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The emergence of multi- and extensively drug resistant tuberculosis worldwide poses

a great threat to human health and highlight the need to discover and develop new,

effective and inexpensive antituberculosis agents. High-throughput screening assays

against well-validated drug targets and structure based drug design have been employed

to discover new lead compounds. However, the great majority fail to demonstrate any

antimycobacterial activity when tested againstMycobacterium tuberculosis in whole-cell

screening assays. This is mainly due to some of the intrinsic properties of the bacilli,

such as the extremely low permeability of its cell wall, slow growth, drug resistance,

drug tolerance, and persistence. In this sense, understanding the pathways involved

in M. tuberculosis drug tolerance, persistence, and pathogenesis, may reveal new

approaches for drug development. Moreover, the need for compounds presenting a

novel mode of action is of utmost importance due to the emergence of resistance not

only to the currently used antituberculosis agents, but also to those in the pipeline.

Cheminformatics studies have shown that drugs endowed with antituberculosis activity

have the peculiarity of being more lipophilic than many other antibacterials, likely because

this leads to improved cell penetration through the extremely waxy mycobacterial cell

wall. Moreover, the interaction of the lipophilic moiety with themembrane alters its stability

and functional integrity due to the disruption of the proton motive force, resulting in

cell death. When a ligand-based medicinal chemistry campaign is ongoing, it is always

difficult to predict whether a chemical modification or a functional group would be suitable

for improving the activity. Nevertheless, in the “instruction manual” of medicinal chemists,

certain functional groups or certain physicochemical characteristics (i.e., high lipophilicity)

are considered red flags to look out for in order to safeguard drug-likeness and avoid

attritions in the drug discovery process. In this review, we describe how antituberculosis

compounds challenge established rules such as the Lipinski’s “rule of five” and how

medicinal chemistry for antituberculosis compounds must be thought beyond such

dogmatic schemes.
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INTRODUCTION

Tuberculosis, caused by Mycobacterium tuberculosis, remains a
major public health problem worldwide. Nowadays, tuberculosis
is the leading cause of death due to a single infectious agent. In
2016, the World Health Organization has estimated 10.4 million
new cases of tuberculosis with 1.3 million deaths in the same
year (WHO, 2017). Moreover, it is estimated that one third of the
world’s population asymptomatically harbors M. tuberculosis, of
which 10% will develop active disease in their lifetime. Although
drug susceptible tuberculosis can be cured within 6–8 months
with the current standard treatment regimen, the emergence of
multi- and extensively drug resistant (MDR/XDR) tuberculosis,
whose treatment takes at least 20 months with predictable low
outcomes (Falzon et al., 2011), poses a great threat to human
health and highlights the need to discover and develop new and
effective antituberculosis treatments. The underlying reason for
the long treatment is the presence of M. tuberculosis cells that
undergo a reversible metabolic shutdown (Lewis, 2010), resulting
in a dormant state. During tuberculosis infection, patients can
harbor three different M. tuberculosis sub-populations: (i) the
first corresponds to the actively growing extracellular bacteria
that are usually present within aerated cavities; (ii) the second
consists of intermittently growing bacilli; and (iii) the third
sub-population corresponds to dormant bacilli that are present
in lesions characterized by an acidic environment and under
anaerobic conditions, such as in inflammatory lesions or within
macrophages (Mitchison, 1979, 1985), and are unaffected by the
standard therapy. At this regard, dormancy is different from
persistence, as the latter involves a preexisting non-growing
subpopulation which displays a non-heritable ability to survive
exposure to high concentrations of an antibiotic (Louw et al.,
2009). Dormant cells are a double-edged sword: they can remain
dormant during the lifetime of an individual, or they can
resuscitate at any moment and progress to active tuberculosis.
This occurs mainly in immunocompromised patients such as
those co-infected with human immunodeficiency virus (HIV),
with diabetes, or it can be simply due to aging (Caño-Muñiz
et al., 2018). For this reason, the main goal of the ongoing
WHO/TB Alliance drug discovery programs is the identification
of more-effective drugs with new modes of action with potential
to shorten the duration of therapy (Uplekar et al., 2015; Tacconelli
et al., 2018) toward the killing of actively growingM. tuberculosis
and also the effective elimination of the dormant cells. This
goes hand in hand with the need to combat the emergence
of resistance to new drugs, by identifying gene mutations
and molecular drug targets that counteract resistance (Vjecha
et al., 2018). Innovative therapies targeting both replicating
and dormant M. tuberculosis are critical for the development
of more effective and shorter treatments, as the most needed
basis for future pharmaceutical translation and clinical
trials.

Medicinal chemistry remains an important means to achieve
better treatments and reach the final goal of tuberculosis
eradication. Basic medicinal chemistry rules have been described
overmany years and used to rationalize the design ofmany drugs.
However, in the case of antituberculosis molecules, consistent

adjustments of these rules have been made. Aim of this review is
to enrich the tool-kit for antituberculosis drug design, critically
analyzing the several structural peculiarities of those molecules
in the antituberculosis pipeline, that are seldom found in other
therapeutic classes and that make these drugs unique in the
medicinal chemistry landscape. Also, a particular focus will be
given to the issue of energy depletion, protonmotive force (PMF),
and transporters in M. tuberculosis, as these are hot topics in the
current antituberculosis drug discovery.

STATE-OF-THE-ART OF TUBERCULOSIS
DRUG DISCOVERY

Tuberculosis drug development has faced a major upsurge
in the last two decades resulting in a growing pipeline of
new potential antituberculosis drugs (Figure 1) (Laughon and
Nacy, 2017). Since the release of M. tuberculosis genome
sequence (Cole et al., 1998), several efforts have been made
for the identification of new key proteins based on gene
essentiality. All of a sudden, the high abundancy of drug targets,
the majority of which well-validated, gave the feeling that
eradication of tuberculosis was just a matter of time. Therefore,
massive high-throughput screening campaigns and target-based
drug design approaches were employed to discover new lead
compounds hitting key enzymes for M. tuberculosis survival
(Payne et al., 2007; Fischbach and Walsh, 2009). Unfortunately,
this approach has not led to any new drug to date, since the great
majority of the novel compounds, despite remarkable activity
in the biochemical assays, failed miserably to demonstrate the
corresponding activity when tested against M. tuberculosis in a
whole-cell screening assay. One of the reasons for this failure
includes the inability to guarantee “druggability” based on the
essentiality of the proteins (Keller et al., 2006); undoubtedly,
the main reason of this lack of correspondence resides in the
extremely challenging task that poses reaching a given target
inside the mycobacterial cell. The low permeability of the cell
wall appears to be vital for survival of mycobacteria within the
host hostile environment, and especially to withstand therapy
(Jarlier and Nikaido, 1994). The mycobacterial cell wall has
an unique architecture characterized by high content of lipids
that work as an impermeable barrier against hydrophilic agents
(Jarlier and Nikaido, 1994; Brennan, 2003; Favrot and Ronning,
2012). Along with this basal phenotypic condition, already
demanding in terms of targeting, it is known that dormant
bacteria adapt their cell wall by accumulating free mycolates
and lipoarabinomannan, and transporting them outside the cell
(Bacon et al., 2014; Daniel et al., 2014), altering its lipophilic
character (Seiler et al., 2003). To make things worse, the cell
wall is not the only barrier that a molecule must go through to
reach a whatsoever molecular target in the cytoplasm. Indeed,
mycobacteria infecting the host reside inside macrophages, and
although the macrophage cell membrane is less challenging,
its penetration makes the path of an antituberculosis drug
bouncier than that of generic antibacterials. Finally, after
infection has been established, the formation of granuloma
makes the reaching of intracellular targets of extreme complexity.
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FIGURE 1 | Research and development pipeline for new antituberculosis drugs (adapted from Stop TB partnership, 2014, https://www.newtbdrugs.org/pipeline/

clinical).

Granulomas are structures which contain the infection but
hamper chemotherapeutic action by sequestration of dormant
bacilli within the caseous lesions and cavities, where the net of
blood vessels is absent (Dartois, 2014). These facts suggest two
considerations that are crucial in antituberculosis drug discovery;
first, the whole-cell assay fully outclasses target-based methods as
the main approach to discover novel antituberculosis drugs. Not
by chance, bedaquiline and delamanid, described in details below,
were discovered through this method. Second, it appears obvious
that lipophilicity represents a very important characteristic to
consider in designing new drugs effective againstM. tuberculosis
(Piccaro et al., 2015).

