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ABSTRACT

Amyotrophic lateral sclerosis (ALS) is associated
with progressive degeneration of motor neurons.
Several of the genes associated with this disease en-
code proteins involved in RNA processing, including
fused-in-sarcoma/translocated-in-sarcoma  (FUS/
TLS). FUS is a member of the heterogeneous
nuclear ribonucleoprotein (hnRNP) family of
proteins that bind thousands of pre-mRNAs and
can regulate their splicing. Here, we have examined
the possibility that FUS is also a component of the
cellular response to DNA damage. We show that
both GFP-tagged and endogenous FUS re-localize
to sites of oxidative DNA damage induced by UVA
laser, and that FUS recruitment is greatly reduced or
ablated by an inhibitor of poly (ADP-ribose) polymer-
ase activity. Consistent with this, we show that re-
combinant FUS binds directly to poly (ADP-ribose)
in vitro, and that both GFP-tagged and endogenous
FUS fail to accumulate at sites of UVA laser induced
damage in cells lacking poly (ADP-ribose) polymer-
ase-1. Finally, we show that GFP-FUS"®2'¢ harbour-
ing a mutation that is associated with ALS, exhibits
reduced ability to accumulate at sites of UVA laser-
induced DNA damage. Together, these data suggest
that FUS is a component of the cellular response
to DNA damage, and that defects in this response
may contribute to ALS.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is caused by
progressive degeneration of motor neurons in the spinal

cord, brain stem, and motor cortex. Whereas 90% of cases
are sporadic (SALS), 10% are familial (fALS) and result
from inherited dominant mutations in one of ~13 genes
(1-3). A pervading hypothesis is that most cases of ALS
are proteinopathies in which the mutant proteins aggre-
gate in neurons and are toxic. While this can explain the
dominant nature of ALS mutations, it does not rule out
the possibility that some such mutations act in a dominant
negative manner. For example, the mutated proteins in
ALS may aggregate and sequester normal proteins, or
may inactivate protein complexes in which they are
involved, reducing and/or disrupting critical cellular
processes necessary for neural function and maintenance.
Consistent with this idea, it has emerged recently that
several of the genes associated with ALS encode RNA
binding proteins involved in mRNA splicing,
polyadenylation and stability (4,5). Dominant mutations
in one such gene, fused-in-sarcoma/translocated-in-
sarcoma (FUS/TLS), account for ~5% of fALS and
~1% of sALS and are associated with ALS6 (2,6-8).
FUS is physically associated with a number of transcrip-
tion factors and RNA processing proteins, including RNA
Polymerase IT (RNAP II) (9-14). Depletion of FUS leads
to altered expression of numerous genes, and particularly
genes with large introns (>100kb) (4,15). FUS depletion
also generates elevated levels of RNAP II harbouring a
Ser2-phosphorylated C-terminal domain at transcription
start sites (10). Normally this posttranslational modifica-
tion is associated with elongating RNAP II and is enriched
at the 3/-termini of genes.

The above observations are consistent with altered
RNA processing being an underlying factor in ALS6.
However, if this is the case, it seems likely that the role
of FUS extends beyond regulating RNA processing under
basal conditions. For example, while FUS binds to ~70%
of gene transcripts, it affects the basal expression level of
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only a small percentage of these (4,15). One possibility is
that FUS might be particularly important to maintain the
expression of genes in which transcription is perturbed by
cellular stress, such as DNA damage, to prevent inappro-
priate mRNA processing. DNA suffers from attack by a
variety of endogenous sources, including endogenous
reactive oxygen species and abortive topoisomerase
activity, and as a result accrues DNA lesions that can
disrupt transcription. Because the cumulative number of
DNA lesions encountered by a gene is dependent on cell
age, DNA damage poses a significant threat to gene tran-
scription in long-lived cells such as postmitotic neurons.
Consequently, we have examined whether FUS is a com-
ponent of the response of mammalian cells to DNA
damage. We show that FUS is recruited to chromosomal
sites of oxidative DNA damage, and that this recruitment
is reduced by a mutation that is associated with ALS. Our
data highlight a new aspect of FUS function, and support
a model in which FUS is recruited to sites of DNA
damage to protect or maintain ongoing transcription.

