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Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and
Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we
investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS)
induced inflammation in order to identify its mechanism of action. Extracts of leaves
and stem bark of C. nutans were prepared using polar and non-polar solvents to
produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar
stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by
determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects
were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like
receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-
BlueTM-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6,
IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its
anti-inflammatory effects. Western blotting was used to investigate the effect of the most
potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3)
in RAW264.7 macrophages. All four extracts produced a significant, concentration-
dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation
in HEK-BlueTM-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7
macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4
inflammatory proteins. These results provide a basis for understanding the mechanisms
underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts.

Keywords: anti-inflammatory agents, Clinacanthus nutans, Toll-like receptor 4, macrophages, total flavonoid
content
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INTRODUCTION

Clinacanthus nutans (‘Belalai Gajah’ in Malay, or ‘You Dun
Cao’ in Mandarin) has long been used in Thailand to improve
bladder function and has also been used traditionally in
Malaysia as a folk medicine for kidney and bladder disease
(Low et al., 2011). C. nutans Lindau (Acanthaceae) leaves and
branches have been known to relief nettle rash, dysentery,
fever, burns, scalds, insect stings, and oral inflammatory
symptoms (Cheeptham and Towers, 2002). Traditionally,
C. nutans have been consumed as crude extract of the leaves
or stem bark. The leaf extracts of C. nutans has been reported
to possess antioxidant (Khoo et al., 2015), analgesic and
anti-inflammatory activities against varicella zoster virus
(Thawaranantha et al., 1992) as well as inhibitory activity against
scorpion venom-induced fibroblast lysis (Uawonggul et al., 2006).
Kittisiripornkul (1984) reported the anti-inflammatory activity
of a n-butanol-soluble fraction from the leaves (Kittisiripornkul,
1984) and a methanol extract of the whole plant reduced
carrageenan-induced paw oedema and ethyl phenylpropiolate-
induced ear oedema in rats (Wanikiat et al., 2008). The
extract also concentration-dependently inhibited human
neutrophil chemokinesis, as well as N-formyl-methionyl-
leucyl-phenylalanine-induced chemotaxis, superoxide anion
generation, and myeloperoxidase and elastase release (Wanikiat
et al., 2008). However, the exact cellular mechanisms underlying
the anti-inflammatory actions of C. nutans extracts remain
unknown.

In a recent study (Khoo et al., 2015), it has been highlighted
that both polar and non-polar compounds in C. nutans could
play important roles through its medicinal properties; therefore
in our study, we have included both the polar and non-
polar fractions of C. nutans leaves and stem bark. In order
to examine the anti-inflammatory effects of C. nutans, we
investigated its effects on human embryonic kidney (HEK)
cells stably transfected with human TLR (HEK-BlueTM-4) and
in murine macrophages (RAW264.7) challenged with LPS, the
Gram-negative bacterial cell wall component, a well-established
activator of TLR-4 (Mai et al., 2013). TLR-4 is the first line
of host defense against acute and chronic inflammation and is
one of the key pro-inflammatory signaling receptors (Park et al.,
2009). Activation of TLR-4 by LPS enhances the production
of NO and inflammatory cytokines, through activating nuclear
factor κB (NF κB) and IRF3. Inhibition of TLR-4 activation
may produce potent anti-inflammatory effects since TLR-4 is the

Abbreviations:BSA, Bovine serum albumin; DMSO, Dimethyl sulfoxide; ERK,
Extracellular signal-regulated kinase; HEK-BlueTM-hTLR4, TLR-4 transfected
human embryonic kidney cells; IC50NO, Concentration inhibits 50% of LPS
induced NO production; IC50TLR4, Concentration inhibits 50% of LPS induced
TLR-4 activity; IFN-γ, Interferon-gamma; IL, Interleukin; IRF3, Interferon
regulatory factor 3; JNK, c-Jun N-terminal kinase 1/2; LN, Non-polar leaf extract;
LP, Polar leaf extract; LPS, Lipopolysaccharide; mg GAE/g dm, Gallic acid
equivalent (mg) per dried material (g); mg QE/g dm, Quercetin equivalent (mg)
per dried material (g); MTT, Methyl thiazolyl tetrazolium; NF κB, Nuclear factor
κB; NO, Nitric oxide; SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel
electrophoresis; SEAP, Secreted embryonic alkaline phosphatase; SP, Polar stem
extract; SN, Non-polar stem extract; TFC, Total flavonoid content; TLR-4, Toll-like
receptor-4; TNF-α, Tumor necrosis factor-alpha; TPC, Total phenolic content.