The Phenotypic Approach: Advantages of
the Whole-Cell Screening
Concerning the first aspect, it must be remembered that
the majority of antibacterials were discovered through the
phenotypic screening of natural extracts, at least at the beginning
of the glorious antibiotic era. Further chemical manipulation
of these natural compounds has led to the current antibacterial
arsenal. This strategy has been demonstrated to be much more
successful especially in the case of tuberculosis (Payne et al.,
2007; Koul et al., 2011), as evidenced by the six new drugs
in phase I, II or III of clinical trials, specifically developed
for the treatment MDR tuberculosis, all discovered starting
by the screening of their whole-cell activity (Laughon and
Nacy, 2017). The main reason for this success is that, instead
of using the overly reductionist approach of finding a drug
that hits a single target, screening directly for whole-cell
activity allow to find compounds with pleomorphic mechanisms
of action hitting multiple targets in different pathways to

achieve the desired outcome and bypasses the general problems
associated with drug failure, such as low permeability, drug
efflux, or bacterial metabolic plasticity when targeting its
central metabolism (Mukherjee et al., 2016). The phenotypic
approaches in tuberculosis drug discovery rely on two main
steps, that come before the actual clinical phases (Figure 2):
(i) the testing of diverse chemical libraries of compounds,
using cell-based screens, in order to determinate the minimum
inhibitory concentrations (MICs), followed by (ii) elucidation
of the compound mode of action, validation of its molecular
target and identification of their mode of resistance. The
determination of the molecular target(s) of the candidate
molecules is a main challenge of the phenotypic whole-cell
screening and is instrumental for further optimization. At this
end, new technologies, including in vitro resistance mutation
analysis (Andries et al., 2005; Manjunatha et al., 2006), knockout
studies and construction of conditional mutants (Singh and
Mizrahi, 2017), cytological profiling (Nonejuie et al., 2013),
analysis of transcriptional (Boshoff et al., 2004; Koul et al.,
2014), and proteome responses (Koul et al., 2014) are proving
successful. Usually these demanding approaches rely on the
generation of resistant mutants by exposing M. tuberculosis to
high concentrations of the compound and the identification of
resistance-associated mutations by whole genome sequencing
(O’Malley and Melief, 2015). However, it has been observed that
for some hit compounds is not possible to generate resistant
M. tuberculosis mutants, making the target identification and
validation problematic. In these cases, post-genomic tools have
the potential to aid in the identification of the target(s) and
compound mode of action, e.g., using transcriptional profiling
(Boshoff et al., 2004) or high-throughput metabolomic analysis
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FIGURE 2 | Tuberculosis drug discovery. The figure shows the drug-to-target whole-cell phenotypic approach in the search for new tuberculosis drugs. MBC,

minimum bactericidal concentration; MIC, minimum inhibitory concentration. SAR, structure–activity relationship.

(Zampieri et al., 2018), before and after drug exposure, and reveal
M. tuberculosis transcriptional profiles or metabolic responses
allowing to correlate with the compound mechanism of action.
Another challenge of the phenotypic screenings is to identify
the right in vitro conditions that are relevant in vivo, e.g.,
compounds that target metabolic enzymes may require specific
growth conditions (Pethe et al., 2010). Moreover, the phenotypic
screening of compounds has the potential to deliver thousands
of new hits, however, many of these may have cytotoxic effects,
that can be identified using counter-screening methods (e.g.,
screening for toxicity against eukaryotic cell lines, effect on
membrane permeability, and red blood cell hemolysis assays) to
achieve good selectivity and specificity (Hurdle et al., 2011; Koul
et al., 2014).

Lipophilicity and M. tuberculosis: The Odd
Couple
Lipophilicity, although regarded as an ostracized characteristic
in medicinal chemistry, plays a pivotal role in the design of
novel antituberculosis compounds. Overall, it can be stated that
the lipophilicity of a molecule corresponds the partitioning into
M. tuberculosis cell wall and, possibly, into the hydrophobic
phases of caseum, and suggests that general lipophilic character
should be pursued in drugs for antituberculosis treatment. This
notion may sound odd, especially if one considers the first-
line antituberculosis drugs: isoniazid and pyrazinamide both
have negative ClogP, whereas ClogP of ethambutol is 0.35.
However, it has been deeply demonstrated that compounds with
antituberculosis activity are more lipophilic than the inactive
ones (Ekins et al., 2011), and not only in general, but also within a
drug class, lipophilic derivatives are in generalmore active against
mycobacteria than their more hydrophilic counterparts (Mao
et al., 2009; Lilienkampf et al., 2010, 2012; Pieroni et al., 2010,
2011, 2017). Below, a critical analysis of the current hot biology

challenges (energy depletion, PMF, and drug transporters) and
their interconnection with the lipophilicity of molecules is
reported.

M. tuberculosis BIOLOGY CHALLENGES:
FOCUS ON ENERGY DEPLETION

Energy Metabolism as a New Drug-Target
Pathway in Tuberculosis Drug Discovery
Recent advances have populated the tuberculosis drug discovery
pipeline with promising drug candidates and new interesting
target/s or pathways. Among these, the complex and waxy cell
wall of M. tuberculosis has emerged as an intriguing source
of new drug targets (Table 1). Several drugs whose mechanism
of action is known to affect the mycobacterial cell membrane
and metabolic energy and respiration are now in the pipeline,
highlighting a major role of energy metabolism as a new drug
target pathway in mycobacteria (Figure 3).

Collapsing M. tuberculosis Proton Motive
Force
The development of more efficient and shorter treatments
for tuberculosis requires the rapid killing of actively growing
M. tuberculosis and the effective elimination of persistent
dormant cells. Ideally, a new antituberculosis drug needs
to be active against both replicating and non replicating
M. tuberculosis, penetrate within tissues and granulomas, and
show a low and slow propensity for drug resistance (de Carvalho
et al., 2011; Feng et al., 2015;Moreira et al., 2016;Mukherjee et al.,
2016). The shift to a dormant state involves several phenotypic
changes that reduce bacterial metabolic activity and modify the
overall architecture of the cell wall. In this sense, the cellular
targets of the current antituberculosis drugs that are required for
M. tuberculosis growth and survival during active infection are
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FIGURE 3 | Schematic illustration of the M.tuberculosis cell membrane, including the electron transport chain (ETC), efflux pumps (EPs), and the site of action of

several antituberculosis drugs. The great majority of the drugs (approved for tuberculosis, new or repurposed) target both enzymes (black lines) and the PMF (red).

Blue line shows the classic protonophores disrupting the PMF and the green line indicates the efflux inhibitors that target several mycobacterial efflux pumps. By

damaging the cell membrane, the lipophilic drugs will affect the activity of several membrane enzymes such as those involved in the ETC and efflux pumps responsible

for the extrusion of several compounds from the cell. The inhibition of any component of the ETC reduces energy production and disrupts membrane potential.

Consequently, the disruption of the PMF reduces the activity of the efflux pumps. Regarding the mode of action of the compounds see the text for details. NDH1,

NADH dehydrogenase type I; NDH2, NADH dehydrogenase type II; SDH, succinate dehydrogenase; MK, menaquinone; Cyt C, cytochrome c; PMF, proton motive

force; DPR, decaprenylphosphoryl-β-d-ribose 2′-epimerase; SMR, small multidrug resistance; ABC, ATP binding cassette; MFS, major facilitator superfamily; RND,

resistance-nodulation and cell division.

not essential for the survival of dormant cells, thus rendering
the bacteria phenotypically drug tolerant (Gengenbacher and
Kaufmann, 2012). Nevertheless, the maintenance of bacterial
membrane integrity and homeostasis is essential regardless the
metabolic status of the cell (Hurdle et al., 2011). The recognition
of some drugs targeting the bacterial cell membrane (e.g.,
daptomycin, televancin, bedaquiline, clofazimine) validates the
membrane as an antibacterial target (Yawalkar and Vischer,
1979; Andries et al., 2005; Hawkey, 2008; Zhanel et al., 2010)
and a number of antituberculosis drugs in the pipeline target
membrane proteins (Lechartier et al., 2014). The mycobacterial
cell wall is rich in surface lipids, long chains of mycolic
acids, and peptidoglycan, thus is not surprising that they
display a preference for lipophilic molecules leaving behind the
more hydrophilic ones (Jarlier and Nikaido, 1994; Brennan,
2003). The PMF is established through the development of
the transmembrane proton gradient which occurs due to the
movement of electrons through the electron transport chain,
resulting in the formation of the membrane potential (Mitchell,
1967). Oxidative phosphorylation is the main source of energy
production in mycobacteria. M. tuberculosis is an obligate
aerobic pathogen and consequently it depends on oxidative
phosphorylation for growth and survival. During oxidative
phosphorylation, the electrons derived from NADH are fed into
the electron transport chain by the type II NADH dehydrogenase
(NDH-2), leading to the reduction of the menaquinone pool
(MK/MKH). Additionally, the MK/MKH can also be reduced by
alternative electron donors, e.g., via the succinate dehydrogenase