MATERIALS AND METHODS
Plasmids and vectors

The mouse Fus (mFUS) cDNA was kindly provided
by Abraham Acevedo-Arozena and Peter Joyce (MRC
Harwell) and subcloned into peGFP-C3 using HindIII/
BamHI. A clone containing the human FUS (hFUS)
open reading frame was obtained from Source
Bioscience and this was subcloned into peGFP-C3 using

polymerase chain reaction (PCR) primers
tacgtcgactATGgcctcaaacgatt and cttggatecttTTAa

tacggectete (Sall and BamHI sites underlined, start and
stop codons in upper case). The hFUS ORF was also
subcloned into pET16b by PCR using PCR primers
ccagcatATGgcctcaaacgattat and ttggatecttTTAa
tacggcectcte (Ndel and BamHI sites underlined, start and
stop codons in upper case).

Cells and siRNA

Human A549 and U20S cells were grown at 37°C in
Dulbecco’s modified Eagle’s medium supplemented with
15% foetal calf serum (FCS), penicillin/streptomycin and
L-glutamine (Invitrogen). PARP-I"'* and PARP-17/~
spontaneously immortalized mouse embryonic fibroblasts
(MEFs; 16,17) were grown in MEM +10% FCS. siRNA
treatment was conducted on human A549 cells using
siIGENOME smartpool hFUS siRNA (Thermo Scientific
M-009497) or a scrambled siRNA control and
Metafectene Pro (Biontex) according to the manufac-
turer’s instructions. Knockdown was achieved by two suc-
cessive rounds of transfection 24h apart with 100 pmol
sSiRNA per 5x10° cells. Cells were analysed for
knockdown 48 h after the second transfection by western
blotting using polyclonal rabbit anti-FUS [ProteinTech
11570 at 1:1000 in phosphate buffered saline (PBS)+ 1%
milk].

UVA irradiation and immunofluorescence

For direct detection of GFP-FUS, cells were seeded onto
glass-bottom dishes (MatTek) 2 days before transient
transfection with the indicated expression constructs
using Genejuice, as previously described (18). Twenty-
four hours after transfection, cells were preincubated for
1 h where shown with 500 nM poly (ADP-ribose) polymer-
ase (PARP) inhibitor KUS58948 (kindly provided by
AstraZeneca) or 10uM ATM inhibitor KUS55933
(Tocris). Cells were then presensitized with 10 pg/ml
Hoechst dye 33258 (Sigma) at 37°C for 30 min. GFP-
positive cells were then irradiated with a 351-nm UVA
laser focused through a 40x/1.2-W objective using a
Zeiss Axiovert equipped with LSM 520 Meta.
Ultraviolet UVA (351nm, 0.44J/m?) was introduced to
an area of ~12 x 0.1 um and images were then captured
at 15s intervals.

For indirect immunofluorescence of endogenous
proteins, cells were seeded onto glass-bottom dishes
(MatTek) 2 days before microirradiation.
Presensitization was carried out as above, and individual
cells were irradiated with 4.4 J/m*> UVA. Cells were then
washed and fixed in PBS+4% paraformaldehyde,
permeabilized in PBS+0.2% Triton, blocked in 5%
bovine serum albumin (BSA) and labelled overnight
with rabbit anti-FUS (Proteintech, 1:500 or Sigma,
1:500) and mouse anti-yH2Ax (Milipore, 1:1000) in
PBS+1% BSA. Detection was carried out using
Alexafluor anti-mouse 555 and anti-rabbit 488
(Invitrogen; both 1:500 in PBS+ 1% BSA) for 1h before
washing and mounting.

