positions anduncertainty of each stim-
ulus along this hypothetical spatial continuum that best recreate those
errors (Fig. 1D). This was accomplished by implementing a model
based on an internal representation of item position, solved as a simul-
taneous estimation problem using the Stan language (15). Whatever
computation is being performed to achieve both the success rates and
patterns of response error in this and other published tasks needs to
behave as though feedback from each trial provided evidence about list
position, rather than reward value. No model-free learning algorithm
gives a good description of this behavior. By rendering our cognitive
Jensen et al., Sci. Adv. 2019;5 : eaaw2089 31 July 2019
model in computationally rigorous terms, we are able to make specific
predictions about performance.
RESULTS
Contrary to a prediction based on expected reward value, subjects
consistently learned the list orderings (Fig. 2A). In both conditions,
performance exceeded chance accuracy by the end of training and re-
mained above chance at the start of all-pairs testing. Although the re-
verse gradient appeared to slow the learning rate, performance
nevertheless reliably rose to above-chance levels by the end of training.
This high performance is especially noteworthy under reverse gradients,
because itmeant that subjects consistently chose stimuli thatwereworth
a smaller amount overall, as judged by their own learning history.

To evaluate how decisions based on reward value alone would be
made, two model-free Q-learning algorithms (12, 16) also performed
the task, each using a softmax decision rule (17, 18). One algorithm
(plotted in red) used the parameters that provided the best fit to the
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Fig. 2. Subjects retained the same list of stimuli for each set of training and testing sessions and then were presented with a new list at the start of the next training
session. Vertical dashed lines indicate a break lasting 1 year. (A) Population estimates of response accuracy (black) for each session. Chance is indicated by the dotted
lines. Red circles correspond to the exploratory Q-learner, fit to the observed data. Blue circles correspond to the exploitative Q-learner, based on a previous study (12).
(B) Peaks of inferred position distributions of each stimulus in subjects’ representations. Red, A; orange, B; green, C; cyan, D; blue, E; violet, F; and black, G. Subjects
reconstructed the stimulus order in the concordant gradient condition, and did so approximately in the reverse gradient condition, with the exception of stimulus A.
(C) Average number of the 21 stimulus pairs that fell in the correct order, based on the model estimates in the above panel. The red dotted line indicates how many pairs
would be ordered correctly if subjects used expected values as the basis for ordering. (D) Support of the evidence for the positions in the inferred representation being
organized according to a strictly linear representation (in red), relative to the expected values (in blue), according to a Bayesian Information Criterion (BIC) analysis. Subjects
tended to be equivocal, or to favor the expected value, during the first few sessions of training. However, late in training, and throughout the testing phase, the inferred
representations more closely resembled a linear ordering of stimuli with uniform spacing. (E to H) Same as (A) to (D), respectively, but based on pooling data across the six lists.
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observed data. Its learning rate was slow, and its decision rule favored
exploratory behavior. This enabled it to exceed chance by making
productive mistakes when the reverse gradient was in effect. Howev-
er, the algorithm’s high error rate also prevented it from achieving the
high success rate displayed by subjects in either of our experimental
conditions.

The second algorithm (plotted in blue) used parameters that max-
imized total rewards. Its learning rate was rapid and its decision rule
favoredwinner-take-all exploitation of the largest expected value. This
yielded near-perfect performance in the concordant gradient condi-
tion but led to performance slightly below chance in the reverse gra-
dient condition. Subjects outperformed both algorithms overall.
Critically, neither extreme (nor any intermediate parameter values)
allowedQ-learning to do better than 60% accuracy in the reverse gra-
dient condition.

It is important to note that the Q-learning algorithms are unable to
solve the TI task throughout the testing phase of the reverse gradient
condition, not just at its onset. In traditional TI experiments that use
uniform rewards, a model-free learning algorithm that is being
presented with all pairs quickly learns the order of the stimuli based
on their expected value, even if performance on critical pairs was at
chance levels at the end of training (12). This is why most studies of
TI focus on accuracy at the moment of transfer, not throughout a pro-
longed testing phase. However, the reverse gradient condition cripples
Q-learning throughout testing, keeping it below60%accuracy even after
almost 2000 trials presenting all pairs. The consistently high accuracy of
subjects in this condition requires some other explanation than using
experienced reward as a proxy for list order.

