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THE BIGGER PICTURE How much impact has statistics made on other scientific fields in the era of big
data? This work represents the first effort toward quantifying the external influence of statistical theory
and method research through citation network analysis. We formulate the problem of finding the most rele-
vant statistical research area for any external research topic as a local clustering problem, suggesting new
applied and theoretical grounds for alternative community detection techniques. The results of our analysis
confirm that statistics plays an active and expanding role in serving other disciplines. The data we have
collected are rich in content and structure, lending themselves naturally to future modeling and analysis
from different perspectives.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Statistical methodologies are indispensable in data-driven scientific discoveries. In this paper, we make the
first effort to understand the impact of recent statistical innovations on other scientific fields. By collecting
comprehensive bibliometric data from the Web of Science database for selected statistical journals, we
investigate the citation trends and compositions of citing fields over time, and we find increasing citation di-
versity. Furthermore, in a new setting, we apply a local clustering technique involving personalized PageRank
with graph conductance for size selection to find the most relevant statistical innovation for a given external
topic in other fields. Through a number of case studies, we show that the results from our citation data anal-
ysis align well with our knowledge and intuition about these external topics. Overall, we have found that the
statistical theory andmethods recently invented by the statistics community havemade increasing impact on
other scientific fields.
INTRODUCTION

The past decade has witnessed the success and impact of big

data, whereby numerous areas in science, technology, and in-

dustry have been transformed by an ever-growing amount of

data not only large in size, but also complex and rich in structure.

As the discipline that focuses on the collection, analysis, and

interpretation of data, statistics plays a central role in the data

revolution. Over the years, fundamental concepts and tools

have been developed in statistics to extract useful information

from data.1,2 On the other side, however, concerns have been

expressed about the openness of the statistics community to ad-
This is an open access article under the CC BY-N
dressing unstructured problems and the relevance of statistical

research topics to the intended fields of application.3,4 A central

question in this debate revolves around understanding the out-

ward facing impact of statistics.

In this paper, we consider measuring the impact of theoretical

and methodological research in statistics on other scientific dis-

ciplines in recent decades. One direct way to measure the

impact of academic works in general is through citation data.

In the digital age, comprehensive bibliometric studies have

been made possible by the existence of citation databases

such as Web of Science and Scopus. From these databases,

citations between papers can be extracted, represented as a
Patterns 3, 100532, August 12, 2022 ª 2022 The Authors. 1
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network, and studied using network analysis techniques. These

citation networks have been used to track the movements of

ideas and measure the distance between different scientific

fields.5,6 Rising scientific interdisciplinary knowledge flows

have been documented7–9 and shown to have a positive effect

on the development of specific scientific topics.10 Various mea-

sures of diversity in terms of cross-disciplinary citations have

been proposed to evaluate papers or journals from an interdisci-

plinary aspect.11–14 Many papers15–17 have also analyzed how

the diversity influences the (citation) impact of papers or journals.

However, bibliometric studies focusing on publications in statis-

tics have been relatively limited. Stigler18 and Varin et al.19 used

the Bradley-Terry model to measure the import and export of

knowledge between statistical journals. Ji and Jin20 collected

and analyzed citation and coauthorship networks for papers in

four top statistical journals. In contrast to these papers focusing

on the structure of citation patterns inside statistics, we provide

the first comprehensive study analyzing the connections be-

tween statistics and other fields. Different from the aforemen-

tioned works, which study general interdisciplinary connections,

our work focuses on the influence of statistical publications in the

age of big data. Moreover, as we are primarily interested in eval-

uating how statistical tools have served other scientific fields, the

flow of knowledge we focus on is one directional, i.e., from

statistics to other fields, as reflected by external citations of sta-

tistics papers. We are also interested in analyzing the internal ci-

tations within statistics and comparing the internal and external

impact.

Wecollect citation information for papers published in selected

statistical journals from the Web of Science (WoS) Core Collec-

tion. These published papers are termed ‘‘source papers’’ for

being the sourceof knowledgeexport; our completedataset con-

tains citations between source papers aswell as their citations by

papers (termed ‘‘citing papers’’) in other journals and fields.Using

descriptive statistics, we characterize the trends in citation vol-

umes and compositions of citing fields for the source papers

over time, paying attention to fields external to statistics. We

compare the internal and external citations for highly cited source

papers and identify the corresponding statistical research areas

highly ranked by both criteria. Citation trend analysis of these

areas allows us to associate them with external fields on which

they have made an intellectual impact.

Given a network, one of the most important structural features

is the presence of communities, where subsets of nodes are

more tightly connected with one another than with the rest of

the network. On the citation network for source papers, global

clustering techniques are usually used to partition the nodes

into densely connected communities, as has been done in Ji

and Jin,20 offering an overall view of various research areas

within statistics. However, in this paper, we are more interested

in connecting these communities in statistics with research

topics in other disciplines they have an influence on. That is,

given an external research topic (e.g., COVID-19), we investigate

the most relevant community in statistics, with relevance

measured by the citation data. Thus, in contrast to common

global clustering approaches, we formulate our community

detection problem using a local clustering perspective.