Recombinant proteins

pET16b-FUS was transformed into BL21(DE3)(pLysS)
and grown in 500 ml cultures in Luria Broth supplemented
with 50 pg/ml ampicillin and 30 pg/ml chloramphenicol
to an ODyggg of 0.6. Expression was induced with 1 mM
isopropyl B-p-1-thiogalactopyranoside and cultured for
16h at 16°C. Soluble protein was extracted by lysis in
20mM Tris—HCI, pH 7.5, 0.5M NaCl, 10 mM imidazole,
1% Triton X-100, 2mM B-mercaptoethanol, then
sonicated and clarified by centrifugation. Ni-NTA
agarose (Qiagen) was used to purify His-FUS using a
50mM imidazole wash step and elution with 250 mM
imidazole. The full-length protein was further purified
by Superdex 200 (30/10) using running buffer (20 mM
Tris—=HCI, pH 7.5, 0.3M NaCl, 10% glycerol, 1 mM
dithiothreitol). Aprataxin- and PNK-like factor (APLF)
was similarly purified.

Slot blotting

Dilutions of His-APLF and His-FUS were made in PBS
and applied to nitrocellulose membrane by vacuum. The
membrane was blocked in 5% non-fat milk in binding
buffer (BB; 20 mM Tris—-HCI, pH 7.5, 100 mM NacCl) for
1h. 50nM poly (ADP-ribose) (Trevigen) was incubated
with the membrane for 45 min in the above, then rinsed
three times with BB for Smin. The membrane was then
incubated with anti-PAR antibody (10H; Enzo Life
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Sciences) in BB containing 5% non-fat milk for 2h and
then washed again. Poly (ADP-ribose) (PAR) interactions
were detected using anti-mouse horseradish peroxidase-
conjugate followed by chemo-luminescence.

RESULTS

To examine whether FUS/TLS is a component of the
DNA damage response, we transiently expressed GFP-
tagged derivatives of the human and mouse protein in
human A549 cells and monitored their subcellular local-
ization before and after DNA damage. Both GFP-hFUS
and GFP-mFUS accumulated at sites of oxidative DNA
damage induced by UVA laser in A549 cells (Figure 1A
and B). This was a rapid response, with GFP-FUS
accumulating maximally at sites of DNA damage within
2 min after laser microirradiation (Figure 1A and B, right
panels). To confirm this was not an artefact of
overexpressing GFP-tagged protein, we used anti-FUS
antibodies to monitor the subcellular localization of en-
dogenous FUS. Endogenous FUS similarly accumulated
at sites of UVA-induced oxidative DNA damage, both in
A549 and U20S cells (Figure 2A and B). Preincubation of
the cells with anti-FUS siRNA confirmed that the protein
that accumulated at sites of UVA damage was FUS.
Immunostaining with antibody that recognize the

>

17.190 s

62.190 s

@  GFP-hFUS (A549 cells)

GFP-mFUS (A549 cells)

Nucleic Acids Research, 2014, Vol. 42, No. 1 309

phosphorylated histone isoform, YH2AX, confirmed that
DNA strand breaks were present at the site of UVA laser
irradiation (Figure 2B).

A number of proteins that rapidly accumulate at DNA
damage sites do so in a manner that is dependent on the
synthesis of PAR; a branched nucleic acid-like polymer
with which many DNA damage-response proteins bind,
resulting in their recruitment and accumulation. We there-
fore examined whether FUS is similarly recruited at sites of
UVA laser-induced oxidative damage in a PAR-dependent
manner. Indeed, KU58948, a potent inhibitor of PAR syn-
thesis, prevented the accumulation in A549 cells both of
GFP-tagged FUS (Figure 3A) and endogenous FUS
(Figure 3B) at sites of UVA laser damage. The source of
most (75-90%) cellular of PAR synthesis at sites of DNA
damage is poly ADP-ribose polymerase-1 (PARP-1) (18).
However, cells possess two additional DNA damage-
stimulated PARP enzymes, denoted PARP-2 and PARP-
3, both of which are also inhibited by KU58948, albeit to a
lesser extent (20-22). To confirm that PARP-1 is required
for FUS recruitment, we compared GFP-FUS accumula-
tion at sites of UVA laser damage in wild type and Parp-
17"~ MEFs. Whereas GFP-FUS rapidly accumulated at
sites of UVA laser damage in wild type MEFs, it was
unable to do so at such sites in Parpl~'~ MEFs (Figure
4). Many proteins that are recruited to sites of DNA
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Figure 1. GFP-tagged FUS/TLS accumulates at sites of UVA laser-induced oxidative chromosomal damage. (A) Recruitment of eGFP-hFUS to
sites of laser damage. Transiently transfected A549 cells were subjected to UVA laser microirradiation along the line indicated. Images were taken at
the times (seconds) shown after microirradiation. The graph shows the average GFP fluorescence across six individual experiments and over 100
cells £ SEM. (B) Recruitment of eGFP-mFUS to sites of laser damage. Experiments were carried as described in (A). Graph shows the mean of three

