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Abstract

Mitochondrion plays a central role in diverse biological processes in most eukaryotes, and its dysfunctions are critically
involved in a large number of diseases and the aging process. A systematic identification of mitochondrial proteomes and
characterization of functional linkages among mitochondrial proteins are fundamental in understanding the mechanisms
underlying biological functions and human diseases associated with mitochondria. Here we present a database MitProNet
which provides a comprehensive knowledgebase for mitochondrial proteome, interactome and human diseases. First an
inventory of mammalian mitochondrial proteins was compiled by widely collecting proteomic datasets, and the proteins
were classified by machine learning to achieve a high-confidence list of mitochondrial proteins. The current version of
MitProNet covers 1124 high-confidence proteins, and the remainders were further classified as middle- or low-confidence.
An organelle-specific network of functional linkages among mitochondrial proteins was then generated by integrating
genomic features encoded by a wide range of datasets including genomic context, gene expression profiles, protein-protein
interactions, functional similarity and metabolic pathways. The functional-linkage network should be a valuable resource for
the study of biological functions of mitochondrial proteins and human mitochondrial diseases. Furthermore, we utilized the
network to predict candidate genes for mitochondrial diseases using prioritization algorithms. All proteins, functional
linkages and disease candidate genes in MitProNet were annotated according to the information collected from their
original sources including GO, GEO, OMIM, KEGG, MIPS, HPRD and so on. MitProNet features a user-friendly graphic
visualization interface to present functional analysis of linkage networks. As an up-to-date database and analysis platform,
MitProNet should be particularly helpful in comprehensive studies of complicated biological mechanisms underlying
mitochondrial functions and human mitochondrial diseases. MitProNet is freely accessible at http://bio.scu.edu.cn:8085/
MitProNet.
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Introduction

Almost all eukaryotic organisms possess mitochondria as their

essential cellular components that function as the center of energy

production, metabolism, signaling, apoptosis and cell growth [1].

Mitochondrial dysfunctions are known to be associated with a

broad spectrum of metabolic and age-related diseases in humans,

including diabetes mellitus, several cancer types, cardiovascular

disorders, and neurodegenerative diseases such as Alzheimer’s and

Parkinson’s disease [2–6]. Since these mitochondria-related

diseases are caused by multigenic factors and have complex

clinical phenotypes, they still remain to be poorly understood and

difficult to develop medical therapy. In mammals, it is estimated

that the mitochondrion is composed of about 1500 distinct

proteins, the vast majority of which (above 99%) are nuclear-

encoded except for thirteen polypeptides of the respiratory chain

that are encoded in the mitochondrial genome (mtDNA) [7,8].

In order to understand better the roles mitochondria play in

human health and disease, our priority is to define and

characterize the mitochondrial proteome [9]. In the past few

years, many research communities have made great efforts to

identify mitochondrial proteins using different approaches,

including genetics, proteomics and bioinformatics methods. In

particular, mass spectrometry-based technologies exhibit the

capability of high-throughput proteins identification, and have

been widely utilized to define and characterize the mammalian

mitochondrial proteome, which resulted in the publication of

various proteomics data sets. Meanwhile, many web-accessible

databases, such as MitoP2 [10], MitoProteome [11], MitoMiner

[8], MitoRes [12], MiGenes [13] and MitoCarta [14], were

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e111187

http://bio.scu.edu.cn:8085/MitProNet
http://bio.scu.edu.cn:8085/MitProNet
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0111187&domain=pdf


developed to store the mitochondrial protein data that were

curated manually from the biochemical literatures or collected

from the large-scale proteomic studies. Among these, some

performed the bioinformatics methods to improve the confidence

and the coverage of mitochondrial proteomes [14].

Despite these significant successes in identifying mitochondrial

proteins, the high complexity of the current data sets coupled with

the tissue and development heterogeneity of mitochondrial

proteins [15] are a major challenge to their use in understanding

of the mammalian mitochondrial proteome and discovering

susceptible genes in complex mitochondrial diseases. Firstly, a

lack of common standards hinders us from defining the

comprehensive and accurate mitochondrial proteome. By com-

bining various experimental datasets from the proteomic studies,

an integrative analysis showed that about 7300 proteins were

identified as mitochondrial, which significantly excesses the

estimated size of the mammalian mitochondrial proteome. The

large number of proteins reveals the presence of false discovery in

large-scale proteomic studies. This is mainly due to the purified

mitochondria are often contaminated by other non-mitochondrial

organelles such as microsomes and cytoskeletons whose proteins

are falsely identified as mitochondrial [7]. Secondly, with the

rapidly increasing number of newly discovered mitochondrial

proteins, a critical task beyond protein identification is to annotate

cellular functions for newly-identified mitochondrial proteins and

to associate their functional roles with human mitochondrial

disorders. The investigation [14] on MitoCarta which may

represent the largest comprehensive compendium of mammalian

mitochondrial proteins to date indicated that about a quarter of

proteins in the inventory were not annotated to a biological

process in terms of Gene Ontology (GO) annotation [16]. If we

expand to the whole mitochondrial proteome, a greater number of

mitochondrial proteins will remain to be uncharacterized.

With the increase in the availability of genomic and proteomic

data, computational approaches have been proposed for inferring

the biological function of mitochondrial proteins, prioritizing and

predicting candidate genes susceptible to mitochondrial disorders.

Many computational approaches follow the idea termed ‘guilt-by-

association’ that the function of one protein could be transferred

from another protein with known function relying on their

biological relationship [17]. The large-scale genomic and proteo-

mic datasets allow us to measure quantitatively the biological

relationship between two genes, including gene expression

profiling, protein-protein interactions, phylogenetic profiling, and

synthetic genetic analysis and so on. For example, using

phylogenetic profiling analysis across hundreds of species,

Pagliarini et al. identified 19 novel factors that are involved in

the assembly of complex I of the mitochondrial respiratory chain

[14]. More recently, the biological relationships among a set of

genes/proteins can be represented as a network such as gene co-

expression network, transcription regulation network and protein

interaction network, which provides us a global perspective of

understanding mitochondrial biology and disease at a systems level

[18–20]. Nevertheless, most of those studies on mitochondria used

only individual data source or data type, which led to insufficient

coverage of the mitochondrial proteome and thus potentially

limited their predictive ability.

A reasonable alternative would be to utilize the functional

linkage network (FLN) integrated from heterogeneous datasets

generated from successful efforts on larger scale assembly. The

integration of complementary knowledge from heterogeneous

sources is essential to understand the system as a whole and obtain

well populated networks. Comparing with the networks derived

from individual data type, the FLNs are denser and less biased

towards a kind of particular evidence. Many successes have been

achieved in predicting gene functions and prioritizing disease

genes through utilizing the FLN-based scheme. Although several

FLN databases have been distributed, such as STRING [21],

Reactome [22] and BioGRID [23], there are very few FLN

databases that are designed specifically for mitochondria.