Our local clustering procedure consists of two steps. First,

given a small subset of seed nodes from a community of interest,
2 Patterns 3, 100532, August 12, 2022
all nodes are ranked in terms of their relevance to this target

community using a local clustering algorithm. Many existing

local clustering algorithms are based on seed expansion, which

involves performing random walks starting from the seeds and

ranking the nodes according to their landing probabilities from

the walks, with well-known examples including personalized

PageRank (PPR)21–23 and heat kernels.24,25 More recently, the

theoretical properties of PPR have been studied under genera-

tive network models,26,27 with the latter showing that PPR can

include high-degree nodes outside the community of interest,

while using the adjusted PPR (aPPR) algorithm28 can correct

the bias. The second step of our procedure uses conduc-

tance28–30 to evaluate the quality of the community found along

the sorted list of nodes, cutting it at an appropriate size to reveal

the full community. Conductance measures the fraction of total

edge volume that points outside the cluster, and a smaller

conductance indicates the cluster is more separated from the

rest of the network and more likely to be a community on its

own. Combining aPPR for clustering and conductance for size

selection, and adapting them to our data structure, we provide

an integrative procedure for detecting the most relevant statisti-

cal research community for an external research topic of choice.

We demonstrate its performance using several case studies

from different scientific disciplines, where the results show that

core statistical theory and method developments have stayed

relevant and attuned to problems of high societal and scientific

interest.

The main contributions of our paper include the following. (1)

We provide the first comprehensive study analyzing the recent

impact of statistics publications on other scientific disciplines

and give a positive answer to the debate about the relevance

and outward-facing impact of statistics as a discipline in the

age of big data. (2) We apply a local clustering method utilizing

aPPR and conductance measure to identify the most influential

statistical community for an external topic, which requires

combining internal and external citation information in a sensible

way. The method is fully automated and can be applied to any

external topic of choice, providing a different application for

PPR and related techniques. In contrast, existing applications

of PPR31–33 and various modified versions of the algorithm34–36

to citation networks are focused on analyzing the internal

network of a field and ranking the papers in terms of their internal

impact. (3) Under a commonly used network model, we provide

the first theoretical justification for the combined use of aPPR

and conductance to identify a target community, demonstrating

that our approach is principled and generalizable.

RESULTS

Overview of the citation data
We conducted our study on all the papers published from 1995

to 2018 in five influential statistics journals: Annals of Applied

Statistics (AOAS), Annals of Statistics (AOS), Biometrika, Journal

of the American Statistical Association (JASA), and Journal of the

Royal Statistical Society: Series B (JRSSB; JRSSB used two

publication names during 1995–1997; we included both in our

study). Among our selected journals, AOS, Biometrika, JASA,

and JRSSB are considered by many researchers in the statistics

community as top outlets for theory and method papers. We
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have also included AOAS as a representative journal with a

broad applied focus. A total of 9; 338 papers published in these

journals in the time spanwere considered.We call these publica-

tions ‘‘source papers,’’ since they act as a source of knowledge

for papers citing them. In addition to the citations between the

source papers, 264; 356 papers cited these source papers in

our dataset (collected by December 2020); these papers are

called ‘‘citing papers.’’ Our citation network consists of

273;694 nodes, including all the source and citing papers, and

edges, representing citations between the source papers and

from the citing papers to the source papers.

Citation trends
As shown in Figure 1A, the majority of source papers had fewer

than 500 citations, with 1.92% of the source papers receiving

zero citations. Figure 1B further plots the distribution of the cita-

tion counts for source papers with citations from 0 to 500. We

observe that removing the zero-citation papers would lead to a

power-law distribution of the citation counts. Notably, 0.06%

of the papers (six papers) received more than 5,000 citations.

Looking at the trends over the years, the total number of cita-

tions for each journal grows consistently (Figure S1), and the

growth is not due to the journals expanding their volumes of pub-

lications. In fact, there was no significant increase in the annual

number of publications in each journal (Figure S2), except for

AOAS. AOAS was established in 2007 and subsequently went

through a fast growth period before stabilizing. To account for

the effect of publication numbers, for each year T, we normalized

the annual citation count for each journal by the total number of

published papers from 1995 to T in that journal, since any citing

paper published in year T is free to cite source papers in the

period 1995–T. Figure 2A shows that the normalized citations still

increase consistently over the years for all the journals, among

which JRSSB enjoys substantially more citations per article after

2002. AOAS’s normalized citations have been growing quickly,

as a relatively new journal. Using a different way of normalization,

for each journal, Table S1 computes the average counts of cita-

tions received by the journal’s papers in the first few years of their

publication, and Figure S3 records the change in average cita-

tions in the first 5 years over time. Both show that papers in

JRSSB have more citations.

It is clear that citation counts are not distributed equally across

all the papers, and one possible way to measure citation

inequality is through the Lorenz curves6,20 in Figure 2B. Curves

closer to the bottom right corner indicate greater extent of
inequality. Most journals have highly

similar curves, while JRSSB appears to

have the most significant inequality. This

can be explained by the fact that there

are four papers that each received more

than 5,000 citations, accounting for
49.5% of the total citations in JRSSB in this period. After these

four papers are removed, the normalized citation counts for

JRSSB become much closer to the other journals, but it remain

the highest of all the journals (Figure S4).

