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The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of
optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support
curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem,
as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines
and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic
algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its
simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning
becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem.
To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and
closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method
performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

1. Introduction

The problem of data fitting is very important in many
theoretical and applied fields [1–4]. For instance, in computer
design and manufacturing (CAD/CAM), data points are
usually obtained from real measurements of an existing
geometric entity, as it typically happens in the construction
of car bodies, ship hulls, airplane fuselage, and other free-
form objects [5–15]. This problem also appears in the shoes
industry, archeology (reconstruction of archeological assets),
medicine (computed tomography), computer graphics and
animation, and many other fields. In all these cases, the
primary goal is to convert the real data from a physical object
into a fully usable digital model, a process commonly called
reverse engineering. This allows significant savings in terms
of storage capacity and processing and manufacturing time.
Furthermore, the digital models are easier and cheaper to

modify than their real counterparts and are usually available
anytime and anywhere.

Depending on the nature of these data points, two
different approaches can be employed: interpolation and
approximation. In the former, a parametric curve or surface
is constrained to pass through all input data points. This
approach is typically employed for sets of data points that
come from smooth shapes and that are sufficiently accurate.
On the contrary, approximation does not require the fitting
curve or surface to pass through all input data points, but
just close to them, according to some prescribed distance
criteria.The approximation scheme is particularly well suited
for the cases of highly irregular sampling and when data
points are not exact, but subjected to measurement errors.
In real-world problems the data points are usually acquired
through laser scanning and other digitizing devices and are,
therefore, subjected to some measurement noise, irregular
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sampling, and other artifacts [12, 13]. Consequently, a good
fitting of data should be generally based on approximation
schemes rather than on interpolation [16–20].

There are two key components for a good approximation
of data points with curves: a proper choice of the approx-
imating function and a suitable parameter tuning. Due to
their good mathematical properties regarding evaluation,
continuity, and differentiability (among many others), the
use of polynomial functions (especially splines) is a classical
choice for the approximation function [16, 17, 23–27]. In
general, the approximating curves can be classified as global-
support and local-support. By global-support curves we
mean curves expressed as a linear combination of basis
functions whose support is the whole domain of the problem.
As a consequence, these curves exhibit a global control, in
the sense that any modification of the shape of the curve
in a particular location is propagated throughout the whole
curve.This is in clear contrast to the local-support approaches
that have become prevalent in CAD/CAM and computer
graphics, usually driven by piecewise functions (such as B-
splines andNURBS) that provide local control of the shape of
the curve [23, 28]. In this work we are particularly interested
to explore the performance of the global-support approach
by using different global-support basis functions for our
approximating curves.

1.1. Main Contributions and Structure of the Paper. In this
paper, we consider the problem of optimizing a weighted
Bayesian energy functional for data fitting by using global-
support approximating curves. In particular, our goal is
to obtain the global-support approximating curve that fits
the data points better while keeping the number of free
parameters of the model as low as possible. To this aim, we
formulate this problem as a minimization problem by using
a weighted Bayesian energy functional for global-support
curves. This is one of the major contributions of this paper.
Our functional is comprised of two competing terms aimed
at minimizing the fitting error between the original and the
reconstructed data points while simultaneously minimizing
the degrees of freedom of the problem. Furthermore, the
functional can be modified and extended to include various
additional constraints, such as the fairness and smoothness
constraints typically required in many industrial operations
in computer-aided manufacturing, such as CNC (computer
numerically controlled) milling, drilling, and machining [4,
5, 12].

Unfortunately, our formulation in previous paragraph
leads to a nonlinear continuous optimization problem that
cannot be properly addressed by conventional mathematical
optimization techniques. To overcome this limitation, in this
paper we apply a powerful nature-inspired metaheuristic
algorithm called cuckoo search, introduced in 2009 by Yang
and Deb to solve optimization problems [21]. The algorithm
is inspired by the obligate interspecific brood parasitism
of some cuckoo species that lay their eggs in the nests of
host birds of other species. Since its inception, the cuckoo
search (specially its variant that uses Lévy flights) has been
successfully applied in several papers reported recently in

the literature to difficult optimization problems from differ-
ent domains. However, to the best of our knowledge, the
method has never been used so far in the context of geometric
modeling and data fitting. This is also one of the major
contributions of this paper.

A critical problem when using metaheuristic approaches
concerns the parameter tuning, which is well known to
be time-consuming and problem-dependent. In this regard,
a major advantage of the cuckoo search with Lévy flights
is its simplicity: it only requires two parameters, many
fewer than other metaheuristic approaches, so the parameter
tuning becomes a very simple task. The paper shows that
this new approach can be successfully applied to solve our
optimization problem. To check the performance of our
approach, it has been applied to five illustrative examples
of different types, including open and closed 2D and 3D
curves that exhibit challenging features, such as cusps and
self-intersections.Our results show that themethod performs
pretty well, being able to solve our minimization problem in
an astonishingly straightforward way.