(SDH). Electrons can be transferred directly from the MK/MKH
to the cytochrome bc1-aa3 complex or alternatively, the oxygen
can be reduced by a cytochrome bd-type terminal oxidase,
which directly accepts electrons from the MK/MKH (Black
et al., 2014; Bald et al., 2017; Iqbal et al., 2018). The proton
gradient generated through oxidative phosphorylation leads to
ATP synthesis via the ATP synthase which is responsible for
the conversion of the electrochemical potential energy generated
by the PMF into chemical energy in the form of ATP (Feniouk
et al., 2007). The PMF is the sum of two gradients: an electrical
potential (1ψ) and a transmembrane proton gradient (1pH).
The majority of bacteria is able to maintain a relatively neutral
intracellular pH that is controlled by the activity of ion transport
systems which facilitate the entry or exit of protons (Booth,
1985). At neutral pH, the PMF is predominantly in the form
of membrane potential, but as the external pH drops, the
transmembrane proton gradient increases and the membrane
potential decreases to maintain a constant PMF and vice-versa
(Bakker and Mangerich, 1981). Under normal growth conditions
and at neutral pH mycobacteria generates a PMF of ∼-180mV
(Rao et al., 2001). Under hypoxia, M. tuberculosis generates a total
PMF of −113mV. Dissipation of the PMF leads to a rapid loss
of cell viability and cell death. Thus, energy metabolism and ATP
production through the PMF, which is established by the electron
transport chain, significantly contribute to drug susceptibility in
M. tuberculosis (Black et al., 2014). In this sense, combinations
of dissipaters of membrane potential with dissipaters of the
transmembrane gradient might be highly synergistic (Farha et al.,
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2013) against M. tuberculosis infections. This multiple targeting
is of utmost importance in overcoming the development of
drug resistance because the main target is not an enzyme per
se, but rather the product of complex biosynthetic pathways
(Feng et al., 2015; Moreira et al., 2016; Mukherjee et al., 2016).
Mycobacteria are highly sensitive to compounds that dissipate
the membrane potential as the uncouplers/protonophores, in
addition to the binding to their enzyme targets (de Carvalho et al.,
2011; Rao et al., 2013; Feng et al., 2015; Moreira et al., 2016;
Mukherjee et al., 2016). Feng et al. (2015) have demonstrated
that the antituberculosis activity of uncouplers/protonophores,
compounds that target the PMF, is directly proportional to
their lipophilicity. Thioridazine, a compound that target the
NDH-2, causes dissipation of the membrane potential and cell
death, suggesting NADH as an important electron donor for the
generation of the membrane potential during hypoxia (Rao et al.,
2013). Further, inhibitors of the SDH, as 3-nitropropionate, are
also able to dissipate the membrane potential under hypoxia,
also suggesting SDH as another important generator of the
membrane potential in nonreplicating conditions (Eoh and Rhee,
2013; Pecsi et al., 2014). Other examples of uncouplers are
bedaquiline and clofazimine, another NDH-2 inhibitor (Feng
et al., 2015). Uncouplers/protonophores are highly bactericidal
toward replicating and nonreplicating (active and dormant)
M. tuberculosis cells, further highlighting the importance of
the membrane potential in mycobacterial viability. Although
it is generally expected that this type of compounds show
toxicity toward human cells, several of the US Food and Drug
Administration-approved drugs act as uncouplers in addition to
the inhibition of targeting enzymes (Feng et al., 2015).

TARGETING MYCOBACTERIAL EFFLUX
PUMPS

Compounds that inhibit bacterial energy metabolism could be
highly synergistic in combination with the current treatment
regimens due to their interference with efflux of drugs. The
concept of enhancing the activity of the current antituberculosis
drugs by employing efflux inhibitors is quite appealing for several
reasons. As for many bacterial species, the main mechanisms
associated with drug resistance in M. tuberculosis involves
the development of mutations in target genes (Böttger, 2011)
and the activity of efflux transporters capable of pumping
antibiotics out of the cell (Louw et al., 2009; Viveiros et al.,
2012; Costa et al., 2016). Efflux pumps are now increasingly
recognized as playing a significant role in the resistance levels
of M. tuberculosis to antibiotics (Machado et al., 2017, 2018),
being associated with the emergence of multidrug resistance
phenotypes (Viveiros et al., 2002; Machado et al., 2012). It
was shown that the decrease of intracellular concentrations of
antituberculosis drugs due to an adaptive increase of efflux
activity allows the bacteria to survive in the host for a
longer period of time under antibiotic pressure (Machado
et al., 2012), increasing the probability of selecting spontaneous
mutants with high-level resistance. Also, since they do not
kill bacteria, these agents are likely exempt from the raise of

resistance (Zumla et al., 2016). Efflux pumps are energized
by the hydrolysis of ATP or by the PMF, therefore drugs
that are able to disrupt the PMF or block the production
of ATP exhausting energy supply can be an effective strategy
to evade drug efflux (Black et al., 2014; Machado et al.,
2016; Pule et al., 2016). Energy in the form of ATP is
used by the primary transporters (ATP binding cassette efflux
transporter); on the contrary, the secondary transporters,
e.g., the resistance nodulation cell division and the major
facilitator superfamily of efflux transporters, act based on
the electrochemical gradient generated by the PMF (Kumar
and Schweizer, 2005; Piddock, 2006). Therefore, compounds
inhibiting oxidative phosphorylation may indirectly interfere
with efflux activity. M. tuberculosis drug resistance can be
reduced in the presence of efflux inhibitors such as thioridazine,
chlorpromazine, flupenthixol, and haloperidol (antipsychotic
drugs), verapamil (an antiarrhythmic drug) (Machado et al.,
2016), and the typical protonophores carbonyl cyanide m-
chlorophenyl hydrazone (CCCP), 2,4-Dinitrophenol (DNP), and
valinomycin (Pule et al., 2016). Phenothiazines are calcium
channel blockers and inhibit efflux activity by reducing the
transmembrane potential. Verapamil is an inhibitor of the
ABC transporter Pgp in mammalian cells (Endicott and Ling,
1989). It has been shown to be the most potent mycobacterial
inhibitor of efflux, being able to enhance the inhibitory activity of
isoniazid (Machado et al., 2012, 2016, 2018), rifampicin (Louw
et al., 2011; Machado et al., 2016, 2018) and the novel drug
bedaquiline (Gupta et al., 2013) by several folds. It has also been
shown that the addition of verapamil accelerates the bactericidal
and sterilizing activities of tuberculosis therapy in the mouse
model (Gupta et al., 2013). Using docking studies, it found
that verapamil can bind to the M. tuberculosis Rv1258c efflux
transporter (Singh et al., 2014). Very recently it was shown that
verapamil disrupts M. tuberculosis membrane potential (Chen
et al., 2018). The phenothiazines inhibit the NDH-2 enzyme
(Weinstein et al., 2005; Warman et al., 2013) causing dissipation
of the membrane potential. Thioridazine and chlorpromazine
have been shown to have active efflux inhibition properties
and to inhibit the in vitro growth of M. tuberculosis strains
alone or in combination with anti-mycobacterial drugs (Amaral
et al., 2007; Machado et al., 2016). Thioridazine demonstrates
significant activity against multidrug resistant tuberculosis in a
murine model (van Soolingen et al., 2010) and, in addition,
it was shown that these compounds were able to increase
the intracellular levels of ethidium bromide in M. tuberculosis
(Machado et al., 2016, 2018). The inhibition of efflux and its
antituberculosis activity were correlated with ATP depletion
providing a link between the inhibition of efflux activity and
the interference with membrane energetics (Machado et al.,
2016). Likewise, Lu et al. have demonstrated the same effect
for the ATP synthase inhibitor bedaquiline in M. smegmatis
(Lu et al., 2014). Efflux activity also mediates the resistance
of intracellular M. tuberculosis to a variety of antituberculosis
drugs, including isoniazid, rifampicin, moxifloxacin, PA-824,
linezolid, and bedaquiline. Adams et al. has demonstrated that
the selective pressure exerted by the macrophage on internalized
M. tuberculosis can induce the bacteria efflux pumps and thus
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drug tolerance. The addition of the efflux inhibitor verapamil
or its metabolites was able to reverse the tolerance to isoniazid
and rifampicin (Adams et al., 2011, 2014) highlighting the
importance and benefits of combined therapeutic regimens
(Martins et al., 2008). The delivery of antituberculosis drugs
in conjunction with efflux inhibitors may provide an effective
therapeutic approach that obviates the serious side effects
resulting from the current chemotherapeutic applications and
provides a new approach for the therapy of multidrug resistant
infections. These compounds are ideal candidates that can be
tested in combination with conventional antibiotics not only
because they promote the retention of the co-administered
antibiotics but also because these compounds enhance the
killing activity of the macrophages. Disruption of the PMF with
efflux inhibitors, due to inhibition of the respiratory chain,
results in the inhibition of energy-dependent efflux systems in
M. tuberculosis, therefore the retention of antibiotics subject
to active efflux is a suitable option for drug combination
regimens needed to fight MDR M. tuberculosis. This will
prevent emergence of acquired drug resistance and ultimately
eliminate M. tuberculosis once used in combination with the
antituberculosis drugs. The design of innovative therapies based
on the use of efflux inhibitors targeting both replicating and
dormant M. tuberculosis, exploring their dual activity—PMF
dissipation and efflux inhibition—will be a valuable tool for
the development of more effective and shorter treatments for
tuberculosis and to fight multi- and extensively drug resistant
tuberculosis.