Diversity of citing fields over time
We divided the dataset into 83,503 internal and 190,191 external

papers. The internal papers include statistics papers labeled as

‘‘STATS’’ and mathematics papers (excluding STATS papers)

labeled as ‘‘MATH.’’ Also, we classify the external papers into

five broad categories: arts and humanities (‘‘ART’’), life sciences

and biomedicine (‘‘BIO’’), physical sciences (‘‘PHY’’), social sci-

ences (‘‘SOC’’), and technology (‘‘TECH’’). Figure 3A shows the

research area breakdown for all the citations over the years; Fig-

ure S5 plots the proportions of these areas. As expected, in the

earlier years of our period of study, most of the citations are from

within statistics. However, the proportion of external citations

soon begins to increase at a fast pace and finally exceeds half.

Among the external citations, BIO and TECH have heavy

weights. The proportion of external citations also increases

over time for all the journals, with AOAS and JRSSB having larger

proportions than the others.

One way to summarize the distribution of proportions and put

the diversity measure for each journal on the same scale is

through the Gini concentration (Herfindahl) index,18 where we

compute the scaled sum of squared proportions of the internal

category and other external categories. A value close to 100

would indicate that most of the citations come from the internal

category, whereas lower values suggest the journals have more

diverse citation profiles from external categories. Figure 3B plots

the change in the Gini concentration index for each journal over

the years. Overall, the trends agree with the patterns of

increasing diversity in citation proportions at each journal level

(Figures S6 and S7) and at the overall level (Figures 3A and

S5). All the journals have demonstrated increasing connections

with external fields, with AOAS, JASA, and JRSSB showing

more external connections than the others.

Internal and external impact of most highly cited papers
Nowwe turn to examine the internal and external impact of some

specific source papers selected based on their high citation

counts. Do highly cited papers always have high impact, both

internally and externally? To this end, we first ranked the source

papers according to their internal and external citation counts

separately. Focusing on papers in the top 20 list by either internal
Patterns 3, 100532, August 12, 2022 3
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or external counts, Figure 4 shows their respective ranks inter-

nally and externally. One can see that most of these papers are

ranked high under both criteria, except for a few outliers. We

focus on the most obvious two (boxed in red) and provide their

information in Table 1 and further analysis below.

The first paper37 in Table 1 ranks in the top 20 based on the in-

ternal citation counts, but its external rank is relatively lower in

comparison. Since the paper is about distribution theory, we

find, unsurprisingly, that most of the citations come from fields

closely related to statistics. Table S1 provides the top 10 WoS

categories and their number of occurrences among the citations,

with ‘‘Statistics & Probability’’ appearing most often. Also, most

of these categories contain the keyword ‘‘math,’’ which explains

the higher internal rank. The other categories (e.g., ‘‘Computer

Science, Interdisciplinary Applications’’) are still closely related

to statistics or mathematics. Upon removal of the internal pa-

pers, the occurrences of these categories, other than statistics

and mathematics, decrease significantly (Table S3), suggesting

that many of the previous counts are contributed by internal pa-

pers with multiple category labels. Overall, the paper has

reached a larger audience within statistics and mathematics,

most likely due to its technical nature.

The second paper38 in Table 1 demonstrates the opposite

pattern, with a high external rank but a low internal rank. This pa-

per proposes a practical method of evaluating and adjusting for

the possibility of publication bias (e.g., a preference for positive

results), a well-known phenomenon in published academic

research, especially in meta-analysis, which thus has attracted

wide scientific interest. Table S4 lists the top 10 most frequent

WoS categories among all the citations. One can see that the

list is dominated by psychiatry and psychology, while statistics-

or mathematics-related categories are not present. This list re-

mains almost unchanged after removing all the internal papers

from the citations (Table S5). We have additionally searched

for keywords related to publication bias in the title and author

keywords of the internal papers. The search returns only 59 pa-

pers, confirming that the topic is less explored internally and

could be a potential area for further theoretical and methodolog-

ical development in statistics. We note that Figure 4 has another

paper39 with a low internal rank (469) and a high external rank
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(12). The paper has a category profile similar to that of Duval

and Tweedie38 (Table S6), and hence detailed discussion is

omitted.

Table 2 lists all the papers that are ranked in the top 20 both

internally and externally. We classify these papers roughly into

five topics: Markov chain Monte Carlo (MCMC), causal inference

(causal), penalized regression, false discovery rate (FDR), and

Bayesian model selection. To investigate the influence of these

papers on other fields, we considered the aggregated citations

by the five topics and broke down the citations by category la-

bels, similar to Figure 3A. Note that we refined the categories

by adding two category labels, ‘‘BE’’ for the research area busi-

ness and economics and ‘‘CS’’ for the research area computer

science, since we noticed a considerable number of citations

from these two areas, especially for causal inference and penal-

ized regression. Figure 5 (and Figure S8) shows that the influence

on other fields differs by statistical research topic. FDR and

Bayesian model selection have always attracted a substantial

proportion of citations from BIO, even from the earlier years.

MCMC and penalized regression have more citations from CS

than the others. On the other hand, causal inference has the

largest proportion of citations from SOC and BE among the

five topics.

Local clustering reveals the most relevant statistical
research areas for external topics
We applied local clustering to our citation data to find the most

relevant statistical research areas for given external topics. Our

method involves first finding seed papers for a given topic using

citation data, followed by searching for related source papers

using aPPR and community size selection using conductance.