The structure of this paper is as follows: in Section 2
some previous work in the field is briefly reported. Then,
Section 3 introduces the basic concepts and definitions along
with the description of the problem to be solved. The fun-
damentals and main features of the cuckoo search algorithm
are discussed in Section 4. The proposed method for the
optimization of our weighted Bayesian energy functional
for data fitting with global-support curves is explained in
Section 5. Some other issues such as the parameter tuning
and some implementation details are also reported in that
section. As the reader will see, themethod requires aminimal
number of control parameters. As a consequence, it is very
simple to understand, easy to implement and can be applied
to a broad variety of global-support basis functions. To check
the performance of our approach, it has been applied to five
illustrative examples for the cases of open and closed 2D and
3D curves exhibiting challenging features, such as cusps and
self-intersections, as described in Section 6. The paper closes
with the main conclusions of this contribution and our plans
for future work in the field.

2. Previous Works

The problem of curve data fitting has been the subject
of research for many years. First approaches in the field
were mostly based on numerical procedures [1, 29, 30].
More recent approaches in this line use error bounds [31],
curvature-based squared distance minimization [26], or
dominant points [18]. A very interesting approach to this
problem consists in exploiting minimization of the energy
of the curve [32–36]. This leads to different functionals
expressing the conditions of the problem, such as fair-
ness, smoothness, and mixed conditions [37–40]. Generally,
research in this area is based on the use of nonlinear optimiza-
tion techniques that minimize an energy functional (often
based on the variation of curvature and other high-order
geometric constraints). Then, the problem is formulated
as a multivariate nonlinear optimization problem in which
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the desired formwill be the one that satisfies various geomet-
ric constraints while minimizing (or maximizing) a measure
of form quality. A variation of this formulation consists
in optimizing an energy functional while simultaneously
minimizing the number of free parameters of the problem
and satisfying some additional constraints on the underlying
model function. This is the approach we follow in this paper.

Unfortunately, the optimization problems given by those
energy functionals and their constraints are very difficult
and cannot be generally solved by conventionalmathematical
optimization techniques.On the other hand, some interesting
research carried out during the last two decades has shown
that the application of artificial intelligence techniques can
achieve remarkable results regarding such optimization prob-
lems [6, 8, 10, 11, 14]. Most of these methods rely on some
kind of neural networks, such as standard neural networks [8]
andKohonen’s SOM(self-organizingmaps) nets [10]. In some
other cases, the neural network approach is combined with
partial differential equations [41] or other approaches [42].
The generalization of these methods to functional networks
is also analyzed in [6, 11, 14]. Other approaches are based on
the application of nature-inspired metaheuristic techniques,
which have been intensively applied to solve difficult opti-
mization problems that cannot be tackled through traditional
optimization algorithms. Examples include artificial immune
systems [43], bacterial foraging [44], honey bee algorithm
[45], artificial bee colony [46], firefly algorithm [47, 48], and
bat algorithm [49, 50]. A previous paper in [51] describes
the application of genetic algorithms and functional networks
yielding pretty good results. Genetic algorithms have also
been applied to this problem in both the discrete version
[52, 53] and the continuous version [7, 54]. Other meta-
heuristic approaches applied to this problem include the
use of the popular particle swarm optimization technique
[9, 24], artificial immune systems [55, 56], firefly algorithm
[57, 58], estimation of distribution algorithms [59], memetic
algorithms [60], and hybrid techniques [61].

3. Mathematical Preliminaries

In this paper we assume that the solution to our fitting
problem is given by a model function Φ(𝜉) defined on a
finite interval domain []

1
, ]
2
]. Note that in this paper vectors

are denoted in bold. We also assume that Φ(𝜉) can be
mathematically represented as a linear combination of the so-
called blending functions:

Φ (𝜉) =

𝛿

∑
𝛼=1

Θ
𝛼
𝜓
𝛼
(𝜉) , 𝜉 ∈ []

1
, ]
2
] . (1)

In this work, the family of blending functions {𝜓
𝛼
(𝜉)}
𝛼
in (1)

is assumed to be linearly independent and to form a basis of
the vector space of functions of degree ≤𝛿 − 1 on []

1
, ]
2
].

In this paper we consider the case in which all functions
{𝜓
𝛼
(𝜉)}
𝛼
have their support on the whole domain []

1
, ]
2
].