To address the issue of single data set or type, Franke et al. [24]

constructed a functional linkage network (FLN) by integrating

multiple types of genome-wide data, and utilized the FLN for

disease gene prioritization. However, it is speculated that the

performance of this FLN was highly dependent on Gene Ontology

(GO) annotations, and as a result, the predictions tended to be

biased towards well-characterized genes, and thus limit capacity

on inferences. In another study, Linghu et al. [25] integrated

multiple genome-wide features to construct an evidence-weighted

FLN, and used a neighborhood-weighting decision rule for disease

gene prioritization successfully. Nevertheless, while specialized in

mitochondrion, a specific FLN among proteins in this organelle

using a combination of multiple types of data focusing its message

exclusively on functional associations among mitochondrial

proteins, would deliver superior performance. To date, only two

databases specialized for mitochondrial protein interactions are

public available, Mitointeractome [26] and InterMitoBase [27].

Mitointeractome is a representative interaction database for

mitochondria which includes predicted protein-protein interac-

tions (PPIs) based on structural and homologous information.

InterMitoBase contains well-annotated PPIs between mitochon-

drial and mitochondrial/non-mitochondrial proteins integrated

from a wide range of resources. However, the both of databases

cover only PPI information, which is not sufficient for character-

izing functional associations among mitochondrial proteins.

Therefore, it is necessary to construct a database covering the

entire FLN that characterizes the global functional associations

among mitochondrial proteins.

In this study, we performed a machine-learning classifier to

integrate mitochondrial proteins from 23 proteomic datasets for

compiling an inventory of mammalian mitochondrial proteins.

Comparing with other datasets, the list of mitochondrial proteins

comprising 1124 proteins reveals a larger coverage and better

accuracy. A mitochondria-specific FLN was constructed by

integrating 15 heterogeneous genomic and proteomic datasets,

resulting in 32,951 weighted functional linkages among 1072

mitochondrial proteins. Furthermore, the mitochondria-specific

FLN was utilized to identify and prioritize candidate genes for

typical mitochondrial diseases. The results show the inventory of

mitochondrial proteins and the FLN among mitochondrial

proteins should be valuable resources in comprehensive studies

of complicated biological mechanisms underlying mitochondrial

functions and human mitochondrial diseases.

Results and Discussion

General procedure
The overall procedure (Figure 1) included three steps. The first

step was to compile an inventory of mammalian mitochondrial

proteins by means of collection from various proteomic experi-

mental datasets and several publicly-available databases. In the

second step, a FLN among mitochondrial proteins was constructed

through integrating functional features from heterogeneous ‘omic’

data sources. Finally, the FLN was then used to identify and

prioritize candidate genes for mitochondrial diseases.

A Comprehensive Knowledgebase of Mammalian Mitochondria
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Figure 1. A flowchart depicting the work. (A) Step 1: obtaining a mitochondrial proteins inventory utilizing machine learning classification. (B)
Step 2: constructing the FLN by integrating 11 genomic features including protein-protein interaction, domain-domain interaction, shared domains,
genomic context, genetic interaction, phenotypic semantic similarity, co-expression, GO semantic similarity, protein expression profiles, disease
involvement and operon based on the Naı̈ve bayes model. (C) Step 3: ranking the disease candidate genes utilizing the FLN and a network-based
algorithm. The table on the right shows the ranking scores of the top 5 candidate genes for mitochondrial complex I deficiency.
doi:10.1371/journal.pone.0111187.g001
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An inventory of mammalian mitochondrial proteins
Although Pagliarini et al. presented the most comprehensive

mammalian mitochondrial proteome (the MitoCarta database)

with nearly 1100 proteins and estimated that their compendium

covers more than 85% of the mitochondrial proteome [14],

Meisinger et al. speculated that they may underestimate the size of

the mammalian mitochondrial proteome and that the total

number of mammalian genes for mitochondrial proteins could

approach 1500 [28]. Considering the limitation of the databases,

as a first step, we needed to compile an inventory of mammalian

mitochondrial proteins that covers as many proteins as possible in

the organelle. Thus, we made an extensive collection of

mammalian mitochondrial proteins identified experimentally.

Despite various proteomics-scale experiments successfully iden-

tified mitochondrial proteins, a combined experimental datasets

from these proteomic studies showed that about 7300 proteins

were identified as mitochondrial proteins, which significantly

exceeded the estimated size of the mammalian mitochondrial

proteome. The large number of proteins reveals the presence of

false discovery in large-scale proteomic studies. The previous

investigation revealed that there is a high conservation among

mammalian mitochondrial proteomes [8], hence it is a comple-

ment to compile a comprehensive inventory of mitochondrial

proteins by integrating the proteomic datasets from a wide range

of mammalian mitochondria. Here we collected 23 proteomic

datasets from three model mammals including human (H.
sapiens), mouse (M. musculus) and rat (R. norvegicus) for the

integration (Table 1). To reduce false discovery, moreover, we

performed a machine-learning classifier to integrate mitochondrial

proteins.

We used weka, a software that collecting a set of machine

learning algorithms for data mining tasks [51], to integrate

mitochondrial proteomic datasets. As a first step of machine

learning, a gold standard positive (GSP) set and gold standard

negative (GSN) set were constructed. Based on the test set, various

machine-learning classifiers including AdaBoostM1, Id3, J48,

Logistic, MultiClassClassifier, MultilayerPerceptron, NaiveBayes

and RandomForest were trained. We assessed the prediction

performance by 10-fold cross-validation, showing that the

AdaBoostM1 classifier [52] achieved the best, prediction with a

high sensitivity of 0.93 (Table S1). The AdaBoost classifier was

then applied to identify mitochondrial proteins form 23 proteomic

datasets, which resulted in 1109 proteins as positives, 550 of which

were the known mitochondrial proteins in the GSP set. There

were 15 proteins defined in the GSP were falsely classified as non-

mitochondrial proteins. To achieve a comprehensive database of

mitochondrial proteins, the high-confidence list was curated

manually to include these proteins. As a result, we created an

inventory of high-confidence mammalian mitochondrial proteins

that includes 1124 mitochondrial proteins (Table S2), which

consists of 1109 proteins predicted by the AdaBoostM1 classifier as

well as 15 missing proteins from the GSP set. In order to utilize

sufficiently the proteomic resources, we further classified the

remaining about 6100 proteins as middle-confidence or low-

confidence using a simple voting policy. The voting policy was

described as follows: a protein was classified as middle-confidence

Table 1. Integrated mitochondrial proteomic datasets for an inventory of mammalian mitochondrial proteins.