independent experiments.
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Figure 2. FUS/TLS accumulates at sites of UVA laser-induced oxidative chromosomal damage. (A) A549 cells mock-treated (‘—siRNA’) or
pretreated with FUS siRNA (“+siRNA”) were microirradiated, fixed 2min later and immunostained for endogenous FUS with anti-FUS antibody
(top two panels). A western blot confirming siRNA-mediated knockdown is shown (right). The dotted box in the “+siRNA’ samples denotes the
position of the UVA laser track. (B) U20S cells were treated as described above and immunostained with anti-FUS (middle row), or anti-yH2Ax

antibody (bottom row) as a marker of DNA breaks.
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Figure 3. FUS/TLS accumulation at sites of UVA laser-induced damage is dependent on PAR synthesis. (A) Human A549 cells were transfected
with GFP-hFUS and microirradiated with UVA. Cells were pretreated with vehicle (DMSO) or 500nM KUS58948 1h before microirradiation. A
representative experiment is shown with quantification of GFP-FUS recruitment (mean = SEM > 30 cells) plotted graphically (bottom left).
(B) U20S cells mock-treated or pretreated with 1 pM KUS58948 (PARPi) were microirradiated as described above, fixed and immunolabelled for

endogenous FUS (middle row) and YH2Ax (bottom).

damage by PARP-1 do so by direct interaction with PAR.
To examine if this is the case for FUS, we examined
whether recombinant FUS binds to PAR by slot blotting.
Indeed, PAR probe bound to slot-blotted recombinant
FUS and to recombinant APLF, a known PAR-binding
protein and positive control (Figure 5A) (23,24).

Together, these experiments suggest that FUS is recruited
to sites of oxidative chromosomal DNA damage by the
DNA strand break sensor protein, PARP-1, most likely
via direct interaction between FUS and PAR.

The C-terminal domain is one of the most commonly
mutated regions of FUS, in ALS (1) (Figure 5B).


;
poly (ADP-ribose)

WT MEFs

Parp-1-MEFs

150

125

=& PARP1 -/- MEFs

100 =# PARP1 +/+ MEFs

75

Track intensity (% of initial signal)

50
0 30 60 90 120 150 180 210

Time (seconds)

Figure 4. FUS/TLS accumulation at sites of UVA laser-induced
damage is dependent on PARP-1. Parp-1"" (WT) and
Parp-1"""MEFs were transiently transfected with GFP-hFUS and
microirradiated with a UVA laser. Representative images are presented,
with quantification of GFP-FUS recruitment (mean = SEM > 20 cells)
plotted graphically (bottom).

Although this domain influences the nuclear localization
of FUS, some ALS-associated mutations in this domain
do not appear to impact greatly on FUS nuclear localiza-
tion (25,26), suggesting that it may fulfill additional func-
tions. We therefore examined whether one of the
C-terminal mutations that does not markedly impact on
nuclear localization, R521G, might impact on FUS
recruitment at sites of transcriptional stress. Indeed, the
R521G mutation greatly reduced FUS accumulation at
sites of UVA-induced laser damage in A549 cells
(Figure 5C). Collectively, these results demonstrate that
FUS is a component of the cellular response to DNA
damage, and raise the possibility that defects in this
response underlie or contribute to ALS.