Without loss of generality, we can also assume that []
1
, ]
2
]

is the unit interval [0, 1]. In practical terms, this means that
the blending functions provide a global control of the shape of
the approximating curve (these functions are usually referred

to as global-support functions), as opposed to the alternative
case of local control given by the piecewise representation
that is characteristic of popular curves such as B-splines and
NURBS. Typical examples of global-support basis functions
are

(1) the canonical polynomial basis: 𝜓
𝛼
(𝜉) = 𝜉𝛼−1;

(2) the Bernstein basis: 𝜓
𝛼
(𝜉) = ( 𝛿−1

𝛼−1
) 𝜉𝛼−1(1 − 𝜉)

𝛿−𝛼.

Other examples include the Hermite polynomial basis, the
trigonometric basis, the hyperbolic basis, the radial basis, and
the polyharmonic basis.

Let us suppose now that we are given a finite set of data
points {Δ

𝛽
}
𝛽=1,...,𝜁

in a𝐷-dimensional space (usually𝐷 = 2 or
𝐷 = 3). Our goal is to obtain a global-support approximating
curve that best fits these data points while keeping the
number of degrees of freedom as low as possible. This leads
to a difficult minimization problem involving two different
(and competing) factors: the fitting error at the data points
and the number of free parameters of the model function. In
this paper, we consider the RMSE (root mean square error)
as the fitting error criterion. The number of free parameters
is computed by following a Bayesian approach (see [62] for
further details). This is a very effective procedure to penalize
fitting models with too many parameters, thus preventing
data overfitting [63]. Therefore, our optimization problem
consists in minimizing the following weighted Bayesian
energy functional:

L =
𝜁

2
log(

𝜁

∑
𝛽=1

Ω
𝛽
[Δ
𝛽
−

𝛿

∑
𝛼=1

Θ
𝛼
𝜓
𝛼
(𝜌
𝛽
)]

2

)

+
𝜁 ⋅ 𝛾

2
(
2𝛿 − 1

2
) log (𝜁) ,

(2)

where we need a parameter value 𝜌
𝛽
to be associated with

each data point Δ
𝛽
. Equation (2) is comprised of two terms:

the first one computes the fitting error to the data points,
while the second one plays the role of a penalty term in order
to reduce the degrees of freedom of the model. The penalty
term also includes a real positive multiplicative factor 𝛾 used
to modulate how much this term will affect the whole energy
functional.

This functional L can be modified or expanded to
include any additional constrain in our model. For instance,
it is very common in many engineering domains such
as computer-aided ship-hull design, car-body styling, and
turbine-blade design to request conditions such as fairness
or smoothness. In our approach, these conditions can readily
be imposed by adding different energy functionals adapted
to the particular needs. Suppose that instead of reducing
the degrees of freedom of our problem, the smoothness
of the fitting curve is required. This condition is simply
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incorporated to our model by replacing the penalty term in
(2) by the strain energy functional as follows:

L =
𝜁

2
log(
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(3)

Considering the vectors Ξ
𝛼

= (𝜓
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1
), . . . , 𝜓

𝛼
(𝜌
𝜁
))
𝑇,

with 𝛼 = 1, . . . , 𝛿, where (⋅)
𝑇 means transposition, Ξ =

(Ξ
1
, . . . ,Ξ
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), Δ = (Δ
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), Ω = (Ω
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, . . . ,Ω

𝜁
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(Θ
1
, . . . ,Θ

𝛿
)
𝑇, (2) can be written in matricial form as

L = Ω ⋅ Δ
𝑇
⋅ Δ −Ω ⋅Θ

𝑇
⋅ Ξ
𝑇
⋅ Δ −Ω ⋅ Δ

𝑇
⋅ Ξ ⋅Θ

+Ω ⋅Θ
𝑇
⋅ Ξ
𝑇
⋅ Ξ ⋅Θ.

(4)

Minimization of L requires differentiating (4) with respect
toΘ and equating to zero to satisfy the first-order conditions,
leading to the following system of equations (called the
normal equations):

Ξ
𝑇
⋅ Ξ ⋅Θ = Ξ

𝑇
⋅ Δ. (5)

In general, the blending functions {𝜓
𝛼
(𝜉)}
𝛼
are nonlinear

in 𝜉, leading to a strongly nonlinear optimization problem,
with a high number of unknowns for large sets of data points,
a case that happens very often in practice. Our strategy
for solving the problem consists in applying the cuckoo
searchmethod to determine suitable parameter values for the
minimization of functional L according to (2). The process
is performed iteratively for a given number of iterations. Such
a number is another parameter of the method that has to be
calculated in order to run the algorithmuntil the convergence
of the minimization of the error is achieved.

