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Abstract

High throughput sequencing technologies are being applied to an increasing number of model species with a high-quality
reference genome. The application and analyses of whole-genome sequence data in non-model species with no prior
genomic information are currently under way. Recent sequencing technologies provide new opportunities for gathering
genomic data in natural populations, laying the empirical foundation for future research in the field of conservation and
population genomics. Here we present the case study of the Bornean elephant, which is the most endangered subspecies of
Asian elephant and exhibits very low genetic diversity. We used two different sequencing platforms, the Roche 454 FLX
(shotgun) and Illumina, GAIIx (Restriction site associated DNA, RAD) to evaluate the feasibility of the two methodologies for
the discovery of de novo markers (single nucleotide polymorphism, SNPs and microsatellites) using low coverage data.
Approximately, 6,683 (shotgun) and 14,724 (RAD) SNPs were detected within our elephant sequence dataset. Genotyping of
a representative sample of 194 SNPs resulted in a SNP validation rate of , 83 to 94% and 17% of the loci were polymorphic
with a low diversity (Ho = 0.057). Different numbers of microsatellites were identified through shotgun (27,226) and RAD
(868) techniques. Out of all di-, tri-, and tetra-microsatellite loci, 1,706 loci had sufficient flanking regions (shotgun) while
only 7 were found with RAD. All microsatellites were monomorphic in the Bornean but polymorphic in another elephant
subspecies. Despite using different sample sizes, and the well known differences in the two platforms used regarding
sequence length and throughput, the two approaches showed high validation rate. The approaches used here for marker
development in a threatened species demonstrate the utility of high throughput sequencing technologies as a starting
point for the development of genomic tools in a non-model species and in particular for a species with low genetic
diversity.
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Background

The field of population genetics has been dominated for many

years by the use of microsatellites which have been developed and

tested across a wide range of species with enormous success

[1,2,3,4]. More recently, single nucleotide polymorphisms (SNPs)

have been identified as potential markers of choice for genome-

wide studies [5] due to the fact that they are broadly distributed in

the genome (like microsatellites), have the advantage over

microsatellites of being easily typed in large numbers, and

represent variation in both coding and noncoding regions of the

genome [6,7]. The first applications have been limited to model

organisms but there is a growing interest in rapidly developing

large numbers of markers and applying them to non-model

organisms [8,9] to study evolutionary questions [10] and address

conservation genetics issues [11]. SNPs should therefore allow

geneticists to inspect both neutral variation and genomic regions

under selection. They should also be useful to work with non-

invasive or historical samples. Indeed, Morin & McCarthy [12]

used 19 SNPs in a study using historical samples (bone and baleen)

of bowhead whales; they found a 0.1% genotyping error rate,

which is lower than most non-invasive studies often reported for

microsatellite genotypes obtained from other samples (e.g. 0.8%

from tissue, 2.0% from faeces [13]. The low error rate together

with their binary nature suggests that it may be more feasible to

genotype SNPs in highly degraded samples (hair, faeces, etc.) such

as those obtained from endangered species [12,14]. It also means

that much of the traditional population genetics theory that was
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originally developed for bi-allelic markers will directly apply,

whereas multiallelic markers have always generated debates on the

best way to define classical measures of genetic diversity or

differentiation, for instance [15,16,17].

A number of approaches have been used to discover de novo

SNPs including the targeted gene approach using ‘CATS’

(comparative anchor tagged sequences) or ‘EPIC’ primers (exon

priming intron crossing) [18,19,20,21,22], AFLP/RFLP [23,24],

and EST (Expressed Sequence Tag) sequencing [25]. However,

most of these approaches, with the exception of ESTs, have only

identified a limited subset of markers for genotyping (between 15

and 318 markers). Taking into account the fact that the number of

SNP markers required for population genetic analyses is likely to

be between 5 and 10 times that of microsatellites to reach the same

statistical power (e.g., [26,27]), none of these methods has yet

proven that it had the potential to meet the requirements of future

molecular studies [28].

The development of high throughput sequencing platforms has

emerged as a new tool to develop genomic markers and is already

showing great promise for fast and efficient marker detection for

model and non-model species [28,29]. These methods vary in

their applicability in terms of research questions and molecular

resources required. One strategy to develop new genomic markers

might be to simultaneously sequence multiple genomes of the

targeted organism and identify markers by comparing sequences

from the total data set [30]. This method was used, for example, to

identify 23,742 SNPs in the uncharacterized genome of Eucalyptus

grandis [31]. However, sequencing and producing high quality

reference genome (approx. 3 Gb genome size for a non-model

mammal species) using shotgun genome sequencing is still an

expensive and substantial project. Other alternatives to develop

markers could be achieved by sampling and sequencing only a

reduced but still large part of the genome, and may consequently

be more affordable [32]. Examples of such approaches include the

construction and sequencing of reduced-representation libraries

(RRLs) and restriction site-associated DNA sequencing (hereafter

RAD-seq, also known as RAD-tag) using the two most popular

platforms, i.e. Roche 454 FLX (hereafter 454) and the Illumina

Genome Analyzer (hereafter Illumina) [32]. RRLs have been

employed for the discovery of thousands of SNPs in species for

which a genome sequence is available, such as human [5], cattle

[33], pig [34], and turkey [35], as well as in species for which a

reference genome is not available such as the great tit [9], and

mallard Duck [36]. The RAD-seq methodology consists of

screening thousands of regions adjacent to restriction sites to

subsample the genome [37]. This methodology has been applied

in threespine stickleback to investigate (i) the genetics of an

important trait (presence/absence of bony lateral plates) [37], (ii)

population differentiation, and (iii) selection [38], and more

recently to unravel the phylogeography of pitcher plant mosquito

[39].

While high throughput SNP genotyping platforms can in

principle rapidly and efficiently genotype many loci on hundreds

of samples identifying SNPs that fit the criteria for assay

development can be challenging in organisms without a reference

genome. Two reasons are that SNP genotyping assays often

require SNPs to have large windows free of nearby polymorphisms

and SNPs should be evenly spaced throughout the genome

[32,40]. RAD-seq generates short DNA fragments (RAD-tags) that

have one end defined by the restriction enzyme recognition site,

and the other end defined by random shearing [41]. 454

sequencing technology on the other hand produces larger DNA

sequences [28]. However, the power of these methodologies to

discover markers in non-model species (i.e. with no reference

genome) and especially in endangered mammals is still largely

unexplored and remains a challenge. It is an open question

whether RAD-seq and 454 shotgun sequencing will bring

population genetics analysis of every organism into the high

throughput sequencing age.