Datasets Species Number of Proteins Tissue/organ/cell Method

Calvo S et al. [29] H. sapiens 1048 Prediction

Taylor SW et al. [30] H. sapiens 600 Heart MS

Rezaul K et al. [31] H. sapiens 656 T leukemia cells MS

Xie J et al. [32] H. sapiens 180 Immortalized lymphoblastoid cell lines 2-GE

Ozawa T et al. [33] M. musculus 48 Cell line BNL1ME (liver) GFP

Mootha VK et al. [34] M. musculus 462 Brain, heart, kidney, and liver MS

Jin J et al. [35] M. musculus 781 Dopaminergic cells MS

Kislinger T et al. [36] M. musculus 1872 Brain, heart, kidney, liver, lung, and placenta MS

Da Cruz S et al. [37] M. musculus 97 Liver MS

Johnson DT et al. [15] R. norvegicus 292 Brain, liver, heart, and kidney MS

Forner F et al. [38] R. norvegicus 503 Muscle, heart, and liver MS

Reifschneider NH et al. [39] R. norvegicus 110 Kidney, Liver, Heart, Skeletal Muscle and Brain BN

Palmfeldt J et al. [40] H. sapiens 2591 Skin fibroblast MS

Lefort N et al. [41] H. sapiens 892 Skeletal muscle MS

Bousette N et al. [42] M. musculus 2087 Heart MS

Fang X et al. [43] M. musculus 2165 Brain MS

Zhang J et al. [44] M. musculus 916 Heart MS

Deng WJ et al. [45] R. norvegicus 624 Liver MS

Wu L et al. [46] H. sapiens 1149 T leukemia cells MS

Catherman AD et al. [47] H.sapiens 1326 H1299 cells MS

Hansen J et al. [48] H.sapiens 2138 human lymphoblastoid cells MS

Chappell NP et al. [49] H.sapiens 1523 Epithelial ovarian cancer cell MS

Chen X et al. [50] R. norvegicus 1215 rat INS-1 cells MS

MS, mass spectrometry. 2-GE, two-dimensional gel electrophoretic. GFP, green fluorescent protein. BN, blue-native.
doi:10.1371/journal.pone.0111187.t001
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if it is included in MitoP2 or MitoCarta dataset, or was identified

from more than five proteomic experiments, while the remaining

were low-confidence. The high-confidence mitochondrial proteins

were strongly supported by the 23 datasets, which may represent

the most common proteins in mitochondria. Some other proteins

however may intermittently bind to the surface of mitochondria,

making it hard to discover by mass spectrometry, thus may fall into

the middle-confidence or even low-confidence category. Never-

theless, by integrating sufficient datasets from various experimental

conditions, the risk for the latter case will drop a lot. Considering

the fact that some proteins may expressed under certain

circumstances or special tissues, the information for tissue/organ

origin of a protein was retained for researchers’ judgments on our

web pages. The 1124 high-confidence proteins as well as the 1159

middle-confidence proteins together made up the MitoCom

dataset.

To evaluate the quality of MitoCom, a comparison between

MitoCom (high-confidence proteins) and two mitochondrial

databases, MitoPred [53] and MitoCarta, was carried out by

using the MitoP2 dataset as the reference set. As shown in table 2,

the high-confidence proteins in MitoCom showed considerable

overlap with MitoPred and MitoCarta, meanwhile it retained a

wider coverage, greater sensitivity and lower false discovery rate,

which can reduce the ‘‘noise’’ in high-throughput mammalian

mitochondrial protein identification effectively. The venn diagram

(figure 2) between these three datasets and the middle-confidence

proteins showed that the high-confidence proteins had about 74%

overlap with MitoCarta and MitoPred, while keeping 288 proteins

that identified uniquely by this work. The high-confidence proteins

in MitoCom extended the mitochondrial proteome while the

middle-confidence proteins can be a clue for a more complete

mitochondrial proteome. Thus, our inventory of mammalian

mitochondrial proteins would be more comprehensive and

accurate in comparison to other databases, which enables it to

be a powerful tool for mitochondrial proteome studies.

Functional linkages among mitochondrial proteins
With the rapidly increasing number of discovered mitochon-

drial proteins, a critical task beyond protein identification is to

annotate cellular functions for newly-identified mitochondrial

proteins and to associate their functional roles with human

mitochondrial disorders. We have pursued these goals by

integrating genomic features from heterogeneous data sources to

build quantitative functional links among mitochondrial proteins.

Since a single data source usually reflects only one type of

functional association between proteins (genes), and its coverage is

relatively limited, functional associations from multiple data

sources should be jointed to achieve larger coverage and better

accuracy.

In the previous step, we have built an inventory of 1124

mammalian mitochondrial proteins. This yielded 631688 potential

mitochondrial protein-protein functional linkages. To validate

these protein pairs, we systematically combined 11 genomic

features about 15 datasets (Table 3) using machine learning

algorithm.

The integrated features were shown as follows:

N Protein-protein interaction (PPI). Protein-protein inter-

actions are fundamental to all biological processes. The

interacting proteins should have closely functional association.

N Domain-domain interactions. Proteins perform their

biological functions often through domains as units. Thus

two proteins may have similar function if they contain domains

with capability of interacting.

N Shared domains. As well known, domain is the functional

unit in protein. Hence, proteins possess the same set of

domains should have similar function.

N Genomic context. Genomic context including phylogenetic

profiles and Rosetta Stone can be powerful evidence for

functional linkages between genes. Gene pair that has similar

phylogenetic profile or appears in a gene fusion event tends to

be functionally associated [69,70].

N GO Semantic Similarity. Gene ontology defines a gene

function with a hierarchical structure in three dimensions

including cellular component, molecular function and biolog-

ical process. Two genes with terms that share the same parent

far from root should be functional associated [24]. Thus, the

GO semantic similarity can be used to measure function

association between genes.

N Genetic interaction. Genetic interactions, such as synthetic

lethal and synthetic growth, infer those involved genes have

strong correlation. These correlations are also evidences of

functional associations.

N Phenotypic semantic similarity. Genes leading to similar

phenotypes should have functional linkages, as similar

phenotypes may need similar substances or involve similar

processes.

N Gene co-expression. Genes encoding proteins that are

involved in the same process are expected to be simultaneously

expressed in time and space [71]. Therefore, genes with similar

expression patterns should have related function. To profile

gene expression, four microarray datasets were selected.

GSE1133 and GSE4726 interrogate the expression of the vast

majority of protein-encoding human and mouse gene that can

give us a global view on gene expression profile at the genome

scale, while GSE4330 and GSE6210 studied the influence of

mutant in PGC1a and PGC1b, both of which are transcrip-

tional coactivator that potently stimulates mitochondrial

biogenesis and respiration of cells, focusing on mitochondri-

al-specific genes.