The details and the main algorithm (Algorithm 1) can be found

in the experimental procedures, where we also provide theoret-

ical justifications of the method under a commonly used network

model. We choose three external topics (single-cell transcrip-

tomics, labor economics, and flu) of high general interest, span-

ning biology, economics, and epidemiology. The size of the

community found for each topic is listed in Table 3. We can

see that these subnetworks indeed have significantly denser

connections (and in some cases, higher clustering coefficients)
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than the whole network. The subnetworks and the word clouds

generated from the keywords of the subnetwork papers can be

found in Figure 6. Furthermore, for the topics of labor economics

and flu, we investigated how these influential communities

evolved over time by breaking the study period into five roughly

even windows and applying local clustering to each (Note S2.1).

As single-cell transcriptomics is a relatively recent topic (the

earliest publication in our dataset being from 2013), instead of

temporal changes, we examined the robustness of our results

with respect to the tuning parameters. We discuss these results

in more detail below, interpreting the results with our under-

standing of the topics.

Single-cell transcriptomics
Rapid advances in single-cell sequencing technologies in the

past decade have enabled researchers to profile different as-

pects of an individual cell, in particular, its transcriptome. After

appropriate preprocessing, single-cell transcriptomic data usu-

ally take the form of a large, sparse matrix, with tens of thou-

sands of rows representing genes and columns representing

cells. The sparse, noisy, and heterogeneous nature of such

data has proved a fertile ground for the development of statistical

and computational methods (see, e.g., Kharchenko50 for a re-

view). Inspecting the subnetwork and word cloud in Figure 6A,

perhaps unsurprisingly, we find that a significant fraction of the

papers selected are concerned with multiple testing and con-

nected to the hub node 79.48 As an example, multiple testing is

routinely performed in the analysis of single-cell RNA-

sequencing (scRNA-seq) data for identifying differentially ex-

pressed genes, which involves applying a statistical test to a

large number of genes to determine if their expression levels

are significantly different between two sets of cells. The word

cloud also suggests clustering as another main keyword; in the

subnetwork, clustering is a topic shared by the set of papers

tightly knit around nodes 3551 and 78.52 In the analysis pipeline

of scRNA-seq data, clustering is applied to a dimension-reduced

scRNA-seq matrix to identify distinct subpopulations of cells,

which can correspond to different cell types or states. The

related feature selection and model selection problems are

highly relevant in this context, as they help researchers deter-

mine genes (features) that distinguish these subpopulations
and the total number of subpopulations observed. Finally, in

Tables S7 and S8, we examine the stability of this cluster found

in Figure 6A with respect to the two main tuning parameters in

our method (the threshold parameter in the construction of pref-

erence vector and the teleportation constant, see the experi-

mental procedures). The Jaccard index values are reasonably

close to 1 for most of the parameter ranges, indicating that the

cluster found in Figure 6A is stable.

Labor economics
Labor economics aims to understand the functioning and dy-

namics of the markets for wage labor. Many fundamental ques-

tions in this subject—How does education affect income? How

does health care affect income?—are of a causal nature. Econ-

omists and governments would like to design policies that

might achieve certain economic and social welfare goals based

on causal analysis. Randomized controlled trials (RCTs) are

usually not available for labor economics problems. Therefore,

it makes sense to see that an overwhelming majority of the sta-

tistics papers selected in the subnetwork and word cloud in

Figure 6B are in the realm of causal inference. We note here

that causal inference itself is a rapidly growing interdisciplinary

field spanning statistics, econometrics, psychology, computer

science, and many other disciplines; thus, contributions to its

development do not only come from statistics. Our results

intend to mostly reflect the influence from the statistical

perspective.

Concretely, in the word cloud, the frequently appearing key-

words (minus ‘‘test’’) are all technical terms in causal infer-

ence—‘‘propensity score,’’ ‘‘instrumental variable,’’ ‘‘structure

model,’’ ‘‘matched sampling,’’ ‘‘treatment effect,’’ ‘‘match-

ing,’’ and ‘‘observational study.’’ Notably, node 152 (circled

in red),41 a hub in the subnetwork, links the structural equa-

tions framework in econometrics and the potential outcomes

framework in statistics. The paper provides conditions for a

causal interpretation of the instrumental variable (IV) estimand

and quantifies the bias of violations of the critical

assumptions.

Investigating how themost influential community has changed

over time, Figure S9 reveals that node 152 (circled in red) has at-

tracted wide attention and become the hub of a cluster of causal
Patterns 3, 100532, August 12, 2022 5
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inference papers since 2000. Meanwhile, there are clues that

other statistical papers started influencing labor economics after

2011, forming small disconnected clusters (Figure S9D). For

example, the word cloud (Figure S11) for the cluster around

node 8553 (boxed in blue, Figure S9D) shows that one new contri-

bution was from (social) network analysis. Later, this cluster

formed a connection with the causal inference community

through node 16354 (Figures 6B and S9E), which applied the

causal effect estimation method to social network data. In addi-

tion, we note that many papers appearing in the selected com-

munity (for both the overall period in Figure 6B and the more

recent period in Figure S9E), such as node 3455 and node 36,56

are rather recent. This coincides with the recent surge in the

study of causal inference in the statistical community in the

past few years and offers some evidence that the new develop-

ments quickly penetrate into other research fields.

Flu
The global pandemic of COVID-19 has further ignited wide

research interests in the modeling and prediction of the spread

of an epidemic. We choose flu as an example of epidemics

due to its long history of study and frequent appearance in the

literature of epidemiology. (The results from using COVID-19 as

the topic are presented in Note S2.2, which includes Table S9

and Figures S15 and S16.) Many of the keywords in Figure 6C

are related to stochastic processes and state-space modeling.