The Bornean elephant (Elephas maximus borneensis) is a subspecies

of mainland Asian elephant which differs from other subspecies in

its morphology and behaviour [42,43,44,45]. Their distribution is

restricted to the North of Borneo where the estimated population

size is around 2,000 in Sabah [46]. Bornean elephants are

classified as endangered according to the IUCN (International

Union for Conservation of Nature) Red list of threatened species.

The main threats identified are habitat fragmentation and habitat

loss due to oil palm plantations. No microsatellite markers have

been yet designed specifically for the Bornean elephant and the

only known study by Fernando et al., [42] used five microsatellites

originally developed for other Asian elephant subspecies. The

authors genotyped fifteen individuals and found a very low level of

genetic diversity, with three microsatellites being monomorphic,

and the other two exhibiting only two alleles. No mitochondrial

(mt) DNA polymorphism has yet been found in this species [42].

With such a low level of genetic diversity the Bornean elephant

represents thus a very iconic species for which the development of

polymorphic markers would be a potential example for many

others. If markers can be developed here then it should be

applicable to most other endangered species. Therefore, our aim

was to (i) discover de novo markers (SNPs and microsatellites) for the

Bornean elephant by using the advantages offered by two different

high throughput sequencing methodologies (454 shotgun and

Illumina GAIIx-local de novo assembly of RAD paired-end reads),

(ii) develop a genotyping assay for a reasonably large subset of

identified SNPs, and (iii) validate a subset of these markers on high

quality (blood) samples.

By using the combination of shotgun and RAD-sequencing, we

demonstrate that the chosen approaches represent effective

strategies towards development of comprehensive molecular

resources for this and other endangered species for which faecal

samples are the only available samples to carry out conservation

genetic studies.

Results

RAD Paired-end (Illumina) and 454 Shotgun Sequencing
and Local de novo Assembly

More than , 2.3 million sequence reads from each of the four

elephant samples (sample 2, 3, 4 and 7) were used in local de novo

assembly of RAD paired-end reads, which was equivalent to ,
300 Mb of de novo sequence generated per sample. All Illumina

sequence data have been submitted to the EBI Sequence Read

Archive (SRA) under the study accession number ERP001879

(http://www.ebi.ac.uk/ena/data/view/ERP001879). The four

samples chosen for de novo assembly performed better than the

other samples in terms of high output of sequence, coverage,

quality (as inferred by phred quality score), and in terms of the

total number of RAD-tags generated. The variability seen in read

numbers observed for each sample was mostly due to the overall

quality of the input material. Some samples were slightly more

degraded than others. The number of sequenced RAD-tags

obtained was highly dependent on the sequence amount and

number of reads per cluster (i.e. the reads that can be aligned to

each other and were grouped into pools representing the same

RAD tag to build contigs) (Table 1). A breakdown of the number

of sequence reads and all other detailed statistics obtained for each

elephant sample is listed in Table 1. After removing any assemblies

Genomic Markers for Bornean Elephant
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with too high (due to repetitive regions in the genome) and too low

coverage, ,2.0–2.5 Mb of high quality sequence was available for

each of the four Bornean elephant samples. Based upon the

observed amount of sequence for each sample, the estimated

number of RAD-tags ranged between 23,532 (sample 6) and

37,362 (sample 7). Of the four samples that obtained the highest

quality and quantity of sequence we assembled the following

numbers of contigs: sample 2–10,008 contigs, sample 3–10,110

contigs, sample 4–10,352 contigs and sample 7–7,918 contigs.

Since sample 4 had the highest quality sequence and the highest

number of assembled contigs we used the contig set from sample 4

as a reference with which to align all other paired end sequences to

identify SNPs.

De novo contig lengths ranged from 150 (all samples) to 560 bp

(sample 2) with mean length between 259 and 288 bp (sample 4

and 2). The average depth of coverage per base of contigs was

12.9x. The contigs assembled from each RAD-sequence had an

N50 length between 279 and 320 bp (Table 1). N50 is the

weighted median statistic such that 50% of the entire assembly is

contained in the number of contigs equal to or greater than this

value [47]. 2.68 Mbp of de novo sequence was assembled from

sample 4 with an average contig length of 259 bp. In total, 14,724

SNPs were identified by mapping the raw reads from other

elephant samples with this ‘mini-reference’ contig library from

sample 4. Across all datasets, 5,048 (34%) SNPs were identified as

heterozygotes (using the threshold parameter as implemented in

SAMtools) and 9,676 as homozygotes (monomorphic). Altogether

20% (2,100 loci out of 10,352 contigs) were identified as variant

loci. Out of these we obtained a genotype for all individuals

(100%) for 1,200 loci/RAD tags, and for 75% of the individuals

(i.e. six or more) for 1,700 loci (Table S1 provides the complete

list). For the remaining 400 loci, the SNPs were shared by less than

six individuals.

A full run on the Roche 454 GS-FLX system yielded a total of

1,144,367 reads for the two elephants used with elephant sample A

and B generating 509,030 and 635,337 reads, respectively

(Table 1). The average read length was 348 bp. The raw sequence

data from 454 sequencing instrument have been submitted to the

EBI Sequence Read Archive (SRA) under the study accession

number ERP001879 (http://www.ebi.ac.uk/ena/data/view/

ERP001879). Altogether 219,157 (19.17%) out of 1,144,367 reads

aligned to each other from elephant sample A and B and were

assembled into contigs. This was the total amount of data used for

contig assembly. The total number of de novo assembled contigs

(.100 bp) obtained was 16,857 with an average contig length of

328.13 bases. There were 3,267 large contigs (.500 bp) with an

average contig size of 841 bases, with the largest contig size

identified as 6,407 bp. The length distribution of the 454 and

RAD-seq (Illumina) assembled contigs are shown in Figure 1. The

assembled contigs in the 454 data set had an N50 length of 815 bp

and average coverage per bp of all contigs was 8x. Sample A and

sample B mapped 42.1% and 42.5% of their reads to this

reference, respectively, resulting in about 42.4% of the reads

utilized in SNP calling.

To evaluate the quality of the sequences, reads from 454

sequencing were mapped to the African elephant (L. africana)

genome and 497,169 (97.6%) reads from sample A and 617,930

(97.2%) reads from sample B were successfully mapped (Table 1).

Development of Genotyping Assay for Markers (SNPs and
SSRs) Identified Using RAD-seq and 454 Shotgun
Sequencing

In the RAD-seq data set, the total proportion of observed

transitions in Bornean elephant (A–G = 380, C–T = 404; to-

tal = 784) was higher than that of transversions (A–C = 132, G–

T = 115, A–T = 61, C–G = 178; total = 486), which corresponds to

a ts/tv ratio of 1.6:1. Our results showed that the number of A–G

substitutions almost equaled the number of C–T substitutions in

the transitions class. Moreover, the substitutions within the

transversions class occurred in comparable frequencies, with the

exception of A–T.