MEDICINAL CHEMISTRY FOR
ANTITUBERCULOSIS DRUGS: MIND THE
FAT

Cheminformatics studies have shown that drugs endowed with
antituberculosis activity have the peculiarity of being more
lipophilic than many other antibacterial compounds (Ekins et al.,
2011; Goldman, 2013; Lakshminarayana et al., 2015; Piccaro
et al., 2015). The improved antituberculosis activity of lipophilic
compounds is linked to improved cell penetration into the
extremely waxy mycobacterial cell wall. As previously seen, in
some cases the interaction of the lipophilic moieties with the
membrane alters its stability and functional integrity due to the
disruption of the PMF, resulting in cell death (Hurdle et al.,
2011). Lipophilicity has been often considered the Achilles’ heel
of every drug class. Over the years, “empirical rules” have been
established regarding the acceptable physiochemical properties
and structural motifs for drugs, to better understand and
manage drug development risks associated with their molecular
properties (Hansch et al., 1987). These efforts have led to the
release of the almighty Lipinski’s “rule of five” (Lipinski et al.,
1997), that gives a rough evaluation of the potential of a small
molecule to be absorbed after oral administration. According
to the “rule of five,” absorption and/or permeation are more
likely if a compound complies with one or more of the following
properties: molecular weight (MW) <500 Da, ClogP <5,

hydrogen bond donors (HBD) <5, or hydrogen bond acceptors
(HBA) <10. After this first attempt to rationalize the absorption
as a function of the molecular properties, implementations were
made. Veber’s rule added that compounds with <10 rotatable
bonds and a polar surface area (PSA) <140 Å2 are more
likely to be orally bioavailable (Veber et al., 2002). Gleeson
revised some of these parameters, suggesting an improvement
of the ADMET characteristics when MW <400 and CLogP <4
(Gleeson, 2008). Since its enunciation, the Lipinski’s “rule of
five” has been considered a standard rule of thumb to rapidly
assess whether a molecule has a good balance of solubility
and permeability, and has driven the rational design of novel
chemical entities endowed with biological activity. However,
adherence to the “rule of five” is only one of the characteristics
embraced by the notion of drug-likeness. Indeed, other structural
red flags, such as the presence of functional groups known
to be metabolically reactive, or bulky, or toxic per se, must
be considered when the synthesis of a drug-like molecule is
pursued. Violation(s) of the above described parameters are
considered detrimental in view of further development, and are
used to set up in silico filtering of large libraries of compounds
by many pharmaceutical companies. If the “rule of five” is
one of the most significant statistical means for the design of
new drugs, a common complain, sometimes used to justify
the synthesis of poorly drug-like molecules, is that the “rule
of five” does not apply to antibiotics or, more in general, to
antibacterials. Although mostly true, this objection is incomplete
and it should be rephrased: to be more accurate, the “rule of
five” do not apply to natural compounds, and since the majority
of antibiotics are natural compounds or thereof derivatives,
then this rule does not apply to antibacterials. On the contrary,
molecules coming from the synthesis are strongly suggested
to follow the “rule of five,” in order to prevent attritions
in the pharmaceutical development (i.e., among antibacterials,
quinolones, and oxazolidindiones). Despite these facts, a close
analysis of the currently marketed drugs used for the treatment
of several diseases, that must be by definition harmless and
effective, shows that a small percentage of them present a
panoply of “forbidden” functionalities (structural alerts) and
“unacceptable” properties, including endoperoxides, compounds
containing nitro- or isothiourea-moieties, large macrocyclic
ring systems and high lipophilicity that fall beyond the drug-
likeness dogma (Doak et al., 2014; Hoagland et al., 2016).
Of this small percentage, a class of molecules for which the
“rule of five” and other basic drug design rules are largely
amended is that of antituberculars. Below we introduce a series
of molecules that will be critically evaluated for their adherence
to the “rule of five” and their drug-likeness. Some of them are
advancing in the clinical trials and likely will succeed in the
clinic, whereas others are still in the preclinical studies or in
the hit-to-lead optimization process. Those chemical entities
originating from old antibacterial classes (i.e., novel quinolones
or oxazolidindiones) will not be taken into consideration in
this critical review, whereas the chemical characteristics of some
molecules to be potentially used as adjuvants in antituberculosis
treatment will be analyzed as well.
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Antituberculosis Drugs: A Class of Its Own
Bedaquiline and TBJ-587

Since the introduction of rifampicin in 1967 (Sensi, 1983),
bedaquiline (Sirturo R©), belonging to the class of the
diarylquinolines (DAQ) is the only new chemical entity
(NCE) developed for the treatment of tuberculosis that has
reached the market (Mahajan, 2013), although its use is restricted
to the treatment of multi- and extensively drug resistant
tuberculosis (Figure 4). Unfortunately, after its introduction
in the clinical practice, an unexpected number of abnormal
deaths were reported, probably due to the serious side effects
associated with significant cardiac arrhythmia (Fox and Menzies,
2013; Kakkar and Dahiya, 2014; Guglielmetti et al., 2017). The
diarylquinolines were identified in a phenotypic screening
of various compounds for potential antituberculosis activity
(Andries et al., 2005) and the lead compound bedaquiline (also
called TMC207, R207910, or compound J), was developed by
Janssen Infectious Diseases and the TB Alliance. Bedaquiline is
an ATP synthase inhibitor and binds to subunit c (AtpE) of the
mycobacterial ATP synthase enzyme (complex V) thus blocking
its action (de Jonge et al., 2007; Koul et al., 2007). Bedaquiline
has an MICs of 0.03–0.12µg/ml against drug-sensitive and
drug-resistant M. tuberculosis strains, both replicating and

nonreplicating (Koul et al., 2008), and it shows an exceptional
activity in vivo. During hypoxia, diarylquinolines inhibit ATP
synthesis but even at high concentrations they had no significant
effect on membrane potential (Koul et al., 2008; Hards et al.,
2015). Recently, it was demonstrated that upon bedaquiline
exposure, the mycobacteria tend to minimize the consumption
of cellular ATP and at same time enhance the capacity of ATP-
generating pathways, which contributes to maintain bacterial
viability in spite of antibiotic stress (Koul et al., 2014). It was
also showed that mycobacteria grown on lipid-rich media
display enhanced bedaquiline-mediated killing indicating a
role of energy source on mycobacterial susceptibility. This type
of compounds inhibits the ATP synthase not only in bacteria
but also in mitochondria (Matsuno-Yagi and Hatefi, 1993),
however, it was shown (Haagsma et al., 2009) that bedaquiline
may not elicit ATP synthesis-related toxicity in mammalian
cells. Mycobacteria that are resistant to bedaquiline in vitro have
mutations in the atpE gene, which encodes the subunit c of ATP
synthase (Petrella et al., 2006; Huitric et al., 2010). However,
resistant strains with no detectable mutations in the complete
F0 ATP synthase operon (atpB, atpE, and atpF genes) and the
F1 ATP synthase operon (atpH, atpA, atpG, atpD, and atpC
genes) were already detected. Recently, clofazimine-resistant