The word MCMC appears the most often, being a commonly

used technique for parameter estimation in these epidemic

models. Looking more closely at the subnetwork, many of the

papers focus on refining the susceptible-infectious-recovered

(SIR) model for infectious diseases, including flu and SARS.

Figure 6C has two hub nodes, 14157 and 35.58 Node 141

(circled in red), which is concerned with the parameter estima-

tion problem for different types of observed data, started as a

branch of the MCMC community and became the center of the

inferential community over time (Figure S10). Then in 2011–

2015, another cluster brought insight from dynamic systems

(the most frequent keyword in Figure S12) to the classic SIR

model, as node 35 (boxed in blue) extends the SIR model by

incorporating incubation stage and time dynamics to track the

spread of flu. This innovation started a new front for the studies

of this epidemic and became another center of the most influen-

tial community during 2016–2011 (Figure S10).
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DISCUSSION

In this paper, we studied the citation

network arising from selected statistical

papers in the past two decades, a period

coinciding with the rise of big data and sta-

tistics being perceived as playing increas-

ingly important roles in many scientific

disciplines. Unlike previous studies on sta-

tistics citation networks, we focused on

the connections between statistics and
other disciplines and used citation data to investigate the

external influence of various statistical works.

First performing descriptive analysis, we showed that both the

overall volume of citations and the diversity of citing fields have

been increasing over time for all the journals considered. Even

typical theoretical journals such as AOS have been attracting a

significant proportion of external citations in recent years, which

is quite encouraging. Next by distinguishing between internal

and external citations, we identified research areas in statistics

that have high impact under both criteria. The most highly cited

papers were ranked high both internally and externally. In

contrast, papers with a large number of external citations but

relatively fewer internal citations can point to areas where future

development in relevant theory and methods may be rewarded

by immediate visibility outside statistics. Last, using the tech-

nique of local clustering, we identified the statistical research

communities most relevant to various external topics of interest.

Presenting a number of case studies using external topics of high

general interest, we showed that the communities selected align

well with our intuition and understanding of the topics.

Our study takes the first step toward understanding the influ-

ence of statistical works on other disciplines that use tools and

methods from statistics to aid their discoveries. The data we

have collected can be of independent interest, opening opportu-

nities for further modeling and analysis from different perspec-

tives. We also note that some of the limitations in our current

study can be addressed by expanding the scope of the data.

For example, in analyzing the trend of diversity of citing fields,

it would be ideal to collect information about the number of pub-

lished papers in each citing field and include it as a normalization

factor. The data could also be expanded to includemore journals

and other types of source publications, such as conferences and

books, over a longer period of time to allow for a more compre-

hensive historical view and richer analysis. We leave the collec-

tion and analysis of these more extensive data as future work.

Compared with global clustering, the theoretical properties of

local clustering techniques are less well characterized under

generative network models. We have performed theoretical

analysis of our local clustering method under the degree-cor-

rected stochastic block model (DC-SBM). We note that although

the DC-SBM does not explicitly capture the acyclic structure

typically present in citation networks, it is well known that such

models are locally tree-like in the sparse case. Pursuing a model



Table 1. Papers with significantly different internal and

external ranks

Title and reference number

Rank

(internal)

Rank

(external)

No. of

citations

The multivariate skew-

normal distribution37
20 177 749

A nonparametric ‘‘trim

and fill’’ method of accounting

for publication bias in

meta-analysis38

1; 520 19 1;362

Table 2. Papers whose internal and external citations both rank

in the top 20

Title and reference

number

Area

(statistics)

Rank

(internal)

Rank

(external)

No. of

citations

Reversible jump

Markov chain Monte

Carlo computation

and Bayesian

model determination40

MCMC 8 16 2; 868

Identification of

causal effects using

instrumental variables41

Causal 18 17 2; 125

Least angle regression42 Penalized

regression

7 8 4; 252

The control of the

false discovery rate

in multiple testing

under dependency43

FDR 12 6 5; 062

Model selection and

estimation in

regression with

grouped variables44

Penalized

regression

9 14 2; 935

Regularization and

variable selection via

the elastic net45

Penalized

regression

5 7 5; 790

A direct approach to

false discovery rates46
FDR 14 9 3; 186

Bayesian measures of

model complexity

and fit47

Bayesian

model

selection

4 4 6; 743

Controlling the false

discovery rate: a

practical and powerful

approach to multiple

testing48

FDR 2 1 46; 899

Regression shrinkage

and selection via

the lasso49

Penalized

regression

1 2 16; 905
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that directly incorporates acyclic features would be an inter-

esting direction for future work. Our application and theoretical

results of local clustering can also be extended to incorporate

mixed membership modeling and temporal changes in the evo-

lution of communities. We have currently used textual data (e.g.,

keywords) as a way to validate the target communities found; it

would be more interesting to include such data as covariates in

the network model subject to clustering analysis.

We end the discussion by acknowledging the limitations of

citation itself as a form of data measuring intellectual influence,

some of which have already been pointed out in previous

studies.18,19 Not all citations carry the same weight: a paper

could be mentioned just in the literature review or serve as the

foundation that inspired the paper citing it; arguably the latter

type of citation is more important. Citations are not always attrib-

uted to the correct source, and the modern-day style of research

relying on search engines such as Google is likely to bias toward

papers already with high citation counts. Many data scientists

and practitioners in industry do not necessarily publish their

works but can still make use of ideas and tools in statistical pa-

pers, resulting in missing citations. Nevertheless, despite these

limitations, citation data provide a useful and necessary first pas-

sage into investigating the intellectual influence of scienti-

fic works.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this paper is Y.X. Rachel Wang (rachel.wang@sydney.

edu.au).