Filtering of the contigs containing SNPs in RAD-seq data set

resulted in identification of 518 (24.6%) putative SNPs with phred

quality score, .q20 (corresponding to a 0.01% chance that a base

was wrongly called) out of the 2,100 variant loci with favorable

characteristics for downstream genotyping design. 491 out of 518

loci were identified with quality score, .q30 (corresponding to a

0.001% chance that a base was wrongly called). The observed

SNP density (number of SNPs/bp) was 0.00081(,8/10 kb). These

SNPs were identified in all eight Bornean elephant lines and were

used for Sequenom assay design. We then eliminated 11 contigs

because 10 of them were identified with a third allele (tri-allelic

state) and one contig indicated primer design error. This left a total

of 507 independent SNPs for further validation and characteriza-

tion in 19 multiplexes (Table 1). In addition, we found candidate

SNP mutations specific to each elephant that distinguished it from

all others (minor alleles only found in one heterozygous

individual). More specifically the numbers of these were 146,

164, 152, 139, 162, 133, 146, and 120 in sample 1 to 8,

respectively. Given the sample size, these probably correspond to

rare alleles which may be found in other non-sampled individuals,

but may be useful to identify specific individuals using multi-locus

SNP data.

Screening of 10,352 contigs from elephant sample 4 resulted in

the identification of 868 SSR with 844 mono-, and 24 di-

nucleotide repeats in 837 contigs (8% of total contigs) with 31

(3.7%) contigs that contained more than one type of repeat motif.

17 SSR were present in compound formation. Out of 24 di-

nucleotide repeats, 7 loci (29%) with $3 repeats were identified as

‘potentially amplifiable loci’ (PAL). No tri-and tetra-nucleotide

repeats were identified in this limited sequence data set from

sample 4 (Table 1).

The shotgun genome sequencing of the two elephant samples

resulted in identification of 18,206 variants (6,683 SNPs and

11,523 indels) residing in 5,885 contigs (i.e. 35% of the loci out of

the total 16,857 assembled contigs). 1,753 (10%) contigs out of

16,857 contigs were identified to contain these 6,683 SNPs

(Table 1). The calculated SNP density in 454 contigs was 0.00056

(,5/10 kb) which is not much different from the SNP density

found in RAD-seq. The total proportion of identified transition

substitutions (A–G = 2020, C–T = 2010; total = 4030) were higher

than transversions (A–C = 680, G–T = 628, A–T = 463, C–

G = 886; total = 2657), which corresponds to a transition/trans-

version (ts/tv) ratio of 1.5:1. Interestingly, the observed ts/tv ratio

is similar to the ratio obtained using RAD-seq method and the

number of A/G substitutions almost equaled the number of C/T

substitutions in the transitions class. 1,695 (96.6%) out of 1,753 loci

were found suitable for genotyping in 52 multiplex assays (Table 1).

58 contigs containing SNPs were discarded as they failed to meet

the specifications for assay design for genotyping.

A comparison of 454 and RAD-seq (Illumina) contigs revealed

that two loci were common to both data sets (using mapping

criteria of 95% identity and at least a stretch of 20 bp perfectly

matching). These loci were not included in the assay design.

Out of the 1,144,367 reads obtained from individual assemblies

for elephant A and B of E. m. borneensis, we identified 18,195

contigs (1.58% of all reads) that contained SSRs or microsatellites,

8,432 contigs obtained from elephant sample A, and 9,763 contigs

Genomic Markers for Bornean Elephant
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from elephant sample B. 27,226 microsatellites (with $3 repeats)

were identified in the 18,195 contigs, of which 18,188, 7,241,

1,471 and 326 contained mono-, di-, tri-, and tetra-nucleotide

repeats, respectively (Table S2). The di- and tri-nucleotide

microsatellite repeat classes were more abundant than the tetra-

nucleotides. By increasing the number of repeats in our search

from three to six, we observed a decrease in all repeat classes of

microsatellites. For instance, the number of mono-nucleotide

microsatellites decreased 2.6 fold, di-nucleotides 50 fold, tri-

nucleotides 81 fold, and tetra-nucleotides 23 fold. The contigs

containing classified microsatellites have been submitted to

GenBank under accession numbers JX941469-JX941511. An

estimation of the number of contigs containing suitable flanking

sites for PCR amplification (for $3 repeats), gave a total of 1,706

loci for di-, tri-, and tetra-nucleotides. These contigs containing

PAL represented 18.8% (1,706 out of 9,038 including only di-, tri-,

and tetra-nucleotides) of the total number of classified microsat-

ellites.

Table 1. Summary statistics of data obtained using two different sequencing approaches: Illumina (RAD-seq) and 454 (shotgun).

Feature Illumina RAD-sequencing 454 shotgun sequencing

samples (n = 8) samples (n = 2)

1 2 3 4 5 6 7 8 A B

Reads (millions) 1.84 2.32 2.54 2.59 2.17 1.05 2.53 1.26 0.51 0.64

Aligned reads between samples (%) – – – – – – – – 219,157 (19.17%)

Mb of sequence 221.13 278 305.01 311.12 259.92 125.74 303.47 150.95 –

Total number of RAD tags produced
(approximate)

33,698 32,330 32,937 35,014 34,815 23,532 37,362 28,573 –

Total Mb of sequence after contig
construction

– 2.88 – 2.68 – – 2.07 1.50 –

Contigs assembled – 10,008 10,110 10,352 – – 7,918 5,461 16,857 (.100 bp)

Average contig length (bp) – 288 – 259 – – 262 275 328.13

Average depth of coverage per base of
contigs

12.9x 8x

N50*(bp) – 320 – 279 – – 281 302 815

Contig length range
(bp, min-max)

– 150–560 – 150–457 – – 150–544 150–527 100–6,407

Reads mapped to L. africana – – – – – – – – 497,169
(97.6%)

617,930 (97.2%)

Putative SNPs 14,724 6,683

Total number of homozygotes
(monomorphic)

9,676 –

Total number of heterozygotes 5,048 (34%) –

Transitions and transversions
(Ts/Tv ratio)

1.61 1.52

Candidate loci containing SNPs 20%
(2,100 out of 10,352)

10%
(1,753 out of 16,857)

Loci suitable for Sequenom assay with
.q20# and identified assays

518 (24.6%),19 1,695 (96.6%), 52

SNP density 0.00081 0.00056

Validation of SNPs
(genotyping success rate across
five plexes)

86–95%
(plex1–plex4)

91%
(plex5)

Polymorphic loci
(n = 194)