FIGURE 4 | TB pipeline: molecules in phase III clinical trials. Source: https://www.newtbdrugs.org/pipeline/clinical. For each molecule physicochemical characteristics

are reported, along with the violation to the “rule of five.” Physicochemical properties calculated at http://www.molinspiration.com/cgi-bin/properties.
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M. tuberculosis mutants isolated in vitro, were found to be
also resistant to bedaquiline. Mutations in the transcriptional
regulator Rv0678 (MmpR5), with concomitant upregulation
of the efflux pump MmpL5 accounted for this cross-resistance
(Andries et al., 2014; Hartkoorn et al., 2014). Bedaquiline is a
pure enantiomer with two chiral centers, with a functionalized
lateral chain containing a tertiary amine. Three cycloaromatic
rings (a naphthyl, a quinolone, and a phenyl ring) represent
the bulky core of the molecule, and, in addition, a bromine
atom is attached at the C6 of the quinolone ring, leading to a
remarkably high degree of lipophilicity (ClogP = 7.10). Of note,
the high ClogP is obtained despite the fact that hydrophilic
functional groups such as a hydroxyl moiety and a tertiary
amino group are present in the molecule. In addition to the high
ClogP, the molecular weight (MW = 555.52) accounts for the
second violation of the Lipinski’s “rule of five.” Nevertheless,
this molecule has reached the market and nowadays is used
as last resort therapy in co-administration with first line
drugs for the treatment of multidrug resistant tuberculosis.
The presence of the bromine atom is another peculiarity that
makes this molecule a “structure of its own.” Bromine is not
considered a “privileged” moiety in medicinal chemistry, since
its bulky and hydrophobic nature. Heavy halogens like bromine
and iodine in drugs have been associated with phototoxicity,
photoreactivity, reactive metabolite formation, positivity to
Ames test, and with general safety issues (Pal et al., 1996). Side
effects seem to be associated with the extremely long half-life
and low water solubility (precipitation in the lungs resulting
in pulmonary toxicity) of these molecules, due to the high
ClogP of bromine/iodine, rather than to their chemical nature.
In addition, during metabolism, the bromine atom may be
displaced very easily by a reactive intermediate such as quinone
methide. Likely for these reasons there are only 27 approved
drugs containing this moiety (source https://www.drugbank.
ca/), that is frequently replaced by “safer” halogens such as
chlorine and fluorine. Of note, 4 of these bromine-containing
molecules were withdrawn from the market due to toxicity.
From the very preliminary SAR of these DARQs, any attempt to
replace the bromine atom was detrimental. Indeed, substitution
with more polar moieties, such as the OCH3, led to a >100-fold
raise of the MIC (MIC of the 6-OCH3 analog = 20.17µg/mL).
Also the substitution with a chlorine, which shares a similar
stereo-electronic nature, led to a sharp decrease in the potency
(MIC of the 6-Cl analog = 10.51µg/mL). The same poor results
are obtained when the naphthyl ring is adorned with hydrophilic
moieties or replaced by less lipophilic aromatic ring. All of
these findings corroborate the idea that, along with the suitable
interaction of the molecule with its molecular target, lipophilicity
is a main feature ensuring antituberculosis potency. Besides
bedaquiline, another DARQ, namely TBAJ-587 (Figure 8, Choi
et al., 2017; Tong et al., 2017; Sutherland et al., 2018) is currently
under pre-clinical investigation by Janssen Pharmaceuticals and
TB Alliance. This next-generation DARQ was designed and
synthesized in order to improve the drug-likeness of bedaquiline,
although maintaining its remarkable antituberculosis activity.
The main features characterizing the structure of bedaquiline
were maintained, however replacement of the naphthyl ring with

a dimethoxy pyridine allowed to obtain a molecule with a lower
ClogP (5.21) and, therefore, with improved pharmacokinetic
characteristics. Nevertheless, as for the parent molecule, still two
violations of the “rule of five” (ClogP and MW) are present.

Delamanid, PA-824, Q-203, and TB-47

Shortly after bedaquiline, delamanid (Figure 4, Matsumoto et al.,
2006; Gler et al., 2012; Skripconoka et al., 2013; deltyba R©,
former OPC-67683) has received conditional approval for the
treatment of multi- and extensively drug resistant tuberculosis
by the European Medicines Agency (Sotgiu et al., 2015). Also
in this case, severe side effects such as cardiac arrhythmia and
general central nervous system toxicity, especially when used
in combination with isoniazid or fluoroquinolones (Harausz
et al., 2015), have cooled down the initial enthusiasm raised
by the introduction in therapy of this novel antituberculosis
agent. In addition, mutations in the M. tuberculosis genome
causing resistance to delamanid have been recently documented
(Bloemberg et al., 2015). Delamanid, developed by Otsuka
Pharmaceutical Co., and its precursor PA-824 (pretomanid,
Figure 4), developed by PathoGenesis Co (currently Novartis
AG), are bicyclic nitroimidazoles (Singh et al., 2008). They
were originally investigated as radiosensitizers for use in cancer
chemotherapy (Agrawal et al., 1979), but the lead compound,
PA-824, was also found to show potent bactericidal activity
against multidrug resistant M. tuberculosis (Walsh et al., 1987;
Nagarajan et al., 1989; Ashtekar et al., 1993) and now its congener
delamanid is in phase III of clinical trials for the treatment of
multidrug resistant tuberculosis. Although delamanid seems to
be more active than PA-824 (Matsumoto et al., 2006), PA-824
has been widely used to describe the mechanism of action of
this class of compounds as it is active against the M. tuberculosis
complex (except M. canettii, Feuerriegel et al., 2011) not only
toward the actively replicating but also against the nonreplicating
bacteria. They inhibit the synthesis of mycolic acids and induce
respiratory poisoning (Stover et al., 2000; Singh et al., 2008)
through a peculiar mechanism of activation by the deazaflavin
(cofactor F420) dependent nitroreductase (Ddn or Rv3547), that
converts PA-824 into three primary metabolites (Manjunatha
et al., 2009); the principal one is des-nitroimidazole (des-
nitro), that generates reactive nitrogen species, including nitric
oxide. Respiratory poisoning through nitric oxide release seems
to be the main mechanism through which PA-824 exerts its
anaerobic activity. Like cyanide, PA-824 dramatically shifted the
predominant isoprenoid quinol/quinone ratio (MK9H2/MK9) in
a time and concentration dependent manner. The effect of PA-
824 on the respiratory complex under hypoxic nonreplicating
conditions was also manifested by a rapid drop in intracellular
ATP levels, therefore it has been hypothesized that upon its
release within mycobacterial cells, toxic nitric oxide possibly
reacts with cytochromes/cytochrome oxidase to interfere with
the electron flow and ATP homeostasis under nonreplicating
conditions (Manjunatha et al., 2009). No cross-resistance with
current antituberculosis drugs has been observed, but mutations
in any of the mycobacterial genes codifying the synthesis of
cofactor F420 (fgd1, fbiA, fbiB, and fbiC) lead to resistance to
PA-824 (Stover et al., 2000; Choi et al., 2001, 2002; Manjunatha

Frontiers in Microbiology | www.frontiersin.org 10 July 2018 | Volume 9 | Article 1367

https://www.drugbank.ca/
https://www.drugbank.ca/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Machado et al. Lipophilicity and Tuberculosis Drug Discovery

et al., 2009). Also mutations in the Rv3547 gene, encoding the
Ddn, have been described in PA-824 resistant strains (Matsumoto
et al., 2006; Manjunatha et al., 2009). Rv3547 is a protein with
151 amino acid residues with no detectable sequence homology
with any other protein of known function and was shown
to be nonessential (Sassetti et al., 2001). Complementation of
the mutants with an intact Rv3547 fully restored the ability
of the mutants to metabolize PA-824. Q-203 (Figure 7) is
grouped with delamanid and PA-824 for its structural similarity.
Developed by Qurient Co., Q-203 is the first-in-class of
imidazopyridine amide derivatives and it is current in phase
Ib clinical trials (http://infectex.ru/en/products/q-203/). Q-203
was discovered after medicinal chemistry optimization and a
high-throughput screening performed against infected human
macrophages (Pethe et al., 2013). It targets the cytochrome
b subunit (QcrB) of the cytochrome bc1 complex (complex
III) which is an essential component of the M. tuberculosis
respiratory electron transport chain, forcing M. tuberculosis
to use the cytochrome bd, a terminal oxidase energetically
less efficient (Lamprecht et al., 2016). Q-203 causes a rapid
depletion of the intracellular ATP levels at 1.1 nM and is able to
interfere with ATP homeostasis in nonreplicatingM. tuberculosis
at concentrations of <10 nM, suggesting the inhibition of
cytochrome bc1 activity as its primary mode of action (Pethe
et al., 2013). Recently, Jang et al. showed the involvement of efflux
pumps in the off-target-based mechanism of resistance to Q-203
(Jang et al., 2017). Q-203 shows low frequency of drug resistance
ofM. tuberculosis and a favorable pharmacokinetic profile, which
is important during long-term treatment (Pethe et al., 2013).
Finally, TB-47 (Figure 9), developed by the Guangzhou Institutes
of Biomedicine and Health, is structurally similar to Q-203
with the only difference represented by the substitution of the
imidazopyridine ring with a substituted pyrazolopyrimidine, and
is currently in the hit-to-lead optimization process. It has an
interesting MIC against susceptible M. tuberculosis H37Rv of
0.003µg/mL, whereas against 6 clinical drug-resistant isolates
from China MICs were 0.06–0.12µg/mL. In addition, it showed
very good synergetic bactericidal effect with rifampicin and
pyrazinamide. Although in the early development, it has been
introduced here since its structural analogies, that will be
commented below, with the above described antituberculosis
drugs.