Materials availability

The citation data were downloaded from the WoS database.

Data and code availability

The citation data used in this article and the code for performing local clus-

tering can be found at Zenodo: https://doi.org/10.5281/zenodo.6565329

Data collection

Using a Python script, we crawled the bibliographic database the WoS Core

Collection to collect the source papers. We included only publications whose

document types are listed as ‘‘article’’ inWoS. For each source paper, theWoS

database provides a list of papers citing it and the corresponding publication

information. We finished extracting these citation lists before December 2020;

all the papers citing the source papers, excluding the source papers them-

selves, form our citing papers. Note that the citing papers are from journals

other than the selected five statistics journals, or from these five journals but

published in 2019 and 2020 (since papers published there before 2019 are

already included in our source papers; note that the accessibility of citing pa-

pers depends on the university library VPN used to access theWoS database).

Rather than limiting to ‘‘article’’ as we did for the source papers, the citing pa-
pers could be of any document type. Based on the lists of citations, we built the

citation network. It can be represented by a binary adjacency matrix

A˛ f0;1g27369439338, in which

Aij =

�
1 ; i cites j;
0 ; otherwise:

(Equation 1)

In this matrix, we assign each source paper to an index in I s = f1;.; 9338g
and each citing paper to an index in Ic = f9339;.; 273694g. Our current

study did not contain citations from the source papers to the citing papers,

since we were primarily interested in the impact of source papers on other sci-

entific works.

We obtained the publication information for both source and citing papers

from the WoS database. In particular, the following variables were central to

our analysis: (1) article title, (2) publication source title (e.g., journal or confer-

ence names), (3) publication year, (4) author keywords, (5) abstract, (6) WoS

categories (e.g., ‘‘Statistics & Probability’’ and ‘‘Mathematical &Computational

Biology’’), and (7) research areas (e.g., ‘‘Mathematics’’).

Research areas for each paper

Even though the WoS categories and research areas can help us identify the

research field each paper belongs to, we still had to make a decision about

whether a citation should be considered inside (internal) or outside (external)
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Figure 5. Breakdown of citations for the papers, whose internal and external citations both rank in the top 20, aggregated by the five statis-

tical topics

(A) MCMC.

(B) Causal.

(C) Penalized regression.

(D) FDR.

(E) Bayesian model selection.
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of statistics. This is a subjective decision in some sense, given the interdisci-

plinary nature of many research topics in statistics and the overlap of statistics

with fields such as mathematics, computational biology, and econometrics.

We took the following approach, which perhaps can be viewed as conserva-

tive in estimating external impact. We considered two types of internal papers.

The first type included papers containing the tag ‘‘Statistics & Probability’’

in their WoS categories, which applied to all the papers published in

common statistics and/or probability journals. These papers are labeled as

STATS in our subsequent plots. The second type includes papers whose

WoS categories contain the keyword ‘‘math’’ (e.g., ‘‘Mathematics’’ and ‘‘Math-

ematical & Computational Biology’’) while excluding STATS papers. Additional

papers selected by this step were published in journals such as Journal of

Econometrics or BMC Bioinformatics and thus from fields reasonably close

to statistics. In what follows, these papers are labeled as MATH and counted

as internal citations. The rest of the papers were considered as external. Then,
8 Patterns 3, 100532, August 12, 2022
we used the papers’ research areas (https://images.webofknowledge.com/

images/help/WOS/hp_research_areas_easca.html) provided by WoS to clas-

sify the external papers into five broad categories: arts and humanities (ART),

life sciences and biomedicine (BIO), physical sciences (PHY), social sciences

(SOC), and technology (TECH). In our dataset, only 98 of the papers did not

have any specified categories (nor research areas), thus we labeled their cat-

egories (and research areas) as ‘‘NA.’’ If an external paper listed multiple

research areas, each area was weighted equally and contributed a fractional

count to the total in Figure 3. Figure 5 considers a finer classification, including

two extra categories, business and economics (BE) and computer science

(CS), since we noticed a that considerable number of citations were from these

two areas. To avoid double counting, papers with the BE (or CS) label were

not counted in SOC (or TECH), which is the broad category BE (or CS) belongs

to in WoS. Similar to before, multiple labels for one paper were weighted

equally.

https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html
https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html


Algorithm 1. Local clustering

Input: adjacency matrix A, preference vector p, and teleportation constant a.

1. Compute the aPPR vector p� in Equation 4 based on ðA;p;aÞ.
2. Construct the sequence of clusters fCngNn = 1 according to Equation 5 and p�.
3. Calculate conductance values f4ðCnÞgNn = 1 by Equation 6.

4. Find the first local minimum 4ðCn� Þ in f4ðCnÞgNn = 1.

Output: local cluster Cn� .
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Lorenz curve

We measured citation inequality through the Lorenz curves. For journal

j, define

LðpÞ =

Pbp3Njc
i = 1 dðiÞPNj

i = 1dðiÞ
;

where Nj is the number of publications, p is the percentage, and

dð1Þ;dð2Þ;.;dðNjÞ are the citation numbers in a non-decreasing order of papers

in journal j published in 1995–2018. LðpÞ calculates the percentage of citations

shared by the least-cited p percent of papers as ameasure of inequality. A Lor-

enz curve is the graph of LðpÞ.