28 (E.m.borneensis), 17 (E.m.indicus) 5 (E.m.borneensis), 7
(E.m.indicus)

Number of contigs containing microsatellite
loci

837 18,195

Number of SSRs identified
(mono-,di-,tri, and tetra-nucleotides)

868
(844 mono-, and 24 di-nucleotides)$

9,038
(18,188,7,241, 1,471, 326)

Potential amplifiable loci
(with $3 repeats)

7 (29%) 1,706 (18.8%)

Note that the eight elephant samples (1 to 8) used in Illumina RAD-sequencing are different from the two.
samples (A and B) used in 454 shotgun sequencing.
*weighted median statistic such that 50% of the entire assembly is contained in the number of contigs equal.
to or greater than this value.
#.q20: 0.01% chance that a base was wrongly called.
$identified in elephant sample 4.
doi:10.1371/journal.pone.0049533.t001
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Validation of Markers (SNPs and SSRs) Obtained from
RAD-seq and 454 Shotgun Sequencing

The seven Bornean elephant samples (same samples that were

used in the discovery panel of RAD-seq) were genotyped targeting

161 putative SNPs (124 from RAD-seq and 37 from 454) using five

multiplex assays with 3–5 replicates per individual and generating

3,903 genotypes (obtained out of 4,340). 54% of calls in Sequenom

were recorded as ‘‘conservative’’, 15% ‘‘moderate’’, 9% ‘‘aggres-

sive’’, 18% low probability (insufficient quality to make a call), 3%

with no alleles and 1% were user calls (calls assigned by us). In

addition, we assigned a ‘no-call’ to the genotype calls at 7 different

loci in sample number 7 due to bad spectrum (non-predictable

variation in peak height). 99% of the genotyped data successfully

achieved a consensus. Seven genotypes were non-reproducible as

they consistently failed to amplify and did not yield a consensus.

Positive PCRs (number of PCRs giving correct or consensus

genotype) were reliably obtained for all seven elephant samples

with PCR success rate ranging from 83 to 94% (average across

each sample) and 86–95% (average across each plex). The possible

errors detected and resolved by repeated genotyping were mainly

caused by: (1) allelic dropout leading to detection of false

homozygotes in six elephant samples with highest allelic dropout

rate observed in sample 1 (27%), (2) false alleles were detected in

only one elephant (sample 3) and were in low proportion (0.16%).

Table S3 provide details of observed genotyping errors for each

multiplex assay (plex 1 to plex 5). Note that plex 1 to plex 4 (124

loci) represent assays developed for SNPs identified using RAD-

sequencing and plex 5 (37 loci) represent SNPs identified through

454 shotgun sequencing. SNP genotyping error rates were

compared to available data sets from another study in which

SNPs were genotyped on human tissue samples using the same

platform. The estimated genotyping error rate (false alleles) were

found to be 0.11%–0.20% and all SNPs had allelic dropout rates

of ,0.5% [48]. Allelic dropout and false allele rates were found

similar to those observed in our study. We detected 33 SNPs (20%)

for which all Bornean elephants were heterozygotes, and were

interpreted as the result of two co-amplifying monomorphic loci.

When these 33 loci were evaluated in another Asian elephant

subspecies (E.m. indicus, n = 3), 15 (45%) of these loci were also

found as fixed heterozygotes. Of the remaining 18 loci, 11 loci

were found as homozygote for one of the two alleles and were

recorded with high confidence (a conservative call). For the

remaining 7 loci, only one of the alleles (homozygote) was

recorded with high probability. Further investigation on a large

sample size is required to confirm the status of these duplicated loci

in Asian elephants. Also, a blast search of these 33 contigs against

L. africana genomic data produced significant hits for all except

one. Twenty one loci (63%) aligned to two different positions in

the same or different scaffolds of L. africana genome. Eleven loci

(33%) showed unique alignment. It has been recognized that the

BLAST algorithm can be rather inefficient in identifying

homologous sequences when short contigs are involved, i.e. those

originating from the Illumina platform [47]. For our population

genetics analyses, these 33 loci were therefore split into 33 pairs of

loci thus making a total of 194 loci. In total, out of these 194 loci,

only 33 loci (17%) were found polymorphic in Bornean elephants

(Table 1). Elephant sample 5 was the most successfully genotyped

(100%) across all loci. Across all samples, average heterozygosity

was estimated to be Ho = 0.057 respectively. Elephant sample 7

displayed observed heterozygosity (Ho) higher than the other

individuals (Ho = 0.10) (Table S3).

Out of 55 potential microsatellites, 20 primer pairs did not

amplify on seven elephant samples and 10 produced unclear

patterns in the electropherograms and hence discarded. Of the

remaining 25 microsatellites (15 tetra-, 4 di-, 6 tri-microsatellites)

producing scorable peaks, all were found to be monomorphic

across the seven Bornean elephant samples tested.

As mentioned above, the de novo SNPs and microsatellites

developed using both methods (RAD-seq and 454 sequencing)

were also successfully genotyped on E.m. indicus samples (Table

S3). Out of 194 loci, 12% (24) were found polymorphic in these

three samples (Table 1). Out of the 25 microsatellite loci tested, six

(2 di-, 4 tetra-nucleotides) displayed polymorphism, ranging from

2 to 4 alleles per locus.

Characterization of Contigs from 454 and RAD-seq
All 454-contigs (100%) containing SNPs (n = 37) showed a

significant blast match and were successfully mapped to different

Figure 1. Histogram of contig size distribution. Length distribution of contigs assembled from 454 shotgun sequencing (A) and RAD-
sequencing (B) using Illumina platform. The average contig length in the 454 dataset (n = 2) was 328.13 bp and ranged from 100 to 6,407 bp. The
average contig length in the RAD-sequencing dataset (n = 8) was between 259 (sample 4) and 288 bp (sample 2). The RAD contig lengths ranged
from 150 to 560 bp.
doi:10.1371/journal.pone.0049533.g001
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L. africana genomic positions (alignment positions found in 33

different scaffolds). In an effort to identify or predict the possible

functions of the SNPs (only for the contigs with the best alignment)

the analysis revealed that only 8% (3 out of 37) of the 454-contigs

could be associated with one or more functions. The function was

putatively associated to a SNP if the region surrounding the SNP,

when blasted against L. africana, overlaps an L. africana gene, in

which case a gene’s GO (Gene Ontology) term (from Ensembl

annotation) was associated to the SNP. If the contig is nearby a

gene, but it does not overlap that SNP, no GO term was

associated. That is why we have so few SNPs ‘annotated’. 24

unique GO terms (for e.g., protein binding, DNA repair, calcium

ion transport etc.) were represented in these 454-contigs (Table

S4). In the case of the RAD-seq contigs, 94.7% (491 out of 518

loci) produced a successful Blast hit against L. africana genome

(alignment positions corresponding to 57 different scaffolds). For

the remaining contigs, no significant matches were obtained using

Blastn. 23% of SNP containing contigs (113 out of 491) could be

associated with one or more GO terms (Table S5) and 35 unique

GO terms were obtained (for e.g., sensory perception of smell, zinc

ion binding etc.).