upstream receptor that activates both NF κB and IRF3 signaling,
the hallmarks of inflammation (Hatziieremia et al., 2006; Mai
et al., 2013).

MATERIALS AND METHODS

Reagents
All materials, unless specified, were purchased from Sigma–
Aldrich (St Louis, MO,USA). Ultrapure LPS from Escherichia coli
was purchased from InvivoGen (San Diego, CA, USA) and was
reconstituted using endotoxin-free water (InvivoGen, San Diego,
CA, USA).

Preparation of Plant Extracts
Clinacanthus nutans was collected from an orchard in Temerloh,
Pahang Malaysia, and its identity was kindly verified by Dr.
Richard Chung at the Forest Research Institute of Malaysia. The
plant was also deposited in the Malaysian Agricultural Research
and Development Institute herbarium with the specimen
numbers MDI 12807 and MDI 12808. The plant was separated
into leaves and stem bark, which were dried and powdered. The
powdered leaves were extracted with polar solvents (methanol
and dichloromethane) or non-polar solvents (hexane and diethyl
ether) through immersion in the solvent for three days at room
temperature. A total of four extracts were prepared, namely
polar leave extracts (LP), non-polar leave extracts (LN), polar
stem extracts (SP), and non-polar stem extracts (SN). The
extracts were then gravity filtered and the solvents removed
under vacuum using a rotary evaporator at 60◦C. The dried
extracts were subjected to further experiments. In order to
standardize the extracts, we determined the total phenolic
content (TPC) and total flavonoid content (TFC) of extracts
using standardized assays as per described in previous studies
(Mai et al., 2009a,b). TPC of the extracts were expressed as gallic
acid equivalents in milligram per gram of dried material (mg
GAE/g dm) while TFC of the extracts were expressed as quercetin
equivalent in milligram per gram of dried material (mg QE/g
dm).

Cell Lines and Cell Culture
Macrophages RAW264.7 were obtained from the American
Type Culture Collection (ATCC, TIB-71TM) and maintained
in Dulbecco’s Modification of Eagle’s Medium (DMEM)
supplemented with 10% inactivated foetal bovine serum (FBS)
and 1% penicillin–streptomycin. All the cells were cultured
and maintained at 37◦C in a 5% carbon dioxide incubator.
HEK-BlueTM-4 cells, obtained from InvivoGen (San Diego, CA,
USA), are HEK that are stably transfected with human Toll-like
receptor-4 (hTLR-4), myeloid differentiation factor-2/cluster
of differentiation-14 and SEAP reporter gene. The cells were
cultured in complete DMEM which contained 4.5 g/L glucose
and L-glutamine, 10% heat inactivate FBS, 1% penicillin-
streptomycin, NormocinTM (InvivoGen, San Diego, CA, USA)
and HEK-BlueTM Selection Medium (InvivoGen, San Diego,
CA, USA). All cells were harvested within 20 passages using
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FIGURE 1 | Cytotoxicity of Clinacanthus nutans extracts on cells. Dose response curve of LP, LN, SP, and SN on cell viability of human embryonic kidney
cells, HEK-BlueTMhTLR-4 (A) and murine macrophages, RAW264.7 (B). All values were not significant difference when compared to 0.1% DMSO (one-way ANOVA
post hoc Dunnett’s t-test). Each value represents means ± SD from three independent experiments. (C) No significant morphological changes in
HEK-BlueTMhTLR-4 and RAW264.7 cells after 72 hours treatment with 100 μg/mL of extracts or 0.1% DMSO.

the cell scraper, without addition of trypsin for further analysis
according to the manufacturer’s instruction.