DISCUSSION

FUS is a member of the FET family of RNA binding
proteins, along with EWSR1 and TAF15, with roles in
regulating transcription, splicing and mRNA stability
(2,27). FUS binds thousands of pre-mRNA species and
regulates the basal level of a small subset of these
(4,15,28). In particular, FUS appears to preferentially
bind pre-mRNAs with large introns, many of which are
expressed in neurons (4,29). The mechanism/s by which
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Figure 5. FUS/TLS binds directly to PAR, and a mutation associated
with ALS disrupts FUS/TLS recruitment at sites of DNA damage.
(A) FUS interacts directly with PAR. The indicated amounts of recom-
binant hFUS or hAPLF were slot blotted onto nitrocellulose
membrane and then incubated with (“+PAR’) or without (—PAR)
poly (ADP-ribose). Bound PAR was detected by western blotting. (B)
Domain structure of FUS/TLS, showing the glutamine/glycine/serine/
tyrosine-rich (Q/G/S/Y-rich), glycine-rich (Gly-rich), arginine/glycine-
rich (RGG), RNA-binding RRM (RRM), zinc finger (ZF) and
nuclear localization (NL) domains. ALS mutations associated with
R521 in the NL domain are shown. (C) A549 cells transiently trans-
fected with GFP expression construct encoding either wild type (WT)
GFP-hFUS or GFP-hFUSRS521G were microirradiated with UVA laser
and images collected at the indicated times following irradiation. A
representative image taken at 90 s following irradiation is shown (right).

dominant mutations in FUS might result in ALS are
unclear, however. It has been suggested that FUS muta-
tions, many of which result in sequestration of the mutant
protein in the cytoplasm, can form toxic protein aggre-
gates, or that the mutations act in a dominant loss-of-
function manner (e.g. by sequestering other proteins into
inactive RNA processing complexes) (8,25,30). In both of
these scenarios, it is plausible that the outcome relevant to
ALS is loss of critical mRNA species. However, because
only a few of the target pre-mRNAs bound by FUS
exhibit altered basal expression levels in FUS defective
cells, we considered the possibility that FUS might play
a more important role under conditions of cellular stress,
such as following DNA damage.

DNA damage arises continuously in cells, and DNA
lesions can disrupt transcription, raising the possibility
that RNA processing factors might be differentially
regulated in response to DNA damage. Consistent with
this idea, a number of RNA processing factors have
been reported to accumulate and/or respond to DNA
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damage, and RNAP II activity, mRNA splicing and
polyadenylation are differentially regulated in mammalian
cells after DNA damage (31-38). Some RNA processing
factors appear to play direct or indirect roles in the repair
of DNA strand breaks, by promoting proper expression or
recruitment of key DNA repair genes (31,35). In the
current study, we observed that GFP-tagged FUS
rapidly accumulated at sites of oxidative DNA damage
induced by UVA laser, suggesting that this ALS-
associated RNA processing factor might also be a compo-
nent of the cellular DNA damage response.

Exposure to UVA laser induces DNA lesions of the
type normally induced by endogenous sources of oxidative
stress including DNA base damage and both DNA single-
and double-strand breaks. Both mouse and human GFP-
FUS accumulated at these sites, confirming that this
activity is conserved. Endogenous FUS similarly
accumulated at sites of oxidative DNA damage, as
measured by two separate anti-FUS antibodies, ruling
out that this response was an artefact of overexpressing
GFP-tagged protein. We have not detected appearance of
GFP-tagged or endogenous FUS in immunofoci following
ionizing radiation or H»>O, (unpublished observations),
perhaps indicating that the localization of FUS at sites
of DNA damage is transient. Alternatively, it is possible
that FUS is only recruited at those sites where transcrip-
tion is perturbed or blocked, which may be a small subset
of DNA damage sites.