Discussion

We are currently witnessing a revolution in the field of

population and conservation genetics and molecular ecology due

to the easy access to high throughput sequencing platforms, which

have hastened the development of molecular markers [49]. Here,

we used two different high throughput sequencing platforms to

identify and test new genomic markers in the Bornean elephant, a

non-model species. As noted in the introduction, the RAD-seq

method has been successfully used to map genes in many studies in

model species, such as Drosophila [50], Neurospora [51], barley [52]

and Caenorhabitis elegans [53]. RAD-seq also proved useful in studies

(including a few non-model species) aiming at investigating

genome organization and population level analyses by developing

high quality genomic markers, for species such as egg-plant [47],

globe artichoke [54] and threespine stickleback [38]. This has also

led to its successful and strong representation in many fish and

crop plants [40]. However, the number of studies using RAD-seq

is still limited and has only been applied to less than ten non-model

taxa (see Table S6). Our study is thus one of the first of its kind

where we explored RAD-seq to identify de novo markers in a non-

model, highly endangered species with no prior genomic

information and very low genetic diversity [42]. The number of

SNPs (,14,000) identified was quite high in a genetically depleted

species which is on the same order as the numbers identified in

other species for which samples were more readily available. For

instance, RAD-seq resulted in identification of more than 45,000

SNPs in threespine stickleback [37,38], ,10,000 SNPs in egg-

plant [47] and ,34,000 in the globe artichoke [54]. Note that

these numbers should not be taken at face value due to differences

in the use of source of DNA, and sample size in the discovery

panel. We believe that in our study a greater number of

polymorphisms could have been further identified in the

individuals used, as we found substantial variation in Illumina

reads from the individual sample libraries. Other reasons were the

use of related individuals in the discovery panel. Based on the

keepers information two to three individuals probably belonged to

the same social group. We observed low genetic diversity (average

Ho = 0.057 across all samples) in Bornean elephants and 17% of

the loci were polymorphic. Our results are in agreement with the

previous study (and only available genetic data on this species) of

Fernando et al., [42] who also reported low diversity (average

He = 0.041 using five microsatellites). But further genotyping and

investigation of these loci on a large number of elephants from

different populations is required.

In theory, the number of RAD-tag fragments can be roughly

predicted in silico assuming equal and random frequency of cut

sites; but in practice, some restriction enzymes depart considerably

from this expectation [55]. For instance, in this study we observed

fewer RAD-tags (,23,532–37,362) than predicted in silico (47,689)

on the basis of the genome size of L. africana and its GC content.

This discrepancy observed was most likely due to the quality of the

samples, and the genomic DNA concentration.

Using the 454 sequencing system, we also identified a

reasonably large number of SNPs (6,683) despite using low

sequence coverage and only two individuals. Again, a significant

number of polymorphisms in our samples may have been

overlooked because of the stringent methodology used to declare

SNPs. The advantage of the stringent filtering of the reads is that it

provided a higher quality data set. Reads used for contigs assembly

shared high sequence identity (around 97% mapped accurately)

with the L. africana genome.

Previous attempts to identify SNPs in other non-model species

using high throughput sequencing technology have been of two

kinds: (1) full genome sequencing using very high level of coverage

[56] which is still impractical for many non-model species, and (2)

low coverage sequencing on several (.6) individuals coupled with

the approach of generating a RRL library (reduced representation

of the genome) [9]. The second approach remains popular and

efficient as thousands of high quality SNPs were discovered even in

the absence of an available genome sequence. For instance, using

an RRL approach , 150,000 SNPs were identified in mallard

duck [36] and 20,000 SNPs in the great tit [9]. But RRL is limited

to a few non-model species due to difficulty in obtaining samples

for endangered species. But, the crucial point that must be stressed

is that 454 sequencing scheme used here allowed us to identify

SNPs with only 2 individuals from a species with low genetic

diversity. This is very good news for conservation biologist working

on species for which high-quality samples (blood, tissue) are

difficult to obtain.

One of the major challenges as identified in our data was that

RAD-seq yielded a high number of candidate SNPs with high

coverage but a large proportion (around 75%) of the identified

SNPs loci were found inappropriate for SNP assay design. This

was due to their proximity to the ends of the large contigs and/or

rarely due to the presence of other SNPs around them. Thus, in

the absence of a reference genome the number of SNPs with

sufficient flanking sequence for designing a genotyping assay

remains limited [57]. On the other hand, the SNPs obtained from

a 454 run were less numerous (6,683 SNPs in 1,753 contigs),

located on longer contigs, and a large proportion, (96%) of them

resulted in assay conversion rate. This also leads to the question of

how comparable are our SNP validation rate with other studies.

This is not easy to find as most of the studies report SNP detection

in next-generation sequencing data from non-model species with

limited, if any, experimental validation of discovered polymor-

phisms [28]. In this study, we gathered all of the available

information on the discovery of markers and their validation data

to make a comparison across different non-model species from a

literature survey (Table S6). Note that our list is not meant to be

exhaustive. As shown in this table, the conversion rate of

validation assays was found to be variable among various non-

model species. Much higher SNP validation rates (using Illumina

Golden Gate) were observed in some species, such as ,80% of

SNPs were validated in different populations of teleost [8], 88.5%

in common turkey [35], 94.7% in mallard duck [36] and 84% in
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the great tit [9]. Our high validation rate of , 83–94% (for

accurately genotyped SNPs identified using both shotgun, 454 and

RAD-seq Illumina platform) is similar to the studies mentioned

above and is also similar to those observed in other non-model

species (particularly in fish and crop plants), where a RAD-seq was

applied using same depth of coverage. For instance, successful

SNP validation rate of 89.3% (using Illumina Golden Gate assay)

in egg-plant [47] and 100% (using Sanger sequencing) in

threespine stickleback [41] were reported (Table S6). Since

different genotyping platforms were used in these studies for

SNP validation, the results are once again not entirely comparable.