Cytotoxicity Assay
The MTT cell viability assay was used to access the cytotoxicity
of extracts on HEK-BlueTM-hTLR4 cells and RAW264.7 cells, as
described previously with modification (Mai et al., 2009a,b, 2013,

2014; Tan et al., 2013). Briefly, all extracts (LP, SP, LN, or SN) were
reconstituted using DMSO to 100 mg/mL and further diluted
to required concentrations (1–100 μg/mL) using ultra-purified
sterile water prior to the assays. Cells were treated with various
concentrations of extracts or 0.1% DMSO (negative control) for
72 h before the reaction was terminated with the MTT reagent.
The absorbance was recorded at a test wavelength of 570 nm and
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FIGURE 2 | Effect of C. nutans extracts on NO production in RAW264.7 cells. (A) As compared to cells treated with 0.1% DMSO, cells treated with
100 μg/mL of LP, LN, SP, SN failed to induce significant NO production, while cells treated with 100 ng/mL of LPS induced significant NO production (∗p < 0.05,
one-way ANOVA post hoc Dunnett’s t-test). (B) Cells were treated with various concentrations of extracts (1.5625–100 μg/mL) or 0.1% DMSO for 1 h followed by
18 h of LPS induction (100 ng/mL). Statistical significant difference from LPS induction are indicated as ∗p < 0.05 by one-way ANOVA post hoc Dunnet’s t-test.
Each value represents means ± SD from three independent experiments.

a reference wavelength of 630 nm using the Tecan Infinite F200
plate reader (Männedorf, Switzerland). The mean absorbance for
the negative control (0.1% DMSO) was normalized as 100%.

Griess Assay
In the presence of LPS,NO is generated by inducible NO synthase
in macrophages, as a hallmark of inflammation (Gross and
Wolin, 1995; Matsuno et al., 1998). The production of NO can
be quantified by measuring the level of nitrite production, the

stable metabolite of NO as described in the Griess assay (Kim
et al., 1995; Paul et al., 1997; Tsai et al., 1999; Shweash et al., 2011).
RAW264.7 macrophages were plated at 2 × 105cells/mL in a 12-
well plate and treated with or without extracts (LP, SP, LN, or SN)
for 1 h followed by stimulation with or without LPS (100 ng/mL)
for 18 h. Supernatants (50 μL) were removed and mixed with
equal amounts of Griess reagents (Kim et al., 1995; Paul et al.,
1997; Tsai et al., 1999; Shweash et al., 2011). The solutions were
then left for 10 min at room temperature before measurement
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TABLE 1 | Correlation between TPC and TFC of extracts and its IC50 values in Griess (IC50NO) and TLR-4 activation assay (IC50TLR4).

Extracts TPC
(mg GAE/ g dm)

TFC
(mg QE/ g dm)

IC50NO

(μg/mL)
Correlation
between TPC
and IC50NO

Correlation
between TFC
and IC50NO

IC50TLR4

(μg/mL)
Correlation
between TPC
and IC50TLR4

Correlation
between TFC
and IC50TLR4

LP 7.99 ± 0.6 16.09 ± 4.2 18.9 ± 3.6 r2 = 0.731 r2 = 0.839 21.3 ± 5.0 r2 = 0.764 r2 = 0.854

LN 3.26 ± 0.9 4.97 ± 1.3 37.1 ± 7.2 29.4 ± 9.0

SP 2.47 ± 0.4 3.75 ± 0.7 43.1 ± 4.7 27.2 ± 1.0

SN 1.43 ± 0.1 3.27 ± 1.1 33.8 ± 2.5 27.5 ± 6.3

Each value represents means ± standard deviation from three independent experiments.

on a microplate reader at 540 nm. The IC50NO, indicating the
concentration at which extracts inhibited 50% of LPS inducedNO
production was determined.