An alternative to Q-learning is a model-based algorithm that repre-
sents the list position rather than the reward value of each item. It is
important to note that for both reward conditions (reverse and concor-
dant), average reward magnitude (Fig. 1C) was a nonlinear function of
item position. Therefore, in both conditions, the effect of expected value
was dissociable from the effect of position. We were able to infer each
item’s position within the subject’s representation by examining the
particular patterns of error among all pairs of stimuli experienced in
a session. As shown in Fig. 2 (B and F), the implied stimulus positions
suggest that expected value did have an influence in the early stages of
training, especially in the reverse gradient condition. Over the course of
training, however, subjects gradually worked out the approximate
order. Consequently, subjects appeared to rely on inferences about stim-
ulus position, rather than expected value.

To further demonstrate that subjects behaved as though they repre-
sented item positions that were uniformly spaced along a continuum,
we used the inferred content of the representations to calculate the av-
erage number of pairs expected to yield correct responses (Fig. 2, C and
G). Since this prediction is based on our theoretical model of item po-
sition, we can estimate implied performance for all 21 pairs even during
training sessions when only six pairs were presented. In the reverse gra-
dient condition, subjects were expected to get more pairs right than
would be predicted by comparing their expected values (as shown in
Fig. 1C).

We also used Schwartz-Bayes information criterion scores (19) to
measure the relative support of the evidence for whether the contents
of the representation (in Fig. 2, B and F) were better estimated by the
expected values (as in Fig. 1C) or by a uniformly spaced linear model of
list position (as in Fig. 1D). Early sessions of training tended to favor the
expected value distributions, but the linear representation better
accounted for the patterns of behavior by the second session (for con-
Jensen et al., Sci. Adv. 2019;5 : eaaw2089 31 July 2019
cordant gradients) or third session (for reverse gradients) of training.
The linear representation was then consistently favored during testing.

Although Fig. 2 supports the hypothesis that subjects behaved as
though stimuli were arranged into an approximate order, it provides
few details about the particulars of behavior itself. It also does not give
a comprehensive picture of how behavior manifested. In broad terms,
there are three questions that arise naturally in the present study: (i)
What is the overall probability of a correct response, (ii) to what extent
did the reward gradient influence response accuracy, and (iii) to what
extent was response accuracy predicted by the difference between stim-
ulus ranks? This last measure, formally studied as the “symbolic dis-
tance” (11, 20), is important because it has been widely reported that
accuracy tends to be higher for stimuli that are separated by larger gaps.
Since we expect, on the basis of the literature, for performance to be
positively correlated with symbolic distance, it needs to be measured
and controlled for.

Session-by-session estimates of response accuracy (Fig. 3A)were ob-
tained using binomial regression, as described in Materials and
Methods. These estimates show that, across stimulus pairs, response ac-
curacy tended to grow over the course of training (as expected), with
comparatively high performance during testing sessions. The popula-
tion mean effects of reward magnitude were estimated for all (training
and testing) sessions, and the effects of symbolic distance were esti-
mated for testing sessions (Fig. 3B). Although these effects were very
uncertain (due to being limited to one session’s worth of data per
estimate), the estimated size of reward effects was smaller than that of
symbolic distance during almost every testing session.

To get a more precise estimate of these effects, binomial regressions
were performed for each step in a training cycle, pooled across all phases
under a particular condition. These show more clearly that response
accuracy tended to grow more slowly in the reverse gradient condition
than in the concordant gradient condition (Fig. 4A), but that overall
response accuracy was well above chance at test in both conditions.
In addition, although distance effects were reliably observed in both
conditions (Fig. 4B), the effect size of the reward gradient effect was
small throughout training (Fig. 4C) and was especially uncertain
during testing phases. Mean subject-level estimates are also provided
(Fig. 4, D and F).

The contrast in performance in the two conditions suggests that
the reverse gradient condition interfered with performance relative
to the concordant gradient condition, as evidenced by the higher in-
tercept estimates in the latter case. To assess the consistency of this
effect, we calculated parameter differences for population-level (Fig. 4,
G to I) and subject-level (Fig. 4, J to L) parameters, with correspond-
ing uncertainty. In most cases, the 95% credible intervals for the dif-
ferences overlapped with zero, but a notable exception was the
intercept term during both phases of testing. The consistently posi-
tive values for the intercept differences indicate consistently higher re-
sponse accuracy in the concordant gradient condition than in the
reverse gradient condition.

To see the implications of the models described in Fig. 4, we com-
pared the estimated response accuracy of each stimulus pair (with
corresponding uncertainty) to the observed empirical mean response
accuracy for the last session of training and the first session of testing
(Fig. 5). Plotted in this way, it is clear that, in general, the model
expects that the reward manipulation imposed a tilt to the response
accuracies in the reverse gradient condition, which is visible both in
the empirical rates and in the model estimates. However, the concor-
dant gradient results are much more equivocal about whether a
4 of 12
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reward effect is evident in the population. If anything, the empirical
estimates suggest a very mild inverted U shape, although the uncer-
tainties are large enough that this effect may merely be a product of
experimental noise.