Gini concentration index (Herfindahl index)

We measured the diversity for each journal by Gini concentration index

following Stigler.18 Let

Gini Concentration index = 1003
X
i

s2i ;

where si is the proportion of citations from research category i; and we consid-

ered the same categories as shown in Figure 3A except that we combined

STATS and MATH into one internal category. The index attains a maximum

of 100 when there is only one category with proportion equaling 1 (all citations

were from the internal category in our case) and decreases as the proportions

become more spread out across different categories, which in turn indicates

increased diversity.

Local clustering

In the following sections, we first describe the local clustering procedure in a

general network setting before presenting details on how it was applied to

our citation data. We also present the theoretical properties of the local clus-

tering procedure under the DC-SBM (Karrer and Newman59).

DC-SBM

To analyze the behavior of local clustering, we adopted the popular DC-

SBM,59 which captures both node heterogeneity and community structure,

as the underlying network model. While such a model may not capture all

the features of our citation network, the presence of node heterogeneity is re-

flected by the uneven distribution of citation counts, and it is plausible to as-

sume the underlying communities correspond to different research topics.

For convenience of notation, we will describe the DC-SBM and local clustering
Table 3. Summary statistics for the most relevant statistical

communities (subnetworks) for external topics compared with

the whole network for all source papers

Topic Size Graph density

Average

clustering

coefficient

Single-cell transcriptomics 79 0.031 0.608

Labor economics 108 0.039 0.402

Flu 30 0.73 0.232

All source papers 9; 338 0.001 0.252
procedure using a general symmetric adjacency matrix A and a general set

of nodes I.

In the original SBM,60N nodes are assigned toK blocks or communities, and

the probability of an edge between two nodes depends only on their commu-

nitymemberships. To abbreviate notations, write the set f1;.; ng as ½n� for any
integer n. The set of nodes I = ½N� is partitioned into K blocks by the function

g : ½N�/½K�. Let nk denote the size of block k and I k denote the set of nodes in

block k for k˛ ½K�. The proportion of members in block k is tk = nk=N. We

consider the case that the number of blocks K is fixed, and tk is bounded

below by a constant for all the k˛ ½K�. The probability of an edge between no-

des i and j is:

Aij

��g �ind: Bernoulli�BgðiÞgðjÞ
�
; ci; j ˛ I ; isj ;

where B˛ ½0; 1�K3K is the connectivity matrix.

DC-SBM introduces node heterogeneity by adding a degree parameter qi for

each node i, so that the probability of an edge between i and j becomes:

Aij

��g; q �ind: Bernoulli�qiqjBgðiÞgðjÞ
�
; ci; j ˛ I ; isj: (Equation 2)

Some constraint is needed on qi for identifiability, and we adopt the

constraint
P

i˛ I k
qi = nk for all k˛ ½K� following Karrer and Newman.59 The de-

gree of node i is defined as di =
P

j˛ IAij .
Adjusted personalized PageRank

Given a symmetric adjacency matrix A for N nodes, define the diagonal matrix

D = diagðd1;.;dNÞ, where di is the degree of node i, and the graph transition

matrix P = D� 1A. The PPR vector p˛ ½0; 1�N is the stationary distribution of

the process:

pu = apu + ð1 � aÞpuP ;

where a ˛ ð0; 1� is the teleportation constant and p˛ ½0; 1�N is a probability

vector called the ‘‘preference vector’’ encoding one or multiple seed nodes.

For example, if there is one seed node v0 = 1, p = ð1; 0;.; 0Þu (assuming

that without loss of generality it belongs to block 1, the target block). The

goal is to recover all the nodes with the same community membership as v0
by ranking the elements in the PPR vector p.

In our setting, we chose source papers that had high citation counts by a set

of topic papers as the seed nodes. For a source paper j˛ I s and a set of topic

papers I t, its citation count was aj =
P

i˛ I t
Aij , where A is the citation network

defined in Equation 1. The preference vector p˛ ½0; 1�9338 was calculated as:

pk =
a0kP
j˛ Is

a0j where a0j =
�
aj ; aj R t ;
0 ; aj < t :

(Equation 3)

Here t is a chosen threshold constant. We extended the setting of a single

seed node in Kloumann et al.26 and Chen et al.27 to multiple seed nodes, but

still made the assumption that they all belong to the same community. While

it is unlikely that all papers cited by a specific topic come from the same com-

munity, the threshold t helps us prune the vector p and makes the assumption

more reasonable.

Related to PPR, the aPPR vector is defined as:

p�
i =

pi

di

for i = 1; .;N ; (Equation 4)
Patterns 3, 100532, August 12, 2022 9
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Figure 6. Networks and word clouds generated from the source papers found by local clustering for three topics

(A) Single-cell transcriptomics.

(B) Labor economics.