TLR-4 Activation Assay
HEK-BlueTM hTLR4 cells were plated at 1 × 105 cells/mL and
extracts were added simultaneously. DMSO (0.1%) was added
as a control solvent. In the presence of a TLR-4 agonist, such
as LPS, the TLR-4 is expected to be activated. Activated TLR-
4 induces NF-κB and activator protein-1 (AP-1) activation,
under the control of NF-κB/AP-1 promoter, following which,
the promoter will then induce secreted embryonic alkaline
phosphatase (SEAP) production. The levels of SEAP production
were determined using the HEK-BlueTM Detection Medium
(InvivoGen, San Diego, CA, USA), a detection medium which
changes color into purple or blue in the presence of SEAP after
24 h incubation. An extract will be accepted as a TLR-4 activator
if the percentage of TLR-4 activation is more than 100% as
compared cells treated with solvent control, 0.1% DMSO in the
absence of LPS. Conversely, an extract will be concluded as a
TLR-4 inhibitor if the extract can inhibit LPS induced TLR-
4 activation. The SEAP levels were quantified using the Tecan
Infinite F200 plate reader (Männedorf, Switzerland) at 630nm.
The increase in the level of SEAP is directly proportionate to
increased NF-κB activation, resulting in higher degree of TLR-4
activation. Finally, the IC50TLR4, indicating the concentration in
which extracts inhibited 50% of LPS induced TLR-4 activity was
determined.

Cytokine Assay
Macrophages RAW264.7 cells were plated and either non-
treated or treated with extracts (LP, SP, LN, SN) for 1 h
followed by exposure to LPS for 18 h. Ten cytokines, namely
the interleukin IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40,
IL-17, IFN-γ, and tumor necrosis factor-alpha (TNF-α), were
assayed in the supernatants using the MILLIPLEX R© MAPMouse
Cytokine/Chemokine Magnetic Bead panel (Millipore, Germany)
according to the manufacturer’s instructions. For the plate
washing steps, a handheld magnet attached to a plate holder was
used and the assay was performed on the Luminex 200 multiplex
analyser (Austin, USA) using the Luminex Software xPONENTR©

3.1 (Austin, USA) for data acquisition. The Median Fluorescent
Intensity data using a 5-parameter logistic or spline curve-fitting
method was used for calculating cytokine concentrations in

samples. The results were normalised with cells treated with
100 ng/mL of LPS.

Immunoblotting
Protein lysates from the macrophages treated with 0.1% DMSO,
LPS (100 ng/mL); the most potent extract (LP 20 μg/mL)
with or without LPS (100 ng/mL) were extracted in an ice-
cold lysis buffer (1%-NP-40, 1 mM dithiothreitol and protease
inhibitors cocktail in phosphate buffer saline, PBS). Proteins
(50 μg) were separated by 7.5% SDS-PAGE, and transferred onto
polyvinylidene fluoride (PVDF) membranes. The membranes
were blocked for non-specific binding for 1 h in 5% BSA diluted
with PBST (PBS and Tween-20). The blots were incubated
overnight with respective 50 ng/mL primary antibodies, such as
phosphorylated p65 (p-p65), p65, phosphorylated p38 mitogen
activated protein kinase (p-p38), p38, phosphorylated ERKs 1/2
(p-ERK 1/2), ERK1/2, phosphorylated c-Jun N-terminal kinase
1/2 (p-JNK 1/2), JNK1/2, phosphorylated interferon regulatory
factor 3 (p-IRF3), IRF3, and β-actin. The blots were washed with
PBST before incubated with respective horseradish peroxidise-
conjugated secondary antibody. All antibodies used in this study
were obtained from Cell Signalling Technology, USA. The blots
were subjected to enhanced luminol-based chemiluminescent
reagents.

Statistical Analysis
All data were reported as mean ± standard deviation from
a minimum of three independent experiments. Statistical
significance was analysed using one-way analysis of variance
(ANOVA) and post testing using Dunnett’s test through SPSS
(version 18.0) for Windows. A p-value of less than 0.05 (p < 0.05)
was considered significantly different compared to negative
control, treatment with 0.1% DMSO.