A number of proteins that are recruited to sites of DNA
breaks do so in a manner that is dependent on synthesis
of PAR, the polymeric product of PARP enzymatic
activity. The recruitment of GFP-FUS at sites of UVA
laser damage was detectable within seconds, and reached
a maximum with 2 min, consistent with the rapid kinetics
of PAR synthesis. Moreover, FUS accumulation was
inhibited by a potent inhibitor of PARP activity and by
genetic deletion of PARP-1 in MEFs. Several other RNA
binding/processing enzyme are recruited to sites of UVA
microirradiation in PARP-1/PAR dependent manner
(35,36), suggesting that PARP-1 is a important compo-
nent of how RNA binding/processing proteins are
regulated at sites of oxidative DNA damage.

Many proteins that are recruited to sites of PAR syn-
thesis do so by direct interaction with this polymer.
Consistent with this being the case for FUS, recombinant
FUS interacted directly with PAR on nitrocellulose slot
blots. The RNA processing protein NONO is similarly
recruited to sites of UVA microirradiation, via direct
interaction between PAR and the RRM1 RNA binding
domain (36). The RNA processing proteins ASF/SF2 and
a number of hnRNP factors similarly appear to bind PAR
directly, via regions encompassing their RRM1 domains
(39,40). While this manuscript was in preparation,
Mastrocola et al. reported result similar to ours,
demonstrating FUS recruitment to sites of UVA
microirradiation in a PAR dependent manner, although
they did not identify the PARP enzyme responsible for
this activity (41). However, Mastrocola et al. did identify
the RGG domains of FUS, rather than the RRM
domains, as responsible for PAR binding. It thus
appears that several different types of RNA binding

domain are able to bind PAR, which while distinct from
RNA is related in structure.

Intriguingly, in our hands, a mutation within the
C-terminal nuclear localization signal (R521G) greatly
reduced FUS accumulation at sites of UVA damage. We
do not believe this mutation impacts on PAR binding
directly, however, because it is not a component of the
RRM or RGG domains, and because we failed to detect
such an impact on PAR binding on slot blots, in vitro
(unpublished observations). Rather, the impact of this
mutation on FUS recruitment suggests that other
aspects of FUS function are important for its localization
at sites of DNA damage, in addition to direct binding to
PAR. We do not yet know what this function is, but it is
unlikely to reflect an impact on nuclear localization,
because the level of nuclear GFP-FUS has been shown
to be only weakly affected by this mutation (26), and in
our hands was largely unaffected (see Figure 5C). Because
this mutation is associated with ALS, however, our data
suggest that an inability to localize at nuclear sites of
chromosome damage may contribute to this disease in at
least some patients.

What role might FUS play at sites of oxidative DNA
damage? One possibility is that FUS is recruited to
regulate local gene expression. For example, FUS nega-
tively regulates RNA Pol 111 (42), and is recruited to the
CCNDI promoter following ionizing radiation to inhibit
expression of cyclin DI by promoting localized histone
acetylation (43). In the latter case, FUS recruitment is
achieved in part by sequence-specific binding of the
C-terminus to single-stranded non-coding RNA species
transcribed within the vicinity of the CCNDI promoter.
Alternatively, FUS may regulate the stability and/or pro-
cessing of nascent pre-mRNA at sites of DNA damage.
FUS binds to thousands of pre-mRNA species and affects
the basal level of a subset of these, most likely by
regulating their splicing and/or polyadenylation (4).
Alternatively, perhaps FUS is required for efficient
repair of oxidative DNA lesions, such as DNA single- or
double-strand breaks, as has been described for the RNA
processing factors NONO (36), hnRNPUL-1 and -2 (31).
Consistent with this notion, FUS is phosphorylated by
ATM (44), FUS™/~ mice exhibit chromosomal instability
and radiosensitivity (45,46), and Mastrocola et al.
reported reduced levels of double strand break repair in
FUS depleted cells, using plasmid rejoining/recombin-
ation assays (41). However, whether DNA repair defects
are present within the context of ALS cells in which FUS
mutations are present in a heterozygous and dominant
state, remains to be determined.

In summary, we show that FUS is a component of the
PARP-1 dependent response to oxidative chromosomal
DNA damage, raising the possibility that defects in this
response might contribute to ALS.
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