4. The Cuckoo Search Algorithm

Cuckoo search (CS) is a nature-inspired population-based
metaheuristic algorithm originally proposed by Yang and
Deb in 2009 to solve optimization problems [21]. The
algorithm is inspired by the obligate interspecific brood
parasitism of some cuckoo species that lay their eggs in the
nests of host birds of other species with the aim of escaping
from the parental investment in raising their offspring. This
strategy is also useful to minimize the risk of egg loss to other
species, as the cuckoos can distribute their eggs amongst a
number of different nests. Of course, sometimes it happens
that the host birds discover the alien eggs in their nests.
In such cases, the host bird can take different responsive
actions varying from throwing such eggs away to simply
leaving the nest and build a new one elsewhere. However,
the brood parasites have at their turn developed sophisticated
strategies (such as shorter egg incubation periods, rapid
nestling growth, and egg coloration or pattern mimicking
their hosts) to ensure that the host birds will care for the
nestlings of their parasites.

This interesting and surprising breeding behavioral pat-
tern is the metaphor of the cuckoo search metaheuristic
approach for solving optimization problems. In the cuckoo
search algorithm, the eggs in the nest are interpreted as a pool
of candidate solutions of an optimization problem, while the
cuckoo egg represents a new coming solution. The ultimate
goal of themethod is to use these new (and potentially better)
solutions associated with the parasitic cuckoo eggs to replace
the current solution associated with the eggs in the nest. This
replacement, carried out iteratively, will eventually lead to a
very good solution of the problem.

In addition to this representation scheme, the CS algo-
rithm is also based on three idealized rules [21, 22].

(1) Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest.

(2) The best nests with high quality of eggs (solutions)
will be carried over to the next generations.

(3) The number of available host nests is fixed, and a host
can discover an alien egg with a probability 𝑝

𝑎
∈

[0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest so as to build a
completely new nest in a new location.

For simplicity, the third assumption can be approximated
by a fraction 𝑝

𝑎
of the 𝑛 nests being replaced by new

nests (with new random solutions at new locations). For a
maximization problem, the quality or fitness of a solution can
simply be proportional to the objective function. However,
other (more sophisticated) expressions for the fitness func-
tion can also be defined.

Based on these three rules, the basic steps of the CS
algorithm can be summarized as shown in the pseudocode
reported in Algorithm 1. Basically, the CS algorithm starts
with an initial population of 𝑛 host nests and it is performed
iteratively. In the original proposal, the initial values of the 𝑗th
component of the 𝑖th nest are determined by the expression
𝑥
𝑗

𝑖
(0) = rand ⋅ (up𝑗

𝑖
− low𝑗

𝑖
) + low𝑗

𝑖
, where up𝑗

𝑖
and low𝑗

𝑖

represent the upper and lower bounds of that 𝑗th component,
respectively, and rand represents a standard uniform random
number on the open interval (0, 1). Note that this choice
ensures that the initial values of the variables are within the
search space domain. These boundary conditions are also
controlled in each iteration step.

For each iteration 𝑔, a cuckoo egg 𝑖 is selected randomly
and new solutions x

𝑖
(𝑔 + 1) are generated by using the

Lévy flight, a kind of random walk in which the steps are
defined in terms of the step lengths, which have a certain
probability distribution, with the directions of the steps being
isotropic and random. According to the original creators of
themethod, the strategy of using Lévy flights is preferred over
other simple random walks because it leads to better overall
performance of the CS. The general equation for the Lévy
flight is given by

x
𝑖
(𝑔 + 1) = x

𝑖
(𝑔) + 𝛼 ⊕ levy (𝜆) , (6)

where 𝑔 indicates the number of the current generation and
𝛼 > 0 indicates the step size, which should be related to
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begin
Objective function 𝑓(x), x = (𝑥

1
, . . . , 𝑥

𝐷
)
𝑇

Generate initial population of 𝑛 host nests x
𝑖
(𝑖 = 1, 2, . . . , 𝑛)

While (𝑡 < MaxGeneration) or (stop criterion)
Get a cuckoo (say, 𝑖) randomly by Lévy flights
Evaluate its fitness 𝐹

𝑖

Choose a nest among 𝑛 (say, 𝑗) randomly
if (𝐹
𝑖
> 𝐹
𝑗
)

Replace 𝑗 by the new solution
end
A fraction (𝑝

𝑎
) of worse nests are abandoned and new ones are built via Lévy flights

Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess results and visualization

end

Algorithm 1: Cuckoo search algorithm via Lévy flights as originally proposed by Yang and Deb in [21, 22].

the scale of the particular problem under study. The symbol
⊕ is used in (6) to