RESULTS

Clinacanthus nutans Extracts are Not
Cytotoxic to HEK-BlueTM-hTLR4 or RAW
264.7 Cells
Cells (HEK-BlueTM-hTLR4 cells and macrophages) were
treated with various concentrations (1.5625–100 μg/mL)
of LP, LN, SP, or SN for 72 h. The viability of HEK cells
(HEK-BlueTM-hTLR4) and murine macrophages (RAW
264.7) were not significantly reduced by any of the extracts
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FIGURE 3 | Effect of C. nutans extracts on TLR-4 activation in HEK-BlueTM-4 cells. (A) Cells treated with 100μg/mL of LP, LN, SP, SN failed to induce
TLR-4 activation, while 100ng/mL of LPS induced significant TLR-4 activation (∗p < 0.05, one-way ANOVA post hoc Dunnett’s t-test) as compared to cells treated
with 0.1% DMSO. (B) Cells were treated with various concentrations of extracts (1.5625–100 μg/mL) or 0.1% DMSO for 1 h followed by 18 h of LPS induction
(100 ng/mL). Statistical significant difference from LPS induction are indicated as ∗p < 0.05 by one-way ANOVA post hoc Dunnet’s t-test. Each value represents
means ± SD from three independent experiments.

compared to cells treated with 0.1% DMSO (negative control)
(Figures 1A,B). Microscopic observation (Figure 1C) showed
no morphological change for all cells treated with 100 μg/mL
of the four extracts compared to the negative control cells
treated with 0.1% DMSO. The results obtained conclude
that there was no cytotoxicity induced by the extracts alone,
which could potentially interfere with anti-inflammatory
effects.

Clinacanthus nutans Extracts Inhibit LPS
Induced NO Production and TLR-4
Activation
Lipopolysaccharide induced significant (p < 0.05) NO
production compared to cells treated with DMSO or with
extracts alone (LN, LP, SP, or SN, each 100 μg/mL; Figure 2A).
All four extracts inhibited LPS induced NO production in a
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FIGURE 4 | Effect of C. nutans extracts on cytokines in RAW 264.7 cells. Cells treated with 20 μg/mL of LP, SP, LN, or SN inhibited LPS induce significant
cytokines production as compared to cells treated with 100 ng/mL of LPS (∗p < 0.05, ANOVA post hoc Dunnett t-test).
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FIGURE 5 | Effect of extract (LP) on LPS-induced p65, p38, pERK1/2, pJNK 1/2, pIRF3, and β-actin in RAW264.7 macrophages. RAW264.7
macrophages were pre-treated with vehicle (0.1%DMSO) or the most potent extract (20 μg/mL) of LP for 1 h before stimulation with LPS (100ng/mL) for 18 h.
(A) Whole-cell extracts were assayed for its phosphorylated and non-phosphorylated p65, p38, pERK1/2, pJNK 1/2, pIRF3, and β-actin as described in Materials
and methods. (B) Quantification of each blot was performed by scanning densitometry. Each blot is representative of three others. Each value is the mean ± SD of
three independent immunoblotting experiments, with ∗p < 0.05 from macrophages treated with LPS alone.
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concentration-dependent manner (Figure 2B), with LP being
the most potent (IC50NO = 18.9 ± 3.6 μg/mL; Table 1).

Toll-like receptor-4 activation is the hallmark of inflammation
(Mai et al., 2013). LPS (100 ng/mL) induced significant
(p < 0.05) TLR-4 activation in HEK-BlueTM hTLR4 cells
compared with cells treated DMSO or with extracts alone (LN,
LP, SP, or SN, each 100 μg/mL; Figure 3A). All four extracts
inhibited LPS-induced TLR-4 activation in a concentration-
dependent manner (Figure 3B), with LP being the most potent
(IC50TLR4 = 21.3 ± 5.00 μg/mL; Table 1).