While our primary goal was the identification of SNP markers,

we also identified SSR motifs using both approaches. However,

there were important differences in the results. A much high

number of microsatellites (7,241 di-, 1471 tri-, and 326 tetra-

nucleotides) were identified using 454 sequencing with ,18% of

these loci which had primer design sites that could potentially be

used to amplify and score microsatellite alleles based on length

variation (repeat number). In the case of RAD-seq, 29% of loci (24

di-, and no tri-,-and tetra-nucleotides were identified) were found

suitable for primer design. This indicates that the major drawback

with high throughput sequencing approaches is the current

technical limitation introduced by sequence read lengths

[58,59,60]. Gardener et al., [61] isolated microsatellites using

454 sequencing from 27 vertebrate species and observed that the

most abundant SSR motif type was di-nucleotide followed by

tetra-, and tri-nucleotide repeat classes. Indeed, we also identified

more di-nucleotides from 454 sequencing but the ratios of repeat

classes (between mono-, and di-nucleotides) were very different

(,2.5 in 454 vs. ,35 in RAD-seq). While microsatellites are

normally expected to be more polymorphic than SNPs, this was

not the case here as all newly found microsatellites were

monomorphic. This may be due to a bias in the general approach

since microsatellite polymorphism is correlated positively to repeat

length and only short DNA stretches were identified. But we found

that five of them were polymorphic in other Asian elephant sub-

species (E. m. indicus) even though we only had 3 individuals. This

again confirms that Bornean elephants have extremely low genetic

diversity in comparison to other Asian elephant subspecies. Since

these data on Bornean elephant were collected, the high

throughput sequencing technologies have evolved significantly,

most importantly with the improvement in Illumina read lengths

(now up to 150 bases with the GAIIx) and accommodate paired-

end sequencing from both ends of ,200–600 bp fragments [32].

Similarly, 454 platforms have progressed significantly and will

continue to improve, with a single GS FLX+ run already capable

of generating 700 Mb of sequence data with an average read

length of 700 bp [62].

Another potential issue related with the high throughput

sequencing (also reported in other species) is the assembly of

paralogous regions [8,63,64]. As observed in our validation assay

20% of the loci were labelled as potentially duplicated due to fixed

heterozygosity in data sets from both RAD-seq and 454. Our

ability to distinguish between paralogs and regions exhibiting

similarity due to gene duplications and conversions remains

limited. This also means that there may be additional markers

which we identified as single locus but may in fact correspond to

paralog regions. This could have happened if they were not fixed

for different alleles as this would make their identification more

difficult. Validation for all markers is therefore important to ensure

that the identified SNPs are real single locus markers that can be

used for genotyping. This issue could be overcome and minimized

by combining paired-end sequencing with high coverage but again

taking care of all these issues will also increase the cost of study

[41].

In conclusion, our study (results from both sequencing

methodologies) suggests that despite substantial differences in

sample size, sequence throughput, read length, and average

sequencing depth, similar results were obtained after the validation

in terms of SNPs genotyping success rate. Our ability to identify

thousands of genomic markers with relative ease will also make it

possible to estimate many important parameters, related to

conservation, such as inbreeding coefficients or relatedness. This

will clearly allow conservation biologists to enter the new genomic

era of non-model species.

Methods

Sampling and DNA Extraction
Ethics statement. Samples were collected by the veterinar-

ians at Lok Kawi Wildlife Park and Oregon zoo during the routine

health checks. Ethics approval was not required or sought for this

research, as the sample were not collected specifically for this

study. All samples from Sabah, Malaysia were exported under

CITES (Convention on International Trade in Endangered

Species of Wild Fauna and Flora) permit obtained from Sabah

Wildlife Department.

RAD Paired-end Sequencing Using Illumina Platform
Eight fresh whole blood samples (hereafter sample 1 to 8) were

collected directly from Bornean elephants. Seven samples (sample

1 to 7) were collected from the Lok Kawi Wildlife Park, Sabah,

Malaysia in January 2010 and one additional Bornean elephant

sample (sample 8) was obtained from the Oregon zoo, Portland in

the United States. Genomic DNA was extracted using DNeasy

Blood & Tissue Kit (QAIGEN). 10–12 mg of gDNA was isolated

from each sample at a concentration of 20 ng/ul that was

quantified using Nanodrop, ND-1000 spectrophotometer. High

quality genomic DNA is the most crucial aspect for the success of

high throughput sequencing methods. Therefore, several rounds of

DNA extraction were performed and pooled for the downstream

applications.

Whole Genome Shotgun Sequencing Using 454
Two Bornean elephant whole blood samples (hereafter sample

A and B) were collected along the Kinabatangan River in Sabah,

Malaysia in March 2009 (these two individuals were wild and

different from those used in the RAD-seq method). DNA was

prepared as mentioned above. The shotgun sequencing was

performed at the Microarray and Next Gen Sequencing Facility at

the Center for Applied Genetics and Technology, University of

Connecticut, USA. Sample A and B were run separately in a 2-

region PTP plate.

RAD Paired-end Library Construction and Sequencing
The RAD library was constructed at Floragenex Inc. (Eugene

OR, USA), according to the protocol described by Baird et al.,

[37]. Genomic DNA (0.1–1 mg from each individual) was digested

with the 5-methylcytosine sensitive restriction endonuclease, EagI

and processed into short DNA fragments or ‘tags’. The enzyme

EagI (recognition sequence, C*GGCCG; 6 bp) was selected for

RAD profiling of the 8 elephant sample lines. DNA was digested

for 60 min at 37uC in a 50 mL reaction containing 20 U of EagI

(New England Biolabs, Beverly MA, USA). The reactions were

stopped by holding the temperature at 65uC for 20 min. The P1

adapter (a modified Illumina adapter, see [37]) was ligated to the

products of the restriction reaction, and the ‘‘barcoding’’ of the
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various samples was achieved with a set of index nucleotides in the

P1 adapter sequence. A 2.5 mL aliquot of 100 nM P1 adapter was

added to each sample, along with 1 mL 10 mM ATP (Promega),

1 mL 10 6 NEB Buffer 4.1 mL (equivalent to 1,000 U) T4 DNA

ligase (Enzymatics, Inc) and 5 mL water, and the reaction was

incubated at room temperature for 20 min, followed by heat-

inactivation (20 min at 65uC). Thereafter, the reactions were

pooled and the products randomly sheared to a mean size of

500 bp using a Bioruptor (Diagenode). The material was

electrophoresed through a 1.5% agarose gel, and the DNA in

the range 300–800 bp isolated using a MinElute Gel Extraction

Kit (Qiagen). The DNA ends were treated with end blunting

enzymes (Enzymatics, Inc) to remove overhangs, and the samples

purified by passing through a MinElute column (Qiagen). 39-

adenine overhangs were then added by the addition of 15 U

Klenow exo- (Enzymatics), followed by an incubation at 37uC for

10 min. Following re-purification, 1 mL 10 mM P2 adapter (a

modified Illumina adapter, see [37]) was ligated, as described

above for P1. The samples were then purified as above, and eluted

in a volume of 50 mL. Following quantification (Qubit fluorime-

ter), 20 ng were taken as the template for a 100 mL PCR

containing 20 mL Phusion Master Mix (NEB), 5 mL 10 mM P1

adapter primer (Illumina), 5 mL 10 mM P2 adapter primer

(Illumina) and water. The PCR settings followed product

guidelines (NEB) over 18 cycles. The amplicons were gel purified,

the size range 300–700 bp was excised from the gel and its DNA

content adjusted to 3 ng/mL.