(C) Flu.
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where pi is the ith entry in the PPR vector. Formally, let n be a community size

cutoff. Then n nodes with the largest p�
i values are selected as members in the

target community, that is,

Cn =
n
i
���p�

i R p�
ðnÞ
o
; (Equation 5)

where p�
ð1Þ;.;p�

ðNÞ is the sorted list of p� in a non-increasing order. We show

that the aPPR vector sorted the nodes in terms of their relevance to the target

community with high probability under the DC-SBM in Note S3.1.
Conductance

It remains to choose the correct size n for Cn to fully recover the target commu-

nity. To achieve this, an objective function is needed to evaluate the quality of

the clusters found. Conductance is a popular objective function to be opti-

mized, either globally or locally,29,30 and is often used in conjunction with a

local clustering algorithm like PPR.21,61 It tends to favor small clusters weakly

connected to the rest of the graph, and one would expect such an assortative

structure in citation networks with communities defined by research topics.

For a set of nodes I04I , where I denotes all the nodes in A, we define its

conductance 4 as

4ðI 0Þ =

P
i˛ I0

P
j;I0AijP

i˛ I0Ai,
; (Equation 6)

where Ai, =
P

j˛ IAij .

Using aPPR to sort the nodes in terms of their relevance to the target com-

munity, the sorted list of nodes leads to a sequence of clusters fCngNn = 1 (by

Equation 5) and their conductance values f4ðCnÞgNn = 1. Our next theorem es-

tablishes that the correct choice of n occurs at a local optimum along this

sequence, justifying the practice of choosing the community size cutoff by in-

specting the conductance plot.
Theorem 1

Under the DC-SBM and appropriate assumptions, for sufficiently large N,

there exits n0 with n0 � n1 = UðNÞ such that

4
�Cn1

� � 4ðCnÞ% � 1

N
UPðjn � n1jÞ (Equation 7)

uniformly for n˛ ½n0 �, where n1 is the size of the target block.

The details of Theorem 1 (assumptions and proof) are presented in Note

S3.2. Here the U notation indicates that n0 � n1 is bounded below by a con-

stant order of N; UP indicates with high probability the difference between

4ðCn1 Þ (the local optimum value) and any surrounding value 4ðCnÞ is bounded

from below by a constant order of jn � n1j=N. The bound in Equation 7 and

the lower bound on n0 � n1 guarantee that the optimum at n1 is well separated

from its neighborhood, and this neighborhood is wide enough to be observed

in a conductance plot. In Note S3.3 (Tables S10–S11 and Figures S17–S20),

we demonstrate the performance of Algorithm 1 in recovering the target com-

munity using simulated data and examine its robustness with respect to the

number of seeds and the teleportation constant.

Our local clustering procedure is summarized in Algorithm 1.
Applying Algorithm 1 to citation data

For all the case studies, we first used a keyword search to select a set of topic

papers I t , for an external topic of interest. The seed nodes were constructed

using citation information between the source papers I s and the topic papers

in I t as described in Equation 3, and Algorithm 1 was performed on I s and

their network As. For clustering purpose, we considered two papers as related

in content if a citation existed between them; the direction of this citation was

less important if we thought of it as a form of association. For this reason, we

treated As as an undirected network in this section. That is,

As
ij =

�
1 ; there is a citation between i and j;
0 ; otherwise

; (Equation 8)

for i; j˛ I s = f1;.;9338g.
We set the teleportation constant a = 0:15 following Chen et al.27. In gen-

eral, we found our procedure to be robust to the choice of a, and detailed simu-

lation studies can be found in Note S3.3.

It remains to describe the construction of the preference vector p, which

relied on the selection of topic papers I t. For each external topic, papers

in I t were chosen by keyword searches among all the papers. More

concretely, for the topics of single-cell transcriptomics and labor economics,

we found all the papers that contain the relevant keywords ("Single-cell" [or

"single cell"] and "RNA-seq" for the topic of single-cell; "labor" for the topic

of labor economics) in their abstracts. For a more accurate search result, we

further restricted the labor economics papers to the category SOC using the

labels. The single-cell papers could come from a more diverse set of cate-

gories, and as shown in Figure S13A, most of our selected papers were

from BIO. For the topic of flu, we noted that many papers may use flu data-

sets as examples of their analytic methods instead of focusing on the topic

itself. To select papers with a sharper focus on the topic, we searched for

papers with ‘‘flu’’ or ‘‘influenza’’ in their title instead of their abstract. The pro-

portions of category labels for the flu papers are illustrated in Figure S13B,

which indicates that most of them were from BIO. Having constructed I t ,

we chose the seed nodes in p from the source papers with high citation

counts by I t . For each topic, we constructed the preference vector by Equa-

tion 3. We chose the threshold t based on the citation counts from the topic

papers to the source papers. For the topics ‘‘single-cell’’ and ‘‘labor eco-

nomics,’’ the top papers received more than 90 citations; we set t = 10.

For the topic ‘‘flu,’’ the highest citation count was less than 90, and we set

t = 5. The conductance plot for each topic is shown in Figure S14. In

most cases, there was an obvious local minimum leading to a reasonable

community size. In Figure S14B, we chose the first minimum occurring after

nR10 for a more plausible subnetwork size and clearer interpretation of the

result.

For the temporal studies of labor economics and flu topics, we broke our

study period into five windows: 1995–2000, 2001–2005, 2006–2010, 2011–

2015, and 2016–2021. For each window, the construction of seed nodes

used only papers from that time period; the adjacency matrix A, which is

the input in Algorithm 1, contained citation information among papers only

within or before that period. Then, we plotted the network of the influential

community for each time window in Figures S9 and S10. For selected sub-

networks in these figures, we present their word clouds in Figures S11

and S12.
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