Inhibition of TLR 4 Activation and of NO
Production by C. nutans Extracts are
Related to Its Phenolic Compounds and
Flavonoids
Clinacanthus nutans extracts indicated content of phenolic
compounds (TPC = 1.43 to 7.99 mg GAE/g dm) and flavonoids
(TFC = 3.27 to 16.09 mg QE/g dm). The leaf extracts extracted
with methanol and dichloromethane (LP), showed the highest
TPC and TFC among all the extracts. A higher correlation was
obtained between TFC and IC50NO (r2 = 0.839) compared to
correlation between TPC and IC50NO (r2 = 0.731). Similarly,
a higher correlation was obtained between TFC and IC50TLR4
(r2 = 0.854) compared to correlation between TPC and IC50TLR4
(r2 = 0.764). These results suggest the flavonoids in the extracts
may play a role in inhibiting LPS-induced NO production and
LPS-induced TLR-4 activation.

Clinacanthus nutans Extracts Inhibit LPS
Induced Cytokines Production
Polar leaf extract and LN significantly (p < 0.05) inhibited
LPS-induced TNF-α, IFN-γ, IL-1β, IL-6, IL12p40, and IL-17
production (Figure 4). The SN extract significantly inhibited the
LPS-induced production of TNF-α, IFN-γ, IL-6, IL12p40, and IL-
17 but not IL-1β, whereas the SP extract inhibited the production
of TNF-α, IFN-γ, IL-1β, IL-6, and IL-17 but not that of IL12p40.
Four cytokines (IL-2, IL-4, IL-5, and IL-10) were below detectable
limits (results not shown).

Clinacanthus nutans extracts inhibit LPS
induced TLR-4 inflammatory proteins
Based on the results from the Griess assay and TLR-4 activation
assay, the most potent anti-inflammatory extract (LP) was
selected for immunoblotting. Exposure of macrophages to
100 ng/mL of LPS or combination of 0.1%DMSO and LPS
led to phosphorylation of p65, p38, ERK1/2, JNK1/2, and
IRF3 (Figure 5A)., The extract (20 μg/mL of LP (≈IC50NO)
significantly (p< 0.05) reduced the LPS induced phosphorylation
of p65, p38, ERK1/2, JNK1/2, and IRF3. In unstimulated
macrophages cells either with LP alone or 0.1% DMSO, there
was no significant phosphorylation of p65, p38, ERK1/2, JNK1/2,
and IRF3 (Figure 5B). No significant change was observed in the
loading control proteins, β-actin, between treated and untreated
cells.

DISCUSSION

Although C. nutans extracts have been previously shown to
reduce superoxide anion production (Tu et al., 2014), and to
inhibit neutrophil responsiveness (Wanikiat et al., 2008), the
mechanisms underlying its anti-inflammatory effects remain
unknown.

Therefore, our study was carried out to examine the effects
of extracts on inflammatory processes using the well-established
LPS-induced inflammation macrophage model (Paul et al., 1999;
Hatziieremia et al., 2006; Cheng et al., 2014; Piwowarski et al.,
2015; Zhang et al., 2015). LPS produces a powerful inflammatory
response through activation of the TLR-4, resulting in activation
of nuclear factor-κB (NF-κB) and the production of NO and
inflammatory cytokines, including IFN-γ, TNF-α, IL-1β, IL-6,
IL-12p40, and IL-1 (Medzhitov et al., 1997; Kawai and Akira,
2007; Trinchieri and Sher, 2007). In the present study, we
found that the extracts of C. nutans produced a marked and
concentration-dependent inhibition of the production of NO
and the inflammatory cytokines; this was clearly unrelated to
cytotoxicity caused by the extracts when administered alone. The
roles of NO (Hatziieremia et al., 2006; Gomez et al., 2013), IL-
1β (Maelfait et al., 2008), TNF-α (Prince et al., 2004; Noman
et al., 2009), IFN-γ (Yamada et al., 2005), IL-6 (Greenhill et al.,
2011), IL-12 (Krummen et al., 2010), and IL-17 (Derkow et al.,
2015) in the TLR-4 related inflammatory responses have been
well established. The suppression of the production of NO and
these cytokines suggested that the anti-inflammatory effects of
these extracts were related to inhibition of TLR-4 activation.