As in the case of bedaquiline, the structure of the
molecules above described stimulates the discussion on how
antituberculosis medicinal chemistry challenges the drug-
likeness dogma. Delamanid consists of a nitroimidazooxazole
attached to a lateral chain made of aromatic and aliphatic rings
connected by a heteroatom such as oxygen, giving a stretched
shape to the overall structure. Some of these chemical features
are shared by PA-824 (the nitroimidazole core), Q-203 (lateral
chain), and TB-47 (lateral chain). Delamanid presents only one
violation of the Lipinski’s “rule of five,” as its MW is >500
g/mol, with a borderline ClogP of 4.84. In general, high MW
is connected to scarce solubility, high lipophilicity, and high
metabolism rate, since the higher number of atoms increases the
surface of metabolism. As in the case of bedaquiline, it can be
rationalized that high molecular weight and high lipophilicity are

necessary to obtain good activity toward mycobacteria. However,
the characteristic that mainly stands against the drug-likeness
of the molecule is the presence of the nitro group attached
to the imidazooxazole ring, as in the case of PA-824 (Barry
et al., 2004; Manjunatha et al., 2009), where the nitro moiety is
attached to a imidazooxazine heterocycle. The nitro moiety is
a standard red flag in medicinal chemistry campaigns, because
of the intrinsic toxicity of this group (Kalgutkar et al., 2005;
Boelsterli et al., 2006; Erve, 2006). Usually, in large chemical
screenings, compound bearing this moiety would not pass in
silico filters, and their advancement in the following steps of
biological evaluation would be likely hampered.

Nitroaromatics are reduced to form reactive nitro, nitroso,
nitroxyl radical, and aromatic N-oxide. These can induce
oxidative stress, and lead to cellular death or induce mechanisms
of inflammation. Although this mechanism of toxicity is
quite well known, there are a number of drugs embodying
a nitro group, that are currently marketed. Various 5- and
2-nitroimidazoles and 5-nitrofurans such as metronidazole,
tinidazole, and nimorazole are known to be effective against a
variety of protozoan and bacterial infections in humans and
animals (Raether and Hänel, 2003). These compounds, however,
are also known to possess mutagenicity, because the metabolized
nitro group at the level of DNA may cause DNA viscosity
reduction as well as DNA damage, representing a constant
warning toward their watchful use (Rodriguez et al., 2002).
This issue was taken into careful consideration during the early
drug discovery stage of delamanid development. CGI-17341
(Figure 5), the precursor of the nitroimidazoles, was found to
show mutagenic properties (Nagarajan et al., 1989; Ashtekar
et al., 1993). Therefore, the medicinal chemistry campaign
was not focused on improving the antituberculosis activity,
but rather, on decreasing the rate of mutagenicity, that was
constantly monitored through a bacterial reverse mutation test
(Matsumoto et al., 2007). After many rounds of modifications, it
was possible to decrease the mutagenicity rate after introducing
heteroatoms instead of alkyl chain at the C-2 position. Among
the non-mutagenic derivatives, PA-824 was also found to
maintain potent antituberculosis activity, and the following
hit-to-lead optimization led to the discovery of delamanid
(Sasaki et al., 2006). This successful example, however, must be
considered as an exception in the landscape of drug discovery,
as the pursuing of a structure-toxicity relationship, rather than
structure-activity relationship (SAR), most of the time does not
lead to similar satisfactory results. Although the presence of
somebody standing out of the crowd (Boechat et al., 2015), the
extent to which the presence of a nitro group can be tolerated
in a molecule that is supposed to be administered for several
months, remains a matter of debate and the use of nitroaromatic
drugs is generally not recommended for a long-term treatment
(Patterson and Wyllie, 2014). In spite of that, besides delamanid
and PA-824, there is a quite consistent number of molecules in
the tuberculosis drug pipeline containing a nitro group, such as
nitazoxanide (Shigyo et al., 2013) currently in phase II clinical
trials, mentioned for the sake of information, and the recently
released benzothiazinones BTZ-043 and PBTZ-169, that will be
discussed later more in details. The second structural peculiarity
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FIGURE 5 | Evolution of the nitroimidazoles as anti-tuberculosis compounds.

of delamanid, shared with PA-824 and to a larger extent with Q-
203 and TB-47, is the presence of an extended chain of aromatic
and aliphatic rings characterized by a p-trifluromethoxy phenyl
substitution. Rather surprisingly, the p-trifluoromethoxy moiety
can be found only in 3 marketed drugs (source: https://www.
drugbank.ca/), but, on the other hand, it is found in 5 molecules
in the tuberculosis pipeline. If the trifluoromethyl group, a
chemical congener of the trifluoromethoxy, is considered
in the count, the number raises to 6. This moiety is seldom
used in medicinal chemistry and the reason of its scarce
use is generally attributed to its ability to greatly increase
lipophilicity. Again, the use of groups with lipophilicity-
enhancer characteristics such as the trifluormethoxy,
thrifluoromethyl, or bromine in the case of bedaquiline,
although not common in other therapeutic backgrounds,
becomes the standard in antituberculosis research. Finally, it
must be also considered that, differently from delamanid, Q-203
(ClogP= 7.10 andMW> 500 g/mol) and TB-47 (ClogP 6.61 and
MW= 538.56 g/mol), present two violations of Lipinski’s “rule of
five”.

SQ-109, AU-1235, NTDI-304, and NTDI-349

SQ-109 (Figure 6), developed by Sequella, Inc., is a 1,2-ethylene
diamine compound roughly similar to ethambutol, a first-
line antibacterial used in the treatment of tuberculosis, and
is currently in Phase IIb-III clinical trials (http://infectex.ru/
en/products/sq-109/). SQ-109 was discovered using two high-
throughput screening assays, initially by MIC determination
and later using an iniBAC promoter based cell wall inhibition
bioluminescence assay (Protopopova et al., 2005; Sacksteder
et al., 2012). SQ-109 has been reported to act by inhibiting
the mycobacterial trehalose monomycolate transporter MmpL3,
involved in cell wall biosynthesis (Tahlan et al., 2012). However,
it is also active against fungi and bacteria that are devoid of
mycolic acids (Onajole et al., 2011; Sacksteder et al., 2012) and
shows activity against non-replicating cells, that, by definition,
shut down the synthesis of the outer membrane (Li K. et al.,
2014). This suggests a pleomorphic mode of action, and indeed
further investigation on SQ-109 led to the discovery that SQ-109
has 3 unique mechanisms of action (Sacksteder et al., 2012) and
identified additional inhibition ofmenaquinone synthesis (MenA
and MenG), and inhibition of cellular respiration and ATP
synthesis, in part due to dissipation of the PMF (Li K. et al., 2014;
Li W. et al., 2014; Li et al., 2017). Moreover, it acts synergistically
in vitro and in an animal model when combined with rifampicin,

isoniazid, or bedaquiline (Chen et al., 2006; Nikonenko et al.,
2007; Reddy et al., 2010; Sacksteder et al., 2012) and in pulmonary
tuberculosis patients in combination with rifampicin (Heinrich
et al., 2015). SQ-109 presents some pharmacological limitations
due to its amphipathic structure, nevertheless, the results of
preclinical studies and a series of early phase clinical studies
have showed that SQ-109 has a good safety and tolerability,
which is important in the case of long-term combined treatment.
From the structural point of view, SQ-109 is simplified by
the 1,2-ethylene diamine structure, as it was developed in
order to improve the activity of ethambutol (Lee et al., 2003;
Bogatcheva et al., 2006). During the design phases, it was
noticed that the majority of active compounds were considerably
lipophilic, and for instance the final ClogP for SQ-109 is 5.82,
representing the only violation of the Lipinski’s “rule of five.” The
most frequently occurring fragments in the active compounds
were: a highly α-branched aliphatic moieties, 2,2-diphenylethyl
and 3,3-diphenylpropyl fragments, tricyclic skeletons derived
from adamantane-containing amine monomers, myrtanylamine,
isopinocamphylamine and isoprenoid structures. This SAR led
to the design and synthesis of a new >30,000 diamine library
of molecules, that, on turn, led to the discovery of novel
scaffolds with activity against M. tuberculosis. Although the
presence of two hydrophilic amino groups, the pattern of
substituents was arranged in order to maintain the adamantyl
substituent or the geranyl one. Aromatic substituents, with a
considerable drop in lipophilicity, are detrimental for the activity
(Protopopova et al., 2005). Of particular note, as mentioned, it
is the use in SQ-109 of the adamantyl substituent attached to
one of the amino groups. Adamantane is a bulky and highly
hydrophobic structure, that confers not only a considerable
lipophilicity, but also a certain degree of steric hindrance. Due
to these characteristics, adamantane is uncommon in the drugs
scenario, and only 6 drugs reporting this moiety (adapalene,
rimantadine, amantadine, memantine, vildagliptin, saxagliptin)
are currently marketed (source: https://www.drugbank.ca/).
Those compounds used as antivirals (rimantadine, amantadine,
memantine) are very similar and share no significant diversity,
whereas in vildagliptin and saxagliptin the adamantane ring is
used for its steric hindrance rather than for its enhancement
of lipophilicity. In spite of that, adamantane is considered
in medicinal chemistry a “lipophilic bullet,” and as such it
has been used according to an “add-on” strategy to known
pharmaceuticals or as a replacement for other lipophilic groups
(Wanka et al., 2013). This group has been added, among the
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FIGURE 6 | TB pipeline: molecules in phase II clinical trials. Source: https://www.newtbdrugs.org/pipeline/clinical. For each molecule physicochemical characteristics