N Proteomic profiles. Similar to gene co-expression profile,

proteomic profile may lead to better understanding of

mitochondrial feature at protein level. Thomas Kislinger et

Table 2. Quality comparison of MitoCom with other mitochondrial databases.

Database Number Sensitivity False discovery rate

MitoCom* 1109 97.34% 11.30%

MitoCarta 1013 86.10% 13.70%

MitoPred 910 50.10% 14.80%

*Just the high-confidence proteins.
doi:10.1371/journal.pone.0111187.t002
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al [36] examined the protein content of four organellar

compartments in six mouse organs, which could be a valuable

resource. We extracted the mitochondrial-specific proteomic

profile from this dataset.

N Diseases involvement. Genes annotated in the same

disease tend to have functional associations.

N Operon. Based on the endosymbiotic theory, mitochondrion

may evolve from an ancestor of Rickettsia prowazekii, which

shares a lot of homological genes with mitochondrial genome

[72]. As a functional unit, operon contains a series of genes

that involved in same biological process. Therefore, mito-

chondrial genes whose homologies appear in the same operon

in Rickettsia prowazekii should be an evidence for functional

associations.

To implement the machine learning algorithm, a GSP and a

GSN were first constructed (see materials and methods). Based on

the well-defined GSP and GSN, we investigated the coverage of

each genomic feature, revealing that several datasets had very low

coverage (,20%). Only five datasets including GO semantic

similarity, gene co-expression, proteomics profiles and phenotypic

semantic similarity covered over 20% on the GSP and GSN

(Table S3). For integrating these datasets, we used a naı̈ve Bayes

classifier [73,74] owing to its two advantages. First, it can integrate

heterogeneous kinds of evidence and tolerate missing data among

them. Second, it is simple but highly efficient to tackle data in a

large scale with short time consumption.

As a prerequisite for using naı̈ve Bayes classifier, all the datasets

should be conditionally independent. We assessed the statistical

independence between each pair of datasets with coverage more

than 20% by calculating the PCC. As shown in Table S4, these

datasets are relatively independent with the maximum PCC is only

0.217. Following the naı̈ve Bayes theorem, a likelihood ratio (LR)

corresponding to a specific biological evidence could be used to

measure the predictive power or confidence degree. Thus we

measured the power of individual datasets to infer functional

linkages by using the naı̈ve Bayes model. Each dataset was divided

into several bins, and then the LR for each bin was calculated

according to the GSP and the GSN. As shown in Figure S1, all the

15 datasets were clearly correlated with LRs and all the datasets

had one or more bins with LR.1, which suggested that the 15

datasets can be used to infer functional linkages between genes.

To evaluate the performances of individual dataset model and

integrated model, we carried out five-fold cross-validation and

drew the receiver operating characteristic (ROC) curve (Fig-

ure 3A). The figure showed that the integrated model had the

largest area under ROC curves (AUC), demonstrating the

superiority of data integration. The results also suggested that
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Figure 2. Venn diagram of the four datasets: MitoCom (high-confidence), MitoCom (middle-confidence), MitoCarta and MitoPred.
doi:10.1371/journal.pone.0111187.g002
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Table 3. Functional features for mammalian mitochondrial FLN construction.

Functional features Data sets Description Scale Data source

Protein-protein interaction Protein-protein
interaction.

Genome-scale HPRD [54], I2d [55]

Domain-domain interaction Protein pairs have
interacting protein
domains.

Genome-scale 3did [56]

Shared domains Proteins pairs sharing
same protein domains.

Genome-scale Interpro [57]

Genomic context Rosetta Stone Gene fusion events. Genome-scale Prolinks [58]

Phylogenetic profiles Phylogenetic Profiles [59]
of 1086 genes among 600
species.(Table S6)

Genome-scale NCBI, KEGG [60]

Genetic interaction Mutations in two genes
produce a phenotype that
is greatly different from
each mutation’s
individual effects.

Genome-scale Saccharomyces Genome Database
[61]

Phenotypic semantic similarity Sementic simlilarity of
mouse phenotypic
terms.

Genome-scale Mammalian Phenotype Browser
[62]

Co-expression GSE1133 [63] Gene expression profile of
the vast majority of
protein-encoding human
and mouse genes in
79
human and 61 mouse
tissues.

Genome-scale GEO [64]

GSE4726 [65] A quantitative and
comprehensive atlas of
gene expression in mouse
development.

Genome-scale GEO

GSE4330 [29] Microarray time-course of
mouse myotubes
transduced
with the
transcriptional
co-activator
PGC-1a, which
is known to
induce
mitochondrial biogenesis
in muscle cells.

Mitochondria-specific GEO

GSE6210 [66] Gene expression
profile in liver
tissue and
quadriceps
muscle in mice between
control and the PCG-1b
mutant, a transcriptional
coactivator that
potently stimulates
mitochondrial
biogenesis and
respiration of cells.

Mitochondria-specific GEO

GO semantic similarity GO Sementic
similarity
of genes
sharing the
same biological
process terms

Genome-scale The Gene
Ontology [16]

Protein expression profiles Mitochondrial
protein
profiles of protein-
coding genes in
heart,
brain, liver, kidney
and lung.

Mitochondria-
specific

Results of Thomas
Kislinger et al [36]
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individual data models have limited capability to correctly identify

functional linkages between genes. Most of individual dataset

models including gene co-expression model and proteomic profile

model have similar performances with an AUC around 0.6, much

lower than the integrated model. The rest datasets except for the

GO semantic similarity model showed no difference to the

reference line, indicating their inefficiency. A clear exception was

GO semantic similarity model, which had an AUC of 0.772, a

little lower than the integrated data. The GSP and GSN were

derived from prior knowledge, which will introduce in bias when

estimating the GO semantic similarity model that was also derived

from prior knowledge. If we use this model to predict novel

function linkage, the prediction ability is limited. Therefore, we

can conclude that data integrating approach is the best when try to

predict novel functional linkages.

Furthermore, we classified the 15 datasets as genomic-scale and

mitochondria-specific according to dataset source and data scale.

A dataset was considered as mitochondria-specific if the dataset

was generated from an experiment was aimed at mitochondrial

study, like GSE4330, GSE6210 and proteomic profile, If a dataset

contains information only derived from the mitochondrial

proteome, such as diseases involvement, operon and GO semantic

similarity, it was also considered as mitochondria-specific. As

shown in Figure 3B, the integrated mitochondria-specific model

had a larger AUC than the integrated genome-scale model, which

indicated that the mitochondria-specific dataset was more

powerful to construct FLN.