The results above are suggestive that subjects successfully made a TI
in their transition from training to testing, but those estimates of
performance are overall for each session. To test whether subjects were
above chance on the first trial of testing (before further learning could
take place), it is necessary to work with a much more constrained
dataset. It is also important to focus on the “critical test” pairs (i.e., those
that do not include terminal items andwere not part of the training set).
For the first presentation of each of the six critical pairs, subjects in the
reverse gradient displayed an effect that was close to chance (Fig. 6A),
while those in the concordant gradient condition showed a clear pref-
erence for the correct answer (Fig. 6D). However, because the number
of cases was so small (six trials per subject per estimate), the uncertain-
ties surrounding this estimate are very large. To better leverage the avail-
able data, we used logistic regressionmodels (described inMaterials and
Methods) that could track the learning rate and thereby project the re-
sponse accuracy on the first trial of testing to be extrapolated. When
such models were fit to each pair separately, the results were sugges-
tive of responding above chance in the reverse gradient condition
(Fig. 6B) and clearly above chance in the concordant gradient con-
Jensen et al., Sci. Adv. 2019;5 : eaaw2089 31 July 2019
dition (Fig. 6E). In addition, a “full regression model” fit the accuracies
of all critical pairs in both conditions, taking symbolic distance and
reward size into account. These estimates (Fig. 6, C and F) also suggest
that subjects made correct responses to these critical pairs at the start of
the testing sessions.
DISCUSSION
This is the first study to test reward-based explanations of TI per-
formance in a paradigm in which subjects have to ignore the ex-
perienced magnitude of reward to choose the correct response.
Subjects’ success in learning under the reverse reward gradient adds
to a growing body of demonstrations that nonhuman animals can
solve inference-based problems by a more cognitive means than
favoring whichever alternative has the highest experienced value.
Other results consistent with this kind of abstract serial inference in-
clude robust learning when some pairs are presented more often than
others (13, 21), combining separate lists by training a single linking pair
(22), and transfer of serial knowledge from one experimental paradigm
to another (23, 24). These studies have usually emphasized inference at
the moment of testing (when the nonadjacent pairs are entirely novel),
because althoughmodel-free algorithms have difficulty during training,
most are able to solve the task over the subsequent trials of the testing
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Jensen et al., Sci. Adv. 2019;5 : eaaw2089 31 July 2019 6 of 12
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phase. The reverse gradient is an exception:Model-free learning is never
able to fully solve the task. Over sustained testing of all pairs,Q-learning
can do no better than either 60% accuracy (when highly exploratory) or
responds below chance (when highly exploitative). Although model-
free algorithms can improve that flexibility inmany scenarios by adjust-
ing their exploration/exploitation balance, this flexibility is not sufficient
to achieve performance comparable to that of our subjects in the reverse
gradient condition.

Although the present study uses a TI procedure, it has broader im-
plications for trial-and-error learning in animals. The standard test of TI
in animals, in which adjacent pairs of a five-item list are trained and
critical pairs are subsequently tested [e.g., (25)], was designed with
the express purpose of equalizing experienced rewards for all non-
terminal items. This makes performance at the start of the testing phase
(before a differential reward effect) the focus of the study—if subjects
exceed chance on the critical pair BD, this demonstrates a reliance on
something other than expected value. Subsequent studies that have used
longer lists have identified distance effects at transfer among the critical
pairs [e.g., (12)], but those studies remain focused on the effect at trans-
fer because that was the moment that an expected value strategy was
Jensen et al., Sci. Adv. 2019;5 : eaaw2089 31 July 2019
expected to yield chance performance. In the present experiment, how-
ever, high levels of performance at any stage of reverse gradient training
or testing should not have been possible for a reward-driven algorithm, as
demonstrated by our Q-learning algorithms. Even if we had presented
all pairs from the outset of training, with no critical test of TI included,
an algorithm that chooses on the basis of stimulus-reward associations
would still perform poorly, far below the levels observed in our
subjects. As such, although we find evidence of TI in the present data
(Fig. 6), this is merely part of a wider pattern of behavior inconsistent
with reward-maximizing associative behavior throughout the reverse
gradient condition.

Just as nonhuman subjects appear to rely on an “approximate num-
ber system” (26) to compare quantities, rather than perform fully ab-
stract arithmetic, the literature on serial learning suggests that
animals are also equippedwith an “approximate reasoning system” that
is able tomake simple logical inferences, even when reward signals pro-
vide conflicting information. While we do not argue that nonhuman
animals are engaging in formalized propositional logic, their
performance can nevertheless be explained only by a model-based sys-
tem. We recognize that although our spatial model is one candidate
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Fig. 6. Estimated response accuracy for critical pairs at the trial of testing. Boxes are centered at the mean population accuracy, with their upper and lower extent
representing the 80% credible interval for the population estimate. Whiskers represent the 95% credible interval. (A) Population estimates of critical pair accuracy in the
reverse gradient condition based on a binomial regression using only the first presentation of each pair. In addition, mean accuracy across all critical pairs, with
corresponding uncertainty, is plotted in black. (B) Population estimates in the reverse gradient condition based on logistic regressions, extrapolating performance
at the intercept (trial zero). Each pair was fit separately in this analysis, and the mean of the critical pairs was pooled across those estimates. (C) Population estimates of
trial zero performance in the reverse gradient condition based on a logistic regression that incorporated data from all six pairs in both conditions, fitting both distance
and reward effects. (D to F). Same as (A) to (C), respectively, but associated with the concordant gradient condition.
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model, other cognitive mechanisms could, in principle, be responsible
for the present behavior. The present data alone cannot, for example,
rule out that subjects learned ad hoc rules to favor large rewards in some
cases and small rewards in others, changing their behavior as circum-
stances demanded.We find this account unlikely, for two reasons. First,
if subjects depend on ad hoc rules, we would expect more individual
variation in performance; instead, performance was very consistent
across subjects (Figs. 3A and 4,D to F). Second, performance in this study
was qualitatively similar to that seen in the extensive literature on TI in
animals (10, 11). This suggests to us that the mechanism underlying
the present performance is not different in kind from that seen in other
studies, most of which did not manipulate reward magnitude.

With this inmind, it is important to consider the implications of the
current results. What they cannot support is a claim that the high levels
of accuracy achieved in the reverse gradient condition (which display
both learning rates and distance effects seen in other studies of TI)
can arise solely frommodel-free learning based onmaximizing expected
value, the mechanism at the heart of Q-learning and other associative
models. Instead, our results are best explained by the joint influence of
the two systems, one reward-driven and one model-driven, acting in
parallel. Advances in our understanding of brain circuitry has helped
us to move past the either/or logic of the cognitive revolution [e.g.,
(27)]. Furthermore, the present results suggest that performance is likely
not merely the passive averaging of these two systems. It appears as
though associative mechanisms interact with inference in some cases,
such as the distortion of pairwise accuracy we observed in the reverse
gradient condition (Fig. 5), whereas those associations are at other times
ignored entirely, as in the case in the concordant gradient condition,
during which performance better approximated a linear arrangement
of stimulus positions than a scalloped distribution of expected values.

Similarly, associative models predict that when some stimulus
pairs are presented much more often than others, a substantial dis-
tortion in subsequent TI should be observed. However, despite evi-
dence that such associative signals are likely calculated, studies that
included massed presentations of certain stimulus pairs yielded no
evidence at all of distorted inference (11, 13). While it should no longer
be controversial that subjects make both cognitive inferences and
expected value calculations, two questions remain: How do these two
calculations interact and when does one supersede the other in deter-
mining behavior?

Our approach is also distinct fromprevious studies of TI because our
computational model is not limited to qualitative statements about
whether subjects can perform TI. By mapping a link between estimates
of behavior and a formal model of the representation’s contents (Fig.
1D), it is possible to probe the consequences of experimental manipula-
tions inmore detail than ever before. In general, cognitivemodels in the
TI literature do not make specific enough predictions about behavior to
weigh them fairly against other alternatives (24). Our approach is the
exception to that rule. It is our hope that it will not only help put to rest
the long-standing objection that TI in nonhuman animals must be ex-
plainable by some reward associationmechanismbut also illustrate how
a fully realized computational model can explain a cognitive phenom-
enon like TI in animals.
MATERIALS AND METHODS
Subjects
Subjects were four adult male rhesus macaques, N, O, R, and S. All
subjects had prior experience with serial learning procedures, includ-
Jensen et al., Sci. Adv. 2019;5 : eaaw2089 31 July 2019
ing TI. However, subjects had not previously been exposed to manip-
ulations of reward magnitude in the context of serial learning.

Subjects were housed individually in a colony room, along with ap-
proximately two dozen other macaques. Experiments were performed
in their home cages, using the apparatus described below. To increase
motivation, subjects were fluid-restricted to 300 ml of water per day, or
however much they were able to obtain by performing the task, which-
ever was greater. Typical performance yielded between 200 and 300ml,
whereas perfect performance could yield asmuch as 500ml. As needed,
supplemental water was given to subjects each day after the end of the
experimental session. Monkeys were also given a ration of biscuits
(provided before experimentation each day) and fruit (provided after
experimentation).

The study was carried out in accordance with the guidelines
provided by the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health (NIH). This work, carried out at the
Nonhuman Primate Facility of the New York State Psychiatric Institute
(NYSPI), was overseen by NYSPI’s Department of Comparative Med-
icine andwas approved by the Institutional Animal Care andUse Com-
mittees (IACUCs) at Columbia University and NYSPI.

Apparatus
Subjects performed the task using a tablet computer. The tablet,
running Windows 8.1, presented subjects with a 10.1″ HD display
(1266 × 768 resolution), which both presented stimuli and provided
a capacitive touch screen interface to record responses. All tasks were
programmed in JavaScript and run using theGoogle Chrome browser,
set in kiosk mode.

To deliver rewards, the tablet was connected to a solenoid valve by
way of an Arduino Nano interface, which opened the valve for fixed
intervals when rewards were delivered via a steel spigot below the tablet.
One “drop” of water corresponded to 0.25 ml of fluid. When subjects
receivedmultiple drops, the valve opened and closed thatmany times in
rapid succession to ensure that a consistent volume of liquid was being
delivered. This apparatus was mounted in a Lexan frame, which fit se-
curely into the space created by opening the door to the subject’s home
cage. Unless otherwise noted, this device was identical to that described
in previously published studies (28).

At the start of each trial, a solid blue square was presented in the
center of the screen, in order to focus the subject’s attention and to direct
their hand toward a consistent center point. Touching it initiated the
next trial. All experimental stimuli were 250 × 250 pixel images,
presented to the right and left of the start stimulus (Fig. 1B).

Procedure
Stimulus lists were assembled, consisting of fixed sets of seven photo-
graphic images apiece (list orders are hereafter identified as ABCDEFG,
e.g., Fig. 1A). During each trial, two stimuli were presented simulta-
neously. The stimulus whose rank came earlier in the ordered list would
always, if selected, yield a reward. The stimulus whose rank came later
never yielded a reward. Subjects had to learn the ordering of the images
by trial and error.

Each session consisted of up to 600 trials (fewer if the subject stopped
responding before finishing the session). The experiment was divided
into training phases (duringwhich only adjacent pairs AB, BC, CD, DE,
and FGwere presented) and test phases (during which all 21 pairs were
presented). During training, each sessionwas organized into “blocks” of
12 trials each. During a block, each of the six adjacent pairings (listed
above) were presented twice, once for each spatial arrangement (e.g., for
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the pair AB, every trial in whichAwas on the left and Bwas on the right
was balanced by another trial with B on the left and A on the right).
These two trials might be presented in either order and with any num-
ber of intervening trials. Spatial counterbalancing was done for every
pair of items. During testing, each session was organized into blocks
of 42 trials each, counterbalancing the on-screen arrangement of the
21 possible pairs in a similar fashion. Subjects completed one session
of the experiment a day and in almost all cases completed all 600 trials.

Sessions consisted of one of two reward conditions. The first was the
“reverse gradient” condition, in which a correct response earned the
number of drops equal to its rank (Fig. 1C). In all cases, an incorrect
response yielded no reward. Thus, for example, when presented with
the pair AB, a response to A earned one drop (because A has a rank
of 1), whereas a response to B would earn no drops (because it is in-
correct). However, when presented with the pair FG, a response to F
would earn six drops (because its rank is 6), and a response to G would
earn no drops. As a result, the reward value for responding correctly to
each pair varied directly with the rank of that pair.

The second condition was the “concordant gradient” condition, in
which stimuli of a lower rank yielded larger rewards (Fig. 1C). Such a
gradient is “concordant” in that the reward amount associated with a
stimulus is positively correlated with the odds of that stimulus being
correct in a random pairing. Correct responses to A yielded six-drop
rewards, correct responses to B yielded five-drop rewards, and so on,
until correct responses to F yielded one-drop rewards.

At the start of each training phase, a new list of seven unfamiliar
stimuli was used. Between five and nine sessions of training were then
followed with two to three sessions of testing. This was collectively
considered a “training cycle.” Subjects learned a total of 12 lists over
the course of the experiment. Advancing from a training phase to a test-
ing phase was based on constraints of the academic calendar and not on
measures of performance. As such, the start of testing was not contin-
gent on a “learning criterion.”

Subjects first learned four lists under the reverse gradient condition
(each having a training phase and a testing phase). This was followed by
two lists learned under the concordant gradient condition. After these
six lists were completed, subjects took a 1-year break from the experi-
ment (during which they participated in experiments that had no dif-
ferential gradients of reward magnitude). Following this break, they
learned four lists using the concordant gradient, followed by two lists
using the reverse gradient. The purpose of the break was to provide a
control against order of learning effects, since it was unclear whether a
reverse-to-concordant transition would result in similar performance,
compared to a concordant-to-reverse transition.

Statistical analysis: Bayesian model of stimulus position
To provide a computationally tractable Bayesian model of behavior,
it was assumed that the position of each stimulus was represented by
a normal distribution with parameters mi and si for stimulus i. On
each trial, a random value was drawn from each distribution, and
the stimulus that was larger was selected. When distributions over-
lapped, the distribution with the higher mean was more likely to be
selected, but the alternative items were still chosen some amount of
the time. This recapitulates the logic behind the betasort model (12)
but made use of normal distributions instead of beta distributions to
facilitate parameter estimation.

Like the betasort model, there was also a parameter specifying the
probability that subjects would disregard the representation andmake a
completely random response. This was included because monkeys in
Jensen et al., Sci. Adv. 2019;5 : eaaw2089 31 July 2019
many experimental contexts never achieve perfect performance, instead
maintaining some error rate regardless of howmuch additional training
they receive. This parameter is denoted by q, where 0.0 < q < 1.0.

The odds that one normal distribution yields a larger value than a
second normal distribution are identical to the odds that the difference
between the two values is positive. Since the variances of normal distri-
butions are additive under subtraction, and since there was a probability
of q of an arbitrary response, the overall probability of a stimulus A in
the pairing AB is given as follows

pðA∣ABÞ ¼ q
2
þ ð1� qÞ∫∞0:0N x∣mA � mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A þ s2B

q� �
dx ð1Þ

Since there are seven stimuli, behavior is modeled in terms of 15
parameters: mi and si for each stimulus i, as well as q. Estimating these
requires solving a simultaneous estimation problem,where every pair of
stimuli has its own version of Eq. 1. Figure 1D depicts how this simul-
taneous estimation can translate the observed response accuracies for all
pairs to the corresponding estimates of the position of each stimulus.
The electronic supplement includes a model coded using the Stan
programming language (15) that solves this problem as a multilevel
model, yielding estimates of these parameters for both the population
and for each subject.

Note that becausemi is unitless and defined only relative to themeans
of the other stimuli, values of mi and si may be rescaled arbitrarily, as
long as the scale is applied consistently for all position parameters. To
give a common scale to the positions for the purposes of plotting their
estimates, the mi parameters were centered at zero and then all mi and si
parameters were divided by the sample SD of the m parameters. From a
performance perspective, themodel is unchanged under rescaling, since
its comparisons are all relative between stimuli. The parameter esti-
mates given in the results above (Fig. 2, B and F) are the population
means, rescaled in this way. Figure 2 presents two additional ways of
validating that performance of theBayesianmodel is not consistentwith
expected reward value: a count of the “number of correctly ordered
pairs” and an information criterion measure.

The estimate of the number of correctly ordered pairs depends on
three details. First, the expected values of the stimuli during training
were not the same as during testing, so the number of pairs an expected
reward value comparison would order correctly changed. Second, de-
spite there being only six training pairs, the model is always capable of
making inferences about all 21 pairs. Consequently, the estimates give
an idea of howmany of the 21 pairs would be correct if the next trial was
the start of testing. Third, because the parameters estimated using Stan,
they took the form of chains of Markov Chain Monte Carlo (MCMC)
results, not parameterized distributions. Since these chains of estimated
value capture the covariation of estimates, it is valuable to assess how
many pairs are correctly estimated for each iteration of the chain and to
use the distribution of resulting values to obtain a credible interval for
the estimate. In the event of ties in expected value (e.g., A = 1/1 versus
B = 2/2), the pair is given a value of 0.5 since it is expected to be chosen
correctly half the time. Although, on average, the nominal expected
reward value comparisons identify the correct order of most pairs dur-
ing the testing phase of the reverse gradient condition, subjects
outperform even that higher bar (Fig. 2, C and G).

To determine whether the “weight of the evidence” better favored a
uniformly distributed linear representation or one based on the
expected reward value, linear models were fit using the nominal values
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of each model as predictors and the posterior distributions of stimulus
positions from the Bayesian model as the outcomes (linear on the one
hand or as expected from the expected value on the other). Each regres-
sion yielded a BIC score. The relative support of the evidence for the
linear model over the expected value model, on a scale of 0.0 to 1.0, is
given as follows

Support for
Linear

Representation
¼ expð�BIClinearÞ

expð�BIClinearÞ þ expð�BICexpected valueÞ ð2Þ

Since the output of the MCMC analysis was a chain of position
estimates, BIC scores were calculated for each iteration of the chain.
Figure 2 (D and H) reports the mean BIC scores, averaged across all
values in the chain.

Statistical analysis: Q-learning simulation of reward-
driven behavior
Rather than merely assert rhetorically that expected or experienced
reward value is insufficient to solve the reverse gradient condition, we
used a model-free Q-learning algorithm (16) that can only use its
experienced estimate of each item’s reward value to perform the task.
AlthoughQ-learning ordinarily factors the “maximum possible reward
on the next trial” into its updating, TI tasks are scheduled in such a way
that a subject’s choice on trial t has no impact on which choice alterna-
tives are available on trial t + 1. Consequently, this “projection into the
future” cancels itself out, leaving only basic reward prediction error up-
dating of the memory vector Q

QðchoiceÞ ¼ ð1� aÞQðchoiceÞ þ a∙Reward ð3Þ

That is, on each trial, the algorithm uses the reward delivery (includ-
ing a value of 0.0 when no reward is delivered) to update its value of the
item chosen. Items that are not chosen are not updated.

Equation 3 describes the memory vector, but not the criterion by
which choices are made. In our implementation, choices are made on
the basis of the softmax function (17, 18), with an exponential term b

pðA∣ABÞ ¼ expðQðAÞbÞ
expðQðAÞbÞ þ expðQðBÞbÞ ð4Þ

When b < 1.0, the result is an algorithm whose behavior is more
exploratory, because it is more willing to choose response option B
when A has a larger expected value. At the extreme, when b = 0.0,
subjects are equally likely to choose A and B. Contrastingly, if b > 1.0,
the algorithm will behave in an exploitative manner, because it will be
biased more strongly toward the larger expected value. As b tends
toward large values, preference strongly tilts toward exclusive selection
of the item with the highest expected reward value.

Using the Stan programming language (15), performance of each
subject was fit using Eqs. 3 and 4. The best-fitting parameters were a
values of between 0.086 and 0.225, while the best-fitting b parameters
values were between 0.365 and 0.526. The latter are especially telling as
these suggest that the model that most closely resembles the
performance of subjects is one that is highly exploratory.

This should be interpreted with a grain of salt, however, because the
“exploratory” algorithm’s performance did not resemble that of
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subjects, as reported in the Results. In practice, subjects often chose a
response alternative that was the “wrong” choice, according to the
values of Q at that trial. Consequently, only a relatively low value of
b, whichwould permit these “errors,” could be an acceptable parameter.

As a result of these erroneous responses, the exploratory, best-fitting
parameters were able to exceed chance performance in simulations of
the task, both during training (by a hair) and testing (by a small
amount). However, this above-chance performance was still far below
what subjects were capable of, as plotted in Fig. 2 (A and E). The
algorithm was also unable to fully capitalize on the beneficial reward
information in the concordant gradient condition, makingmany errors
during both training and testing and performing at levels well below
that observed in subjects.

The inclusion of both the a and b parameters givesQ-learning flex-
ibility, so although the exploratory parameterswere the best-fitting, they
were not necessarily the best that the algorithm could do in terms of
total earnings. Consequently, we also implemented an exploitative
algorithm (a = 0.15, b = 3.0). This algorithm was very slightly above
chance during reverse gradient training sessions and very slightly below
chance during reverse gradient testing sessions, leading to a slightly low-
er return in those cases than the exploratory algorithm. However, dur-
ing the concordant gradient phases, the exploitative algorithm
performed near perfectly, and these added rewards more than made
up for chance performance during the reverse gradient sessions.

The important takeaway of these simulations is twofold. On the one
hand, neither the exploratory nor the exploitative algorithm is able to
explain performance under the reverse gradient condition. Although
the best-fitting parameters allow Q-learning to exceed chance, they
do so by allowing the algorithm to make frequent exploratory choices
against its better judgment. On the other hand, the very thing that
makes the exploratory parameters effective in the reverse gradient case
(frequent “errors”) then puts a ceiling on howwell it can perform in the
concordant gradient condition. Meanwhile, the exploitation algorithm
performs near perfectly in the concordant gradient condition, but this is
expected because that condition can be solved in multiple ways. Thus,
even ifQ-learning were to dynamically adjust its b values from one ses-
sion to the next, it still would not have enough flexibility to perform as
well as subjects.