are reported, along with the violation to the “rule of five.” Pysicochemical properties calculated at http://www.molinspiration.com/cgi-bin/properties.

others, to antidiabetic drugs (Gerzon et al., 1963), anabolic
steroids (Rapala et al., 1965), antimalarials (Gerzon and Kau,
1967), and also penicillins (Kovtun and Plakhotnik, 1987). None
of these experimental derivatives has reached the clinic, however
in many cases a considerable improvement of the activity was
obtained. Therefore, it is not surprising that adamantane was
exploited to prepare improved antituberculosis analogs. Indeed,
along with SQ-109, also AU-1235 (Grzegorzewicz et al., 2012)
an urea derivative, is currently in the hit-to-lead optimization
process for the treatment of tuberculosis (Figure 9). Another
class of antituberculosis molecules for which the “add-on”
strategy of a lipophilic bullet such as the adamantane ring has led
to improved activity is that of indole-2-carboxamides. NITD-304
(ClogP 4.94) and NITD-349 (ClogP 3.91) are two antitubercular
candidates developed by Novartis for which the hit-to-lead
optimization is currently ongoing (Figure 9, Rao et al., 2013;
Harrison, 2014). Although these two derivatives are devoid of
the adamantyl substituent, in the first disclosure of the indole-
2-carboxamides as potent antituberculosis agents (Lun et al.,
2013; Onajole et al., 2013) the SAR clearly highlighted that those
compounds bearing an adamantyl, an octyl, or an eptyl ring were
the most active of the series, whereas when the lipophilic nature

of the ring was disrupted by a nitrogen atom, the activity was
lost (Figure 9). Even odder is the fact that all of these molecules
(SQ-109, AU-1235, and indolcarboxamides) are inhibitors of the
mycolic acid transporter MmpL3. The mycobacterial membrane
protein Large (MmpL) family is involved in transportation of
metabolites from the cytosol of M. tuberculosis and plays an
important role in its survival and pathogenesis (Domenech et al.,
2005). The reason why so different structures share the same
molecular target [of note, BM-212 (La Rosa et al., 2012), a pyrrole
derivative, is as well an MmpL3 inhibitor], is still a matter of
debate (Li et al., 2017), however the only feature that they have
in common is the high lipophilicity, and that is understandable
since the role of MmpL3 in exporting mycolic acids.

BTZ-043 and PBTZ-169

The benzothiazinones are a new class of antituberculosis
drug candidates that inhibit the decaprenylphosphoryl-β-d-
ribose 2′-epimerase (DprE1), an essential enzyme involved in
arabinan biosynthesis needed for the bacterial cell wall (Makarov
et al., 2009). Further studies showed that BTZ-043 (Figure 8),
the lead compound of this class and currently in phase II
of clinical trials (http://panacea-tb.net/clinical-studies/panacea-
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studies/), is activated through the reduction of an essential
nitro group to a nitroso derivative, which can react with
a cysteine residue in DprE1 (Trefzer et al., 2010). Manina
et al. (2010) have proposed an alternative mechanism of
resistance using M. smegmatis in which the overexpression
of the nitroreductase NfnB leads to the inactivation of BTZ-
043 through the reduction of an essential nitro group to
an amino group. Although M. tuberculosis apparently lacks
nitroreductases able to reduce this drug, this finding can be
useful for development of new benzothiazinone derivatives with
improved activity (Manina et al., 2010). Along with MmpL3
previously described, also DprE1 is considered a promiscuous
target, since the relatively high number of molecules, also
belonging to different chemical series, that have shown to inhibit
it (Lechartier et al., 2014; Chiarelli et al., 2016). PBTZ-169
(Figure 6), that shares the samemechanism of action of BTZ-043,
is a piperazinobenzothiazinone structurally related to its parent
compound, with improved pharmacokinetic characteristics and,
especially, with better synthetic accessibility since the lack of

stereocenters. Besides being very selective toward mycobacterial
species, PBTZ-169 and BTZ-043 are extremely active alone (low
nanomolar/subnanomolar range) and, also, PBTZ-169 has shown
additive or synergistic effects with many tuberculosis therapeutic
agents, both marketed or in development (Makarov et al., 2014).
Both compounds have lipophilic nature, with PBTZ-169 showing
a violation of the Lipinski’s “rule of five” (ClogP = 5.06),
although not as striking as in the cases of bedaquiline and
delamanid. As mentioned before, the nitro functional group
is not amendable for this class of compounds. It is selectively
reduced to a nitroso group, which then reacts with a key active
site cysteine residue of DprE1 (Cys387 in M. tuberculosis) to
form a semi-mercaptal adduct that inhibits the enzyme (Trefzer
et al., 2010) and a mutation to the Cys387 greatly reduces the
antituberculosis activity of benzothiazones. Although the nitro
group might decrease the overall drug likeness of the molecule,
this reductive pathway seems to be absent in human metabolism,
resulting in negative Ames test for DNA mutagenesis and
anticipating the lack of toxicity in mammals. Despite these

FIGURE 7 | TB pipeline: molecules in phase I clinical trials. Source: https://www.newtbdrugs.org/pipeline/clinical. For each molecule physicochemical characteristics

are reported, along with the violation to the “rule of five.” Physicochemical properties calculated at http://www.molinspiration.com/cgi-bin/properties. *Structure not

released.
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considerations, there have been several attempts to substitute
the nitro group (Makarov et al., 2015). In particular, some
8-pyrrole-benzothiazinones retained significant antituberculosis
activity, with MICs of 0.16µg/mL against M. tuberculosis, but
unfortunately not showing efficacy in a mouse model of acute
infection. Likely, the lack of the irreversible inhibition of the
target enzyme is crucial in order to reach the desired activity. Also
in this case, the substitution of the nitro group with a heterocycle
such as a pyrrole leads to a substantial increase of the lipophilicity
of the molecule (ClogP PBTZ-169 = 5.09 vs. ClogP PyrBTZ-
02 = 5.81), corroborating the correlation between lipophilicity
and activity. Further analyzing the SAR of benzothiazinones,
it appears evident that a meta electron–withdrawing group,
coupled to the nitro-aromatic feature, is necessary to obtain the
required potency. Again, among the many compounds tested,
those substituted with lipophilic EWGs (CF3, ClogP = 5.09

and Cl, ClogP = 4.87) are more active than those where a CN
(ClogP= 3.95) and an H (ClogP= 4.24) are present.