After data integration, each protein pair has been attached a LR

score. A cutoff of LR was determined afterward, which

representing as an indicator of whether a protein pair is functional

associated (that is, yes if the composite LR is above the LR cutoff,

no if not). We used the ratio of true positive (TP) to false positive

(FP) to measure the prediction accuracy, and plotted the TP/FP

ratio as a function of LR cutoff (Figure 4). We found that there is

an apparent positive correlation between the TP/FP ratio and LR

cutoff, but the sensitivity decreases monotonically and the FLN

scale shrinks simultaneously with the increase of LR cutoff. A

composite LR cutoff of 2.5 was selected where the TP/FP ratio

was 1, which means that we can achieve 50% prediction accuracy

at this resolution. Based on this LR cutoff, the resulting FLN is

Table 3. Cont.

Functional features Data sets Description Scale Data source

Disease involvement A pair of
genes that
annotated in the
same
disease.

Mitochondria-
specific

OMIM [67]

Operon Operon data of
Rickettsia
prowazekii.

Mitochondria-
specific

Database of prOkaryotic OpeRons
[68]

doi:10.1371/journal.pone.0111187.t003

Figure 3. ROC curves for evaluating the performances of various data sources using cross-validations. (A) ROC curves and AUC of
individual dataset and integrated dataset. The data sources are highlighted in different colors. (B) ROC curves and AUC of mitochondrial-specific
(green) and genome-scale (blue) datasets. ID: Integrated datasets; ProP: Protein expression profiles; DDI: Domain-Domian Interaction; GI: Genetic
Interaction; DI: Disease Involvement; PSS: Phenotypic Semantic Similarity; PheP: Phylogenetic Profiles; RS: Rosetta Stone; PPI: Protein-Protein
Interaction; SD: Shared Domains; GOSS: GO Semantic Similarity; IGD: Integrated Genomic-scale Datasets; IMG: Integrated Mitochondrial-specific
Datasets; ROC: receiver operating characteristic; AUC: area under ROC curves.
doi:10.1371/journal.pone.0111187.g003
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comprised of 1072 proteins (covering approximately 71% of the

mitochondrial proteome) and 32951 weighted functional linkages

(Table 4), the average number of functional linked neighbors per

protein is 61. The mitochondria-specific FLN owns such high

coverage and linkage density, which is essential to the successful

utilization of the FLN for disease gene prediction and prioritiza-

tion.

Disease candidate gene prioritization
With the FLN, we aimed at using the information to prioritize

candidates for mitochondrial diseases. The utility of FLN for

disease candidates prioritization based on the assumption that

genes underlying the same or related diseases tend to be

functionally related [69]. Based on this assumption, FLNs have

been successfully used to identify novel disease genes in recent

studies [74–76]. Meanwhile, many network-based methods have

been developed to prioritize candidates, for example, random

walk, neighborhood-based and diffusion kernel methods. These

methods mostly locate the known disease genes in network as

‘‘seeds’’ first, and then score the associated neighborhoods of these

seeds by specific algorithm, and finally candidates are prioritized

based on the scores of candidates.

In this work, four network-based methods were chosen for

disease candidate prioritization. The average adjacency ranking

(AAR) rule has been successfully used by Guan Y et al. to predict

novel pathway components [74]. PageRank with Priors (PRP), K-

step Markov (KSM) and Heat Kernel Diffusion Ranking (HKDR)

methods were also used to prioritize disease candidates based on

PPI networks [75]. Goncalves et al analyzed the performance of

the four methods, indicating their applicability in prioritizing

disease candidates [76].

Despite the impacts of ranking approaches, FLN should

outperform the single source networks for the reason that multiple

evidence increases coverage/density and reduces bias toward

individual sources [76]. We evaluated the effectiveness of the four

ranking algorithms utilizing the FLN and two single source

networks including PPI network and co-expression network to

prioritize candidates, both of which were derived from single data

source. Furthermore, because the ranking algorithms are also

susceptible to the network scale and density, the FLN was

expanded into a scale-larger network named the FLNhm by

including the middle-confidence mitochondrial genes and their

functional linkages (the LR cutoff wasn’t used). We downloaded

the disease data from the OMIM database, and extracted those

that have at least two OMIM-annotated disease genes present in

the networks for identifying disease candidates. Owing to the scale

difference, different sets of mitochondrial diseases and disease

genes were analyzed when utilizing the four networks respectively.

Using known disease-associated genes as ‘‘seeds’’, Leave-one-out

cross-validation tests were conducted. ROC curves were plotted to

visualize the performance with AUC values as quantitative

measures.

For the reason that algorithms performance differently with the

parameter set and the scale of network different, different test

parameter sets were empirically selected to decide the best

algorithm and its optimal parameter set for each network. (see

materials and methods).We decided the optimal parameters of the

algorithms on each network based on the AUC (Table S5).

Figure 5 showed ROC curves of the four algorithms with optimal

parameters on the four networks. The HKDR, PRP and KSM

algorithms outperformed neighborhood algorithm AAR, which

indicated that the three algorithms utilizing the whole topology

information were superior to algorithms utilizing local topology

information. It may be the result of that the algorithms that utilize

the whole topology can compensate for missing links by exploiting

higher order neighborhoods and path redundancies [76]. HKDR

and PRP algorithms performed best respectively on the FLN and

the FLNhm. KSM had a poor performance compared with PRP

and HKDR on FLN and FLNhm, but outperformed the two

algorithms on the PPI network and the co-expression network,

suggest that KSM algorithm was better in compensating for

missing links than HKDR and PRP algorithm when being utilized

in single source networks.

Furthermore, we also observed that the performances of the

four algorithms dropped orderly and significantly in FLN,

FLNhm, PPI network and co-expression network. As a single

source network, the PPI network and co-expression network were

supported to be less informative with limited coverage and large

number of false positive linkages. Therefore, PPI network and co-

expression network performed worse than FLN and FLNhm as

expected. The FLNhm, which was denser and with bigger

coverage than FLN, but performed worse than FLN, indicated

that topology also play an important role in the performance of

network. Being the best performance of cross-validation, HKDR

algorithm with its optimal parameter (n = 3) on the FLN were

chosen to rank candidates of mitochondrial diseases.

Mitochondrial complex I deficiency: a case study
Mitochondrial complex I deficiency, the most common cause of

mitochondrial disorders (accounts for ,30% cases of respiratory

Table 4. Descriptions and parameters of four networks.