A RAD library containing each sample was sequenced on a

Genome Analyzer (GAIIx, Illumina, San Diego, CA) in two lanes

using an asymmetric sequencing strategy: paired end 40 6 80 bp

sequences were obtained for all 8 samples.

RAD Sequence Analysis, Contig Assembly and SNPs
Calling

The paired-end sequence reads from each sample were

manually collected and segregated by barcode. Once samples

were demultiplexed the quality and quantity of sequence obtain

from each sample was assessed. We identified sample number ‘4’

as having the highest quality and quantity of sequence and

therefore began our analysis with this sample. First, a set of unitag,

or unique RAD single end sequences were identified with coverage

ranging from 5x–500x. Next, all paired-end reads that were

associated with each single-end unitag sequence obtained above

were collected and, the program velvet [65] was used to assemble

consensus contigs (,150–500 bp) from the paired-end data.

Paired-end sequencing enables sequencing of the two ends of the

RAD-tags to be used for local de novo assembly [41]. The SNPs

were called using a short read alignment algorithm which aligned

paired-end non-assembled 80 bp Illumina reads from all elephant

samples against the ‘‘elephant sample 4’’ assembly. In this manner

genotypes were called using SAMtools [66] for each sample.

Heterozygous SNPs were called in two different ways: (1)

SAMtools uses a Bayesian caller to identify SNPs, and (2)

Floragenex internal scripts use a threshold model to identify SNPs

at a default rate of 7.5% alternate allele frequencies. Each SNP

was assigned a designability score via a dedicated ‘‘assay design

tool’’ defined for MassArray/TaqMan platform (http://www.

illumina.com), which identified SNP loci free of other polymor-

phisms 60 bp either upstream or downstream. A quality score,

based on the probability of good performance using the Illumina

Golden Gate assay, was assigned to each SNP, where a score .0.6

indicated a high probability of success.

Validation of SNPs
The identified contigs were used to design a group of

multiplexed genotyping assays using the Sequenom MassArray

Assay Design software (Sequenom, San Diego, CA, USA). To

facilitate assay design, we screened the complete SNP panel to

identify those alleles free of flanking polymorphisms (60 bp

flanking SNPs in 59 and 39 direction, total window of 120 bp).

Up to 40 different SNPs can be multiplexed in one assay, if

primers are designed by the custom software to give unique mass

range for each SNP. For contigs containing more than one SNP,

only one SNP was selected per contig for validation. In addition,

SNPs were discarded if the contig did not have at least 30 bp on

either side of the SNP to allow for amplification. Multiplexes and

primer sets are available from the first author upon request. Once

the assays were identified, large-scale surveys of their frequencies

were performed using the Sequenom iPLEX genotyping platform

[67]. In this method, a short section of DNA containing a SNP is

amplified from an individual sample by PCR. This is followed by a

high-fidelity single-base primer extension reaction over the SNP

being assayed, using nucleotides of modified mass. The different

alleles therefore produce oligonucleotides with mass differences

that can be detected using highly accurate Matrix-Assisted Laser

Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spec-

trometry. The software (SpectroTYPER) from Sequenom auto-

matically translates the mass of the observed primers into a

genotype for each reaction. The assay design was used for

genotyping in a 384-well plate that included diluted E.m. borneensis

genomic DNA samples (,20 ng DNA /in 30 ml of water). For

allele separation, the Sequenom MassARRAYTM Analyzer

(Autoflex mass spectrometer) was used. Genotypes were assigned

by the MassARRAY SpectroTYPER RT v3.4 software (Seque-

nom) based on the mass peaks present. The resulting data were

manually inspected using SEQUENOM System Typer 4.0. The

software uses a three parameter model to calculate significance of

each putative genotype. A final genotype is called and assigned as

‘conservative’, ‘moderate’, ‘aggressive’, ‘low probability’, and ‘user

call (manual calls)’ based on degree of confidence. SNPs were

classified as ‘‘failed assays’’ when the majority of genotypes could

not be scored due to low probability or when the samples did not

cluster well according to genotype. SNPs that were out of Hardy-

Weinberg Equilibrium (HWE) in one or more samples were cross-

checked. Multiplex assays (plex 1 to plex 4) targeting 124 unique

SNPs randomly selected from the set of identified SNPs were

genotyped across a panel of seven elephants which are also the

individuals used to discover the markers. Each elephant blood

sample was amplified in 3–5 different replicates (average 4

replicates for each plex). After repeated genotyping, it is necessary

to construct a consensus multilocus genotype (the most likely

genotype based on all polymerase chain reaction (PCR) amplifi-

cations of a sample) and to estimate the genotyping error rates

[68]. We used rigid criteria in scoring and accepting consensus

genotypes in order to minimize potential genotyping errors [69],

including the scoring of alleles and the validation by two persons

independently. Therefore, we counted the number of positive

PCRs (estimated error rates for a set of genotypes from repeated

PCR) giving correct or consensus genotype. The proportion of

genotyping errors, such as allelic dropout (when a heterozygote

individual is genotyped as homozygote) and false alleles (when a

homozygote individual is genotyped as heterozygote) was assessed

using GIMLET v. 1.3.2 [70]. Analysis to estimate genetic diversity

was performed using PEAS v1.0 (a Package for Elementary

Analysis of SNP data) [71].
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454 Library Preparation and Sequencing
500 ng of starting DNA was used in the 454 FLX shotgun

library preparation, following the manufacturer’s protocol and

quality control steps.