Clofazimine and TBI-166

Clofazimine (Figure 4), belonging to the riminophenazine
antibiotic class, is a greasy dye introduced in the 1960 for
the treatment of leprosy along with dapsone. The structure of
clofazimine consists of a phenazine scaffold suitably substituted
at the nitrogen and at one of the phenyl ring with aromatic
substituents. This confers high lipophilic character to the
molecule (ClogP = 8.43), therefore scientists have reconsidered
its use toward M. tuberculosis. Its antituberculosis activity has
been recently demonstrated (Gopal et al., 2013), either alone or
in combination with other antituberculosis compounds (Diacon
et al., 2015; Tang et al., 2015; Yang et al., 2017). Because of
these findings, clofazimine is currently being studied in phase

FIGURE 8 | TB pipeline: some molecules in pre-clinical phases. Source: https://www.newtbdrugs.org/pipeline/clinical. For each molecule physicochemical

characteristics are reported, along with the violation to the “rule of five.” physicochemical properties calculated at http://www.molinspiration.com/cgi-bin/properties.
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III clinical trials as a component for new regimens to treat
multidrug resistant tuberculosis, in combination with other
marketed or developing molecules; on the other side, novel
analogs able to improve the physicochemical profile of the parent
compound are under investigation. In particular, several side
effects, such as discoloration of the skin, can be attributed to
the extremely high lipophilicity of the molecule, therefore a
series of clofazimine analogs bearing a C-2 pyridyl substituent
were designed and synthesized with the goal of improving
the safety profile by lowering the lipophilicity. One of those,
TBI-166 (Figure 7), developed by TB Alliance in partnership
with the Institute of Materia Medica (IMM) in Beijing (Zhang
et al., 2012, 2014), represents the only case in which an
attempt of improving of an antituberculosis agent was pursued
through lowering the ClogP. TBI-166, currently a preclinical
development candidate, has demonstrated potent activity against
M. tuberculosis (MIC = 0.016µg/mL) in vitro and an activity
comparable to that of clofazimine in an multidrug resistant
tuberculosis experimental mouse infection model, although with
significantly reduced skin discoloration potential. Although
reduced, lipophilicity is still way above the prudential value
claimed by the Lipinski’s “rule of five” (ClogP = 7.49), and it is
coupled to another violation consisting in the highMW (589.62).
Also in this case, it is worth of mention the presence of the
p-trifluoromethoxy group attached to the phenazine nitrogen, a

functional group already discussed above, that, to some extent,
could be considered a “privileged moiety” in the design and
synthesis of antituberculosis compounds.

Thioridazine, Verapamil, and UPAR-174
We have tried to demonstrate that adherence to the Lipinski’s
“rule of five” is hardly attainable for antibacterials in general,
and for antituberculosis drugs in particular. This notion not only
applies to those molecules designed to kill mycobacteria, but, to
some extent, it can be extended also to some antituberculosis
adjuvant therapies. We have already discussed herein the use
efflux pump inhibitors (Van Bambeke et al., 2006; Pule et al.,
2016) as an adjuvant strategy for the treatment of tuberculosis.
Our attention was focused on verapamil, an antiarrhythmic
drug, and thioridazine (Figure 10), a neuroleptic with efflux
inhibitory properties (Martins et al., 2007; Rodrigues et al., 2008)
that in a clinical trial in Argentina was used for the treatment
of patients with XDR-TB in combination with antituberculosis
drugs under compassionate bases, with encouraging results
(Abbate et al., 2012). Even though these compounds are not
supposed to actually kill the cells, nevertheless they have to
interact with the greasy cell wall. Therefore, it is not surprising
that thioridazine, that is currently one of the most studied
mycobacterial efflux pumps inhibitors, has a high ClogP of 5.68.
From the structural point of view, it consists of a phenothiazine

FIGURE 9 | TB pipeline: some molecules in the hit-to-lead optimization phase. Source: https://www.newtbdrugs.org/pipeline/clinical. For each molecule

physicochemical characteristics are reported, along with the violation to the “rule of five.” Physicochemical properties calculated at http://www.molinspiration.com/

cgi-bin/properties.
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FIGURE 10 | TB pipeline: efflux pumps inhibitors for M. tuberculosis. For each

molecule physicochemical characteristics are reported, along with the violation

to the “rule of five.” Physicochemical properties calculated at http://www.

molinspiration.com/cgi-bin/properties.

substituted with a thioether group at the C-2, and connected by
the nitrogen atom to a N-methylpiperidine through an ethylene
linker. The polycyclic ring structure, which is important for the
neurological action of the class, contributes to the lipophilicity
of the compound and can be substituted with various groups on
C-2. Chlorpromazine, another neuroleptic with efflux inhibitory
properties, was tested along with its metabolites against M.
smegmatis and exhibited synergistic activity when administered
in combination with known antituberculosis drugs (Kigondu
et al., 2014a,b). Also chlorpromazine, that is structurally related
to thioridazine, shows a violation of the Lipinsky’s “rule of
five” with its ClogP (5.03). The amphiphilic nature of these
compounds is important for their calmodulin inhibitory activity
but may also play a role in their interaction with efflux pumps.
The lipophilic cationic nature of the molecule determines the
degree of interaction with lipid membranes and thus influences
the distribution patterns of the class (Kapp et al., 2018).
Verapamil is known as the most potent inhibitor of efflux
systems in M. tuberculosis, but its use as co-adjuvant in therapy
is not recommended due to its mechanism of therapeutic
action, that is the block of the calcium channel. Verapamil,
marketed as a racemic mixture, is made of a tertiary amine
substituted with a methyl group and two substituted aromatic
rings connected through an aliphatic spacer. Differently from

the many molecules described here, this molecule does not
violate any of the Lipinski’s “rule of five” (ClogP = 4.55 and
MW = 454.61 Da), although these values are fairly above
the average. Recently, we have reported a medicinal chemistry
campaign aiming at lowering the toxicity of thioridazine and,
at the same time, improving its efflux inhibitory properties and
drug-likeness, through a ligand-based drug design approach
(Pieroni et al., 2015a; Costa et al., 2016). Despite the good
preliminary results, it could be noticed that a drop in the
lipophilicity of the synthesized derivatives has detrimental effects
on the overall performance of the molecules. Keeping this
notion under consideration, other efforts were dedicated to the
disclosure of novel chemical structures as efflux pump inhibitors.
During a screening campaign of a series of 2-aminothiazoles, that
led to potent antituberculosis chemotypes (Pieroni et al., 2014,
2015b; Azzali et al., 2017), UPAR-174 (Figure 10), a tricyclic
structure embodying a scaffold, was found to show potent efflux
inhibitory properties toward M. tuberculosis, in the same range
of verapamil, and better than thioridazine (Machado et al.,
unpublished). Also in this case, the high lipophilicity of the
molecule (ClogP = 6.60) was found to be a key parameter in
order to guarantee high activity at the site of infection. Indeed,
it was found to be able to penetrate the macrophage cell wall, and
to facilitate killing of M. tuberculosis inside the macrophage in
synergy with rifampicin and isoniazid administered at sub-lethal
concentrations.

CONCLUDING REMARKS

The search for novel compounds to be used either alone or
in combination with other antibiotics to treat tuberculosis
and drug resistant tuberculosis infections has become a major
goal of drug discovery programs. In this review, we have
covered the recent advances and challenges in tuberculosis drug
discovery and provide an overview on how M. tuberculosis
shifts the dogmatic drug-likeness dictated by the Lipinski’s
“rule of five” to an “activity-through-lipophilicity” vision of
medicinal chemistry. It seems that, either for the direct treatment
or to pursue an adjuvant strategy, high lipophilicity is a
key parameter that must be taken into consideration when
medicinal chemistry efforts are made. Out of the 26 molecules
representing the TB pipeline in early discovery stages, pre-
clinical and clinical studies (Figures 4, 6–9), 11 show at least
one violation of the Lipinski’s “rule of five”, and the majority
of them have functional groups in their structure that are
seldom used because counter-productive in medicinal chemistry
settlements. Those molecules that are exempt from violations,
either they are repurposed drugs (levofloxacin, rifampicin at
higher doses) or they are novel chemical entities but deriving
from known and validated antibacterial chemical classes (such
as oxazolidindiones and quinolones), resulting in scarce novelty.
Nevertheless, especially for quinolones, evidences are that a
lipophilic enrichment of known structures is likely to improve
the potency toward M. tuberculosis (Tabarrini et al., 2012;
Fan et al., 2018). By virtue of their high lipophilicity, that
allows for strong drug-membrane interactions, some of the
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new molecules in the pipeline act through the inhibition of
membrane proteins in addition to collapsing the PMF, and are
highly potent against M. tuberculosis, both actively replicating
and dormant. The inhibition of energy metabolism using
combination of drugs targeting components or pathways such
as the PMF in M. tuberculosis presents several advantages as
rapid bactericidal action, activity against replicating and non-
replicating strains, and low propensity for the development of
drug resistance. In addition, these combinations of membrane
active agents may be highly synergistic with current first and
second line drugs, allowing to reach the main aim of shortening
tuberculosis treatment duration. Therefore, our opinion is that
drug development efforts should also focus on those compounds
to which resistance could not be selected, along with the
optimization and development of hits to which resistance can
reasonably occur. Perhaps, bedaquiline is the most significant
example of what this manuscript wants to deliver: adherence
to the “rule of five” may or may have resulted in the loss
of opportunities, in particularly for a difficult pathogen as
M. tuberculosis. Bedaquiline is the first approved drug for the

treatment of tuberculosis after decades of stagnation, but it
would have failed to pass any in silico filter that is commonly
used to skim ex novo synthetic chemical libraries for further
advancement and/or the eye inspection of a skilled medicinal
chemist.
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