Description

Number
of
Nodes

Number
of
Edges

Average
number of
neighbors Density

FLN FLN among the proteins
with high confidence

1072 32951 61.476 0.057

FLNhm FLN among the proteins
with high or middle confidence

1992 1983036 1991.000 1

PPI network Protein-protein interactions
network derived from HPRD
and I2D

1322 9049 12.850 0.01

Co-expression
network

Co-expression network
derived from microarray
experiment GSE1133

1684 1417186 1683.000 1

doi:10.1371/journal.pone.0111187.t004
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chain deficiency in humans) [77], causes a wide range of clinical

disorders, ranging from lethal neonatal disease to adult-onset

neurodegenerative disorders. Phenotypes include macrocephaly

with progressive leukodystrophy, nonspecific encephalopathy,

hypertrophic cardiomyopathy, myopathy, liver disease, Leigh

syndrome, Leber hereditary optic neuropathy, and some forms of

Parkinson disease. It shows extreme genetic heterogeneity. Up to

now, mutations in 17 genes encoding mitochondrial complex I

subunits have been described in the OMIM database. However,

these 17 genes account for disease in only a minority of

mitochondrial complex I patients. Since mitochondrial complex

I has at least 45 subunits [78,79], mutations in any of the other

approximately 30 supernumerary subunit genes could potentially

cause mitochondrial complex I deficiency, even mutations in other

genes functionally associated with mitochondrial complex I

subunits are also possible causes. Here, heat diffusion was applied

to rank and screen promising candidates of mitochondrial complex

I deficiency based on linkage with known disease genes, then we

assessed the ability of prioritization to identify unknown causes.

Fifteen of these disease causing genes are present in our function

linkage network. The importance of each gene in the function

linkage network relative to mitochondrial complex I deficiency was

ranked using these 15 genes as seeds. We investigated the top 15

candidates (Table 5), almost all of which could be associated with

mechanisms of mitochondrial complex I deficiency (Figure 6). In

the top three, the NADH dehydrogenase 1 beta subcomplex, 8,
19 kDa (NDUFB8) is known to encode a subunit of mitochondrial

complex I [79,80]. Haack et al. found mutations in NDUFB8
result in decreased activity and amount of mitochondrial complex

I [81]. And the cytochrome c oxidase subunit Vb (COX5B), known

to cooperate with mitochondrial complex I in respiratory electron

transport chain, is a terminal enzyme of the mitochondrial

respiratory chain [82]. Electron-transfer-flavoprotein, alpha poly-
peptide (ETFA), in the third place, shuttles electrons between

primary flavoprotein dehydrogenases and the membrane-bound

electron transfer flavoprotein ubiquinone oxidoreductase [83].

Mutations in ETFA are causative for multiple acyl-CoA dehydro-

genase deficiency, and result in decreased activity of mitochondrial

complexes I [84,85]. It is worth noting that the NADH
dehydrogenase Fe-S protein 3, 30 kDa (NDUFS3), ranked 4th,

encodes one of the iron-sulfur protein components of mitochon-

drial NADH: ubiquinone oxidoreductase (complex I) [79,80].

Benit et al. found mutations in NDUFS3 related to isolated

mitochondrial complex I deficiency by using a combination of

denaturing high performance liquid chromatography and se-

quence analysis [86]. Haack et al. also reported pathogenic

mutations in NDUFS3 caused isolated mitochondrial complex I

deficiency by combining unbiased exome analysis, sequential filter,

and functional investigation [81]. The NADH dehydrogenase 1
beta subcomplex, 7, 18 kDa (NDUFB7), ranked 14th, encodes a

subunit of mitochondrial complex I [79], Triepels et al. found

pathogenic mutations in NDUFB7 in the patients of mitochon-

drial complex I deficiency [87].

Despite continued progress in our understanding of the

molecular basis of mitochondrial complex I deficiency, the genetic

defect remains elusive in many cases. With the application of the

function linkage network, potential pathogenic causes could be

ranked and prioritized. Furthermore, top ranked candidates could

guide the design of new disease-genes association studies and offer

clues for new treatment strategies.

Database and web server
We constructed a database named MitoProNet for storing our

results including mammalian mitochondrial proteins, the FLN and

human disease information. MitoProNet is an object-relational

database implemented by mysql accessible via a user-friendly web

interface written in JSP.

The main contents of MitProNet are demonstrated in Figure 7

including proteome section, disease section and FLN among

proteins or genes, which could be accessed by browsing or

Figure 4. TP/FP ratios vs. LR cutoff, and corresponding sensitivity. TP: True Positive; FP: False Positive. Sensitivity = TP/(TP+FN).
doi:10.1371/journal.pone.0111187.g004
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searching in MitProNet. Users can browse proteome data and

disease data by clicking the proteome interface and the disease

interface. The proteome interface provides comprehensive data of

mammalian mitochondrial proteins that were identified experi-

mentally. Results could be displayed orderly according to

experiment, confidence level or organisms. The disease interface

provides comprehensive information about typical mitochondrial

diseases, including description, known disease genes, top ranking

disease candidates ranked in our study, as well as functional

linkages network among these genes. Users can also click the name

of a protein of interest, the results include description of the

protein and its annotation information will be displayed via

HTML pages. Moreover, a local functional linkages network can

be visualized online as a scalable vector graphics (SVG) file, which

provides the means for a fast visual evaluation of the protein’s

functional association with other proteins. The search interface

also allows users to source the proteins or diseases of interest

conveniently by using a variety of keywords include gene IDs, gene

symbols, protein IDs and OMIM IDs. And Figure 8 showed a case

of browsing and searching in MitProNet. All these data presented

in MitProNet can be downloaded freely through our download

interface.

Figure 5. ROC curves for evaluating the performances of four networks on disease-gene prioritization. (A) The ROC curve for FLN. (B)
The ROC curve for FLNhm. (C) The ROC curve for PPI network. (D) The ROC curve for co-expression network. AAR: Average Adjacency Ranking; PRP:
PageRank with Priors; KSM: K-Step Markov; HKDR: Heat Kernel Diffusion Ranking; FLN: Functional Linkage Network among high-confidence
mitochondrial proteins; FLNhm: Functional Linkage Network among high-confidence and middle-confidence mitochondrial proteins; PPIN: Protein-
Protein Interaction Network; CEN: Co-Expression Network.
doi:10.1371/journal.pone.0111187.g005

A Comprehensive Knowledgebase of Mammalian Mitochondria

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e111187



Conclusions

In our work, we carried out a comprehensive mammalian

mitochondrial proteomic study through a three-step approach. We

compiled an extensive inventory of mammalian mitochondrial

proteins by combining 23 genomic-scale datasets. Our inventory

showed considerable overlap with MitoPred and MotoCarta, the

two best existing mitochondrial databases, but held greater

sensitivity and lower false discovery rate. The high-confidence

proteins along with the middle-confidence proteins provide a

narrowed scope of candidates for mitochondrial proteins with

relatively high possibility. We also constructed a comprehensive

and high quality weighted FLN among mitochondrial proteins

through integrating 15 heterogeneous functional features. With

the comprehensive features integrated, the FLN is less biased

towards single evidence and can be more accurate and with higher

coverage. The high coverage and linkage density is essential to the

successful utilization of the FLN for disease gene prediction and

prioritization. Thus the FLN we presented can provide valuable

resource for researches on mammalian mitochondrial proteomics.