454 Sequence Assembly, Mapping and Marker Detection
Reads generated from whole genome shotgun sequencing of the

two elephants (sample A and B) were aligned to generate a

combined de novo assembly using the program GS Assembler

v2.5.3 (454 Life Sciences). To explore data quality and relevance,

we used draft genome sequence of African savanna elephant

(Loxodonta africana) (loxAfr3; http://www.broadinstitute.org/ftp/

pub/assemblies/mammals/elephant/, has been sequenced to 7x

coverage, July 2009) to map the reads. A recent study by Rohland

et al., [72] (using coalescent estimates) determined the range for the

split between Loxodonta and Eurasian elephantids as 4.2–9 Ma

(million years). For SNP prediction, reads from the two elephant

samples were then mapped to the combined assembly contigs

using the Burrows-Wheeler Aligner (BWA) and the SW algorithm

longer reads [73]. Data was processed to identify the SNPs

between the reference and reads from the two Bornean elephant

samples. Mapping results were then processed in SAMtools to

build and filter ‘pileup’ files. Alignment of the short reads and

consensus base calls were made using the MAQ software [66] and

results were filtered based on SNP quality scores where only

variable sites were reported. SNPs were positively identified, if

SNP quality scores was greater than or equal to 20 or, if identify as

an indel, greater than or equal to 50. SNP genotyping was

performed only for a single set of identified multiplex assay (plex 5)

consists of 37 independent SNPs.

Microsatellite Detection and Primer Designing
8,432 contigs and 9,763 contigs from assemblies for elephant

samples A and B, respectively, were converted into single FASTA

format files. To develop a set of about 20–30 microsatellite

markers, we conducted several screenings with different search

criteria, i.e. using different minimum repeat lengths (between 3

and 6 for di-, tri-, and tetra-nucleotides) in order to extract a total

of 50–100 sequences with microsatellite repeats using MSAT-

COMMANDER version 0.8.1 [74]. This software has an inbuilt

workflow that enables the simultaneous detection of repeat motifs.

We were interested in targeting small DNA product size (100–

200 bp) to apply these markers on non-invasive elephant samples.

The primers were designed manually using the software OLIGO

version 3.4 [75]. The contigs chosen were the ones with the longest

reads to get the best primer options. If the microsatellite repeat is

detected too close to the extremity of the contig, the locus is

discarded. We screened contigs with microsatellite loci for flanking

regions with high quality PCR priming sites; we refer to such loci

as ‘potentially amplifiable loci’ or PAL. We designed primers for

only a subset of PAL (with $4 repeats for di-, tri-, and tetra-

nucleotide classes). 55 primers were designed (12 di-, 10 tri-, and

33 tetra-nucleotides) and were tested in the lab.

Validation of Microsatellites
The PCR amplified products were sequenced to confirm the

microsatellite repeat before fluorescent tagging. Variability of

microsatellite loci was analyzed by PCR using a 59-fluorescence-

labelled forward primer by using 20–30 ng of genomic DNA as

template. PCR was performed in a total volume of 10 mL,

containing 10 mM Tris-HCl, pH 9.0, 50 mM KCl, 2 mM MgCl2,

0.2 mM of each dNTP, 0.2 mM of both forward and reverse

primer, and 0.75 U Taq polymerase (QBIOgene). Amplifications

were performed using touchdown PCR in a BioRad (My Cycler)

thermocycler with the following reaction profile: initial denatur-

ation at 95uC for 3 min, 15 cycles: 95uC for 30 s, an elevated

locus-specific annealing temperature Ta +7.5uC for 45 s, 72uC for

1 min; 20 cycles: 95uC for 30 s, TauC for 45 s, 72uC for 1 min;

and a final extension at 72uC for 5 min. Fragment size was

determined on a 3130 Genetic Analyzer (Applied Biosystems)

multicapillary automatic sequencer using the GENEMAPPER

version 3.7 and an internal size standard (ROX 500, Applied

Biosystems). The newly designed microsatellite primers for di-, tri-,

and tetra-nucleotide loci were screened on seven Bornean and

three other Asian elephant samples (E. m. indicus) and genotypes

were recorded.

Characterization of the Contigs from 454 and RAD-seq
(Illumina)

Contigs containing potential SNPs including those validated by

genotyping (i.e., 37 from the 454 run and 518 from RAD-seq) were

used for Blastn searches and gene ontology (GO) annotation. Also,

a precise blast was performed by using FASTA files containing just

short sequences of 120 bp SNP flanking sequences to determine if

the putative SNPs were associated with genes, not to provide a

complete annotation of these sequences. All contigs were queried

against the sequence database of L. africana genome (Ensembl

genome assembly for L. africana) using NCBI Basic Local

Alignment Search Tool (BLAST+, version 2.2.26+). The gene

ontology annotation files linking the gene ontology terms to the

Ensembl L. africana gene identifiers were obtained from biomart

(http://www.biomart.org). The contigs from Bornean elephant

were annotated with the gene ontology terms associated with the

orthologous L. africana gene. The Blastn searches were performed

using e-value cut-off of 1025 and the best alignment match and

overlapping positions were noted.

Supporting Information

Table S1 List of RAD tags/loci with genotypes. A

complete list (vcf file) of all RAD tag/loci where genotypes were

obtained for all individuals (100%) for 1,200 loci/RAD tags, and

for 75% of the individuals (i.e. six or more) for 1,700 loci. For the

remaining 400 loci, the SNPs were shared by less than six

individuals. Eight E. m. borneensis samples were used in the

discovery panel of RAD-sequencing using Illumina platform.

(XLSX)

Table S2 Summary of SSRs (simple sequence repeats)
identified in the Bornean elephant sequence dataset. The

number of SSRs or microsatellite loci identified in E. m. borneensis

(n = 2) using the 454 shotgun sequencing approach, and the subset

of these that are potentially amplifiable (containing suitable PCR

priming sites) and validated. The di- and tri-nucleotide microsat-

ellite repeat classes ($3) were more abundant than the tetra-

nucleotides.

(XLSX)

Table S3 Estimation of genetic diversity and genotyping
error rates. Comparison of observed heterozygosity (Ho),

missing genotypes, allelic dropout, number of positive PCRs, false

alleles, and mean number of allele (MNA) for the genotyped

samples of E. m. borneensis (n = 7) and E. m. indicus (n = 3). Multiplex

assays (five plexes) targeting 194 unique SNPs were validated

across all elephant samples using Sequenom iPLEX platform.

Note that plex1 to plex 4 (124 loci) represent assays developed for

SNPs identified using RAD-sequencing and plex 5 (37 loci)
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represent SNPs identified through 454 shotgun sequencing (see

Methods).

(DOC)

Table S4 Gene Ontology (GO) term representation of
454-contigs. The GO terms were obtained for 454 contigs

containing SNPs using Ensembl gene annotation of L. africana. In

these 454-contigs, 24 unique GO terms were represented.

(XLSX)

Table S5 Gene Ontology (GO) term representation of
RAD-seq contigs. The GO terms were obtained for RAD-

contigs containing SNPs using Ensembl gene annotation of L.

africana. In these RAD-seq contigs, 35 unique GO terms were

represented.

(XLSX)

Table S6 Recent SNP discovery efforts in non-model
species. A literature review of recent SNP discovery efforts in

non-model species using high throughput sequencing platforms.

(XLSX)
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