Unlike other TLR, TLR-4 is the only TLR that activates both
myeloid differentiation primary response 88 (MyD88) dependent
and Toll/IL-1R domain containing adapter inducing IFN-β
(TRIF) dependent pathways in the presence of LPS. MyD88
recruits the IL-1 receptor-associated kinases and causes the
activation of NF-κB, (such as p65), p38, ERK, and Jun N-terminal
kinase (JNK) (Kawai and Akira, 2007). NF-κB activation, a
downstream pathway of TLR-4, is a hallmark for inflammation,
contributing to chronic diseases such as inflammatory bowel
disease, systemic inflammatory response syndrome, and chronic
inflammatory demyelinating polyradiculoneuritis (Tak and
Firestein, 2001). In the TRIF pathway, TRIF activates tumor
necrosis factor receptor-associated factor (TRAF) family member
through TRAF3 (Kawai and Akira, 2010). TRAF3 promotes IRF3
activation and subsequently IFN-γ induction (Kawai and Akira,
2010; Mai et al., 2013). The most potent of our extracts (LP)
inhibited LPS-induced phosphorylation of p65, p38, ERK, JNK,
and IRF3. These results correlated with the ability of the extracts
to inhibit LPS induced TLR-4 activities. Moreover, the extract
reduced LPS-induced production of IFN-γ and phosphorylation
of IRF3. These are the first results showing C. nutans to target
both the MyD88 dependent and TRIF dependent pathways. The
finding that TLR-4 activation was prevented by the extracts of
C. nutans as measured by SEAP production in response to LPS,
lends further support to the hypothesis that C. nutans exerts
its anti-inflammatory effects by preventing the activation of the
TLR-4 receptor, thus reducing the production of inflammatory
cytokines and TLR-4 related inflammatory proteins. At which
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point(s) of this pathway the extract produces its effects remain(s)
to be determined.

We found good correlations (r2 > 0.7) between TPC
and TFC with the potency of the extracts in inhibiting NO
production (IC50NO) and TLR-4 activation (IC50TLR4), suggesting
both phenolic compounds and flavonoids in the extracts
could mediate potential anti-inflammatory effects. The greater
correlation between TFC of extracts and its anti-inflammatory
effects could be largely attributed to the presence of flavonoids,
as compared to phenolic compounds in consideration of its
correlation to TPC. These results corroborate with other findings
whereby both flavonoids (schaftoside, gendarucin A, apigenin)
and phenolic compounds (gallic acid, 3,3-di-O-methylellagic
acid) were present in C. nutans Lindau leave extracts (Khoo
et al., 2015). The leaf extracts in the study by Khoo et al.
(2015) had similar TPC values to those in the LP extracts in
our study although different extraction methods were used.
Previous studies indicated that these flavonoids (Erel et al.,
2011; Funakoshi-Tago et al., 2011; Zhang et al., 2014) and
phenolic compounds(Sgariglia et al., 2013; Pandurangan et al.,
2015) identified by Khoo et al. (2015) exerts anti-inflammatory
effects. Further studies should be carried out to elucidate the
active compounds in leave extracts (LP) and to consolidate the
scientific evidence especially the mechanisms involved, in order
to further enhance the use of C. nutans as an anti-inflammatory
agent.

CONCLUSION

This study provides evidence that the crude extracts of C. nutans
leaves exert their anti-inflammatory effects by inhibiting TLR-
4 activation. These results provide a basis for understanding

the mechanisms underlying the traditionally belief of anti-
inflammatory of C. nutans crude extracts. More studies using
pathway specific inhibitors or a genetic knockout of TLR-4 may
further elucidate the mechanism of action of the extracts in
specific pathways of TLR-4. A detailed isolation of bioactive
compounds from LP extracts would be highly warranted in view
of the potential anti-inflammatory attributes of C. nutans.
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