One important utility of the FLN is for mitochondrial disease

genes predicting and prioritizing. The top-ranking candidates for

the mitochondrial diseases reported in this work represent the

highly possible risk genes for the specific disease, which provide a

narrowed spectrum of suspects for these important human diseases

and will promote the disease-genes association studies and offer

clues for new treatment strategies. Moreover, with the identifica-

tion of new disease genes, these results can be further integrated

into our framework for better disease gene predictions. Further-

more, a web-based database MitProNet was also implemented.

Researchers can easily locate a gene of interest and analyze those

tightly associated genes. The visualization of local FLN around the

gene can be a rapid and convenient approach to inspect the

relationship of those associated genes. The disease related network

present an overall landscape of the relationship of known and

candidate genes. The complete set of mitochondrial genes and

FLN are also provided. Thus the FLN and the disease candidates

implemented in MitoProNet would facilitate the researches in

mitochondria and diseases related to this important organelle.

Table 5. The 30 top-ranking genes for mitochondrial complex I deficiency.

Ranking Score GeneID Symbol Description

1 0.802272 4723 NDUFV1 NADH dehydrogenase flavoprotein 1, 51 kDa

2 0.697647 51103 NDUFAF1 NADH dehydrogenase 1 alpha subcomplex, assembly factor 1

3 0.691345 4694 NDUFA1 NADH dehydrogenase 1 alpha subcomplex, 1, 7.5 kDa

4 0.688717 4726 NDUFS6 NADH dehydrogenase Fe-S protein 6, 13 kDa

5 0.686216 4719 NDUFS1 NADH dehydrogenase Fe-S protein 1, 75 kDa

6 0.685317 4720 NDUFS2 NADH dehydrogenase Fe-S protein 2, 49 kDa

7 0.68423 4709 NDUFB3 NADH dehydrogenase 1 beta subcomplex, 3, 12 kDa

8 0.681527 4729 NDUFV2 NADH dehydrogenase flavoprotein 2, 24 kDa

9 0.676788 4724 NDUFS4 NADH dehydrogenase Fe-S protein 4, 18 kDa

10 0.65894 79133 C20orf7 chromosome 20 open reading frame 7

11 0.656693 126328 NDUFA11 NADH dehydrogenase 1 alpha subcomplex, 11, 14.7 kDa

12 0.656337 91942 NDUFAF2 NADH dehydrogenase 1 alpha subcomplex, assembly factor 2

13 0.656292 55572 FOXRED1 FAD-dependent oxidoreductase domain containing 1

14 0.656166 25915 NDUFAF3 NADH dehydrogenase 1 alpha subcomplex, assembly factor 3

15 0.656105 80224 NUBPL nucleotide binding protein-like

16 0.115148 4714 NDUFB8 NADH dehydrogenase 1 beta subcomplex, 8, 19 kDa

17 0.109928 1329 COX5B cytochrome c oxidase subunit Vb

18 0.090152 2108 ETFA electron-transfer-flavoprotein, alpha polypeptide

19 0.087915 4722 NDUFS3 NADH dehydrogenase Fe-S protein 3, 30 kDa

20 0.083753 6390 SDHB succinate dehydrogenase complex, subunit B, iron sulfur (Ip)

21 0.078834 1743 DLST dihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-glutarate complex)

22 0.070645 54205 CYCS cytochrome c, somatic

23 0.068273 509 ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1

24 0.067436 506 ATP5B ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide

25 0.06552 1345 COX6C cytochrome c oxidase subunit VIc

26 0.061017 25828 TXN2 thioredoxin 2

27 0.060686 6391 SDHC succinate dehydrogenase complex, subunit C, integral membrane protein, 15 kDa

28 0.060526 50 ACO2 aconitase 2, mitochondrial

29 0.060351 4713 NDUFB7 NADH dehydrogenase 1 beta subcomplex, 7, 18 kDa

30 0.058394 740 MRPL49 mitochondrial ribosomal protein L49

doi:10.1371/journal.pone.0111187.t005
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Materials and Methods

An inventory of mammalian mitochondrial proteins
To reduce redundancy, the proteins were transformed into

corresponding genes identified unique by Entrez GeneID.

Gold standard sets. The GSP dataset was comprised of

human mitochondrial proteins that were curated from the MitoP2

database [88]. To avoid contamination, we only used proteins

with supports of sublocalization experiments, and excluded those

characterized solely by large-scale proteomic studies. The GSN,

on the other hand, was selected from proteins located in other

cellular compartments according to Gene Ontology (GO) anno-

tations. For those proteins with multiple subcellular locations, we

excluded those with subcellular location in mitochondrial compo-

Figure 6. Prioritization results for mitochondrial complex I deficiency. (A) A hypothetical FLN of mitochondrial complex I deficiency. The
FLN is comprising of known disease genes (highlighted in red) annotated in OMIM and predicted disease genes (highlighted in greed). The
candidates are classified into three levels (high-confidence, middle-confidence and low-confidence) according to their ranking scores. (B) The
functional linkage sub-network among the candidate NDUFS3 that has a top score on ranking algorithm for mitochondrial complex I deficiency.
doi:10.1371/journal.pone.0111187.g006

Figure 7. System architecture and main contents of MitProNet. MitProNet is composed of three sections including mitochondrial protein part
lists, annotations of mitochondrial protein and disease information.
doi:10.1371/journal.pone.0111187.g007
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nents or locations from the GSN. As a result, the GSP dataset

contained 553 proteins, while the GSN dataset consisted of 9950

non-mitochondrial proteins.

Cross validation and evaluation of machine-learning

algorithms. When training the classifiers, the 23 proteomic

experiments datasets were considered as ‘features’. And for each

feature, we assigned a score 1 to each human gene product if the

product exists in the dataset, or 0 otherwise. We used the 10-fold

cross validation to evaluate prediction performance of these

machine-learning classifiers [89]. For each machine-learning

classifier, at first, both the GSP and GSN were randomly

partitioned into ten equal-sized folds. After that, the machine-

learning classifier was trained on nine folds and the remaining one

fold was used as a test set to identify the number of positives and

negatives. This was repeated ten times with a different fold used

for testing each time.

Calculating sensitivity and false discovery

rate. Sensitivity is defined as TP/(TP+FN), where TP is the

number of true positives and FN is the number of false negatives,

respectively, estimated from gold-standard sets. The false discovery

rate (FDR) is the proportion of all predictions that are false;

FDR = FP/(FP+TP), where FP represent the number of false

positives [29].

Construction of mitochondrial FLN through data
integration

To carry out the construction of FLN, each dataset should be

transformed into protein pairs with functional linkage. The

preprocessing is described in supplementary methods (Method

S1) in detail.