Statistical analysis: Binomial and logistic regression
estimates of response accuracy
In Fig. 3, response accuracy was modeled on a session-by-session basis
using binomial regression, with a logit link. Formally

Count of Successes ¼ Binomialðp;Count of AttemptsÞ

p ¼ 1
1þ expð�mÞ ð5Þ

m ¼ b∅ þ bD∙Dþ bR ∙R

In the model fit for each session, an intercept term b∅was included,
representing baseline response accuracy. In addition, performance was
predicted in terms of both symbolic distance D and the reward magni-
tude of the correct alternative R, yielding two additional slope terms bD
and bR. To minimize parameter covariance and accelerate numerical
estimation, both D and R were centered by subtracting 2.5 from their
empirical values. Thus, if subjects received only one drop of water for a
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correct response to the pair AB in the reverse gradient condition, this
would be coded as a reward of (−1.5) for the purposes of the regression.
Centering in this way ensured that bD and bR reported the differential
effects of distance and reward magnitude, and were expected to equal
0.0 when a variable had no influence. Note that because these were bi-
nomial regressions, they report the overall response accuracies for each
session, without considering the time series of response accuracies with-
in a session. In addition, the bD term was omitted from the model en-
tirely during the training phases, since all pairs during training had the
same symbolic distance. Parameters were fit using multilevel models,
yielding both population- and subject-level estimates, which were im-
plemented in the Stan programming language (15).

Figure 4 also fit parameters using Eq. 5, but does so by pooling
across the six phases of each experimental condition. For example,
“training session 1 for the reverse gradient” in Fig. 4 incorporates
the first sessions of phases 1, 3, 5, 7, 21, and 23. As in Fig. 3, estimates
were computed session-wise as multilevel models. Because these esti-
mates were based on six times asmuch data, their uncertainties are cor-
respondingly smaller. The performance implications of the parameters
described in Fig. 4 are then realized in Fig. 5, which shows a good cor-
respondence between the observed empirical mean response accuracies
for each pair (circles) and the model’s estimates of performance (box-
and-whisker plots).

The estimates from the binomial regressions in Figs. 3 to 5 give a
good description of session performance overall. They also constitute
good evidence that behavior was not based on expected reward, both
because bR overlappedwith zero and because response accuracies were
consistently higher than was predicted byQ-learning. However, these
results donot, on their own, constitute evidence that a TI has occurred.
This is because Eq. 5 fits performance for sessions overall, not at the
first trial of each testing phase. In addition, Eq. 5 was fit using all the
data, including the terminal items, which are often reported to have
elevated response accuracy (11). Although Eq. 5 suggests that
performance exceeded chance for all six critical pairs, that could reflect
learning that took place during the first session of testing. The critical
pairs (BD, CE, DF, BE, CF, and BF) were not part of the training set
and did not include terminal items. One may conclude that TI
occurred only if subjects exceeded chance on the six terminal items
at the start of testing.

Figure 6 plots the results of three such critical tests. The first (Fig. 6, A
andD) fits eachof the six pairs using binomial regression. These estimates
were performed simultaneously as a multilevel model and were based
only on the first presentation of that stimulus pair; as such, these are
estimates based on six observations per pair per subject. Unsurprisingly,
the uncertainties in these estimates are large: The estimates are close to
chance, but the whiskers envision a 95% credible range of values as low
as 0.12 and as high as 0.88 in the reverse gradient condition.

To better leverage the available data, logistic regression was per-
formed. This enabled estimation of response accuracy at “trial zero”
for each pair, given how response accuracy to that pair evolved over
the course of the first session. Formally, the full logistic regressionmodel
takes the following form

pðcorrectÞ ¼ 1
1þ expð�mÞ ð6Þ

m ¼ b∅ þ bt ∙t þ bD∙Dþ bR ∙R
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This adds one additional parameter, bt, which predicts how response
accuracy changes as a function of trial number t (where the first trial of
testing is t = 0.0). As in previous analyses, the logistic regressions were
performed as multilevel models, yielding both population-level and
subject-level estimates.

In Fig. 6 (B and E), each of the six critical response pairs is fit in
isolation fromone another and separately for each condition, using only
the b∅ and bt terms from Eq. 6. Contrastingly, in Fig. 6 (C and F), all six
critical trials are included, and both experimental conditions are pooled.
As such, all of the parameters in Eq. 6 can be included. These parameter
estimates are still uncertain (several pair estimates have credible inter-
vals that overlap with zero), but they paint a compelling picture that, in
general, the critical pairs exceeded chance in both conditions. Tomake a
more precise statement about performance at transfer from training to
testing, however, additional data are needed to refine these estimates.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaaw2089/DC1
Data and Analysis Scripts
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