Gold standard sets. In this study, we downloaded KEGG

pathway [60] and MIPS complex [90] about mitochondrion. The

GSP were defined as mitochondrial protein pairs sharing the same

KEGG pathway or existing in the same MIPS complex, while the

GSN were defined as mitochondrial protein pairs both annotated

by KEGG pathway or MIPS complex terms but that do not share

any term.

Naı̈ve Bayes for mammalian mitochondrial FLN

construction. According the Bayesian theorem, the prior odds

Figure 8. Web pages in MitProNet. (A) A list page of mitochondrial proteins. The mitochondrial proteins can be listed according to proteomic
datasets, confidence levels and organisms, respectively. (B) The outcome page for the query protein NDUFS7, an annotated disease gene for Leigh
syndrome. The page provides a brief summary of the query protein, subcellular localization evidences and a FLN among the query protein. Moreover,
the query protein is annotated according to the information collected from their original sources including GO, KEGG, MIPS and OMIM. (C) The
prioritization results for Leigh syndrome. The result page includes a brief description for this phenotype, disease genes and a FLN among these genes.
The disease genes are listed dividedly as the known genes and the candidates that are ordered by these ranking scores.
doi:10.1371/journal.pone.0111187.g008
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(Oprior) of finding a gene pair with functional linkage could be

calculated as:

Oprior~
Ppos

Pneg

ð1Þ

where Ppos is the probability that a gene pair functionally relates

within all the possible gene pairs while the Pneg stands for the

probability that a gene pair isn’t functionally related. When

considering the given n evidences (E) that stands for the functional

features, the posterior odds (Oposterior) of a functional linkage gene

pair could be computed as:

Oposterior~
P(positiveDE1,:::,En)

P(negtiveDE1,:::,En)
~Oprior|LR(E1,:::En) ð2Þ

where LR(E1,…,En) is the likelihood ratio of the n evidences(E).

From Equation 1 and Equation 2, the LR could be calculated as:

LR(E1,:::,En)~
P(E1,:::,EnDpos)

P(E1,:::,EnDneg)
ð3Þ

If we assume that the evidences are conditionally independent, the

composite LR can be calculated simply as following:

LR(E1,:::,En)~ P
n

i~1

P(Ei Dpos)

P(Ei Dneg)
ð4Þ

And Equation 4 can also be written as the following:

LR(E1,:::,En)~ P
n

i~1
LR(Ei) ð5Þ

Cross validation and cutoff selection. We employed the

five-fold cross-validation against the golden standard datasets to

evaluate the overall prediction performance under different LR

cutoffs. First, both the GSP and GSN datasets were randomly

partitioned into five equal-sized folds. After that, the naı̈ve

Bayesian classifier was trained on four folds and the remaining

one fold was used as a test set to identify the number of positives

and negatives. This was repeated five times with a different fold

used for testing each time. We used the ratio of true positive to

false positive (TP/FP) and the sensitivity to measure the prediction

accuracy.

Ranking the mitochondrial disease gene
Average Adjacency Ranking. Given a particular mitochon-

drial disease, firstly, m genes were extracted randomly from known

disease-related mitochondrial genes as seed gene set, and the rest

of the genes were treated as unknown ones. Then for every other

gene, we compute the adjacency to the m seeds. This process was

repeated one hundred times with random samplings of the seed

set. Lastly, we calculated the average adjacency with a given

disease for each gene:

Wi~
1

ni

Xni

K~1

Xm

j~1

Wij ð6Þ

where Wi represents the weight of each gene associate with a given

disease and j represents the seed genes, and Wij is the functional

linkage weights connecting gene i and seed gene j. ni is the number

of times gene i was not a member in the seed set and k is the

iteration number.

PageRank with Priors. PRP mimics a random jump

procedure in network, which start with known disease-related

genes and randomly jump to candidate genes. When the system

jump to a candidate gene, system can continue jumping to other

candidate genes or jump back to known disease-related genes and

then restart the procedure. After enough jumping, PRP scores

each candidate gene based on the probability that system jump to

the gene. The iterative stationary probability is:

p(v)
(iz1)

~(1{b)
Xdin(v)

u~1

p(vDu)p
(i)

(u)

( )
zbpv ð7Þ

where pv represents the ‘‘prior bias’’ which means the probability

to start with a particular genes. pv = 1/|R| if v in root node set R

(known disease-related gene set); pv = 0 otherwise. b is empirically

defined on [0, 1], represents a ‘‘back probability’’ which means the

probability to jump back to the root node in each step. din(v) is the

in-degree of v. p(v|u) is the probability of arriving node v from u.

K-step Markov. KSM also mimics a random jump proce-

dure that start with disease-related genes and ends after fixed K

steps. It computes the relative probability that the system will

spend time at any particularnode given that it starts in a set of

roots R and ends after K Steps [91]. K keeps a balance between

distributions of candidate genes ‘biased’ toward known disease-

related genes. With a larger K, system gets a more steady

distribution of candidate genes [75]. The to compute the K-Step

Markov importance is:

I(tDR)~ APRzA
2

PR:::A
k

PR

� �
ð8Þ

Where A is the transition probability matrix of network, pR is an

vector of initial probabilities for the root set R (known disease

genes set), k is the probability transition steps and I(t|R) is the t-th
entry in this sum vector.

Heat Kernel Diffusion Ranking. The Heat Kernel Diffu-

sion Ranking approach ranks the candidate genes by diffusing the

signal of ‘seeds’ to the candidate genes through the network based

on the weighted edges [92]. The network can be represented as a

weighted, simple graph G, where genes are nodes and weighted

linkages are weighted edges. Given a graph G, let A be the

Adjacency matrix where aij = wij and then D can be defined as

D~diag(ai)~
Pn

j~1 aij . The transition probability matrix W of a

random walk on G is defined as W = D21 A. Consider L = I-W.

Given a parameter a, establishing the diffusion rate, and a

preference vector p0, expressing the initial relevance score of each

node, the ranking pa is given by

Pa~P0(Iz
{a

N
L)

N
ð9Þ

where N is the number of iterations.

Evaluation scheme
Leave-one-out cross-validation was conducted to evaluate

performance of four ranking algorithms based on four networks.

Then, based on the sensitivity and 1-specificity, ROC curves were

drawn. In order to find out optimal performance of HKDR, PRW
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and SKM, a set of different parameters were empirically selected:

HKDR with n = 2, 3, 4, 5, 6, 7; PRW with b= 0.01, 0.05, 0.1, 0.2,

0.3, 0.4,0.5,0.6, 0.7,0.8, 0.9,0.95; SKM with K = 2, 3, 4, 5, 6, 7, 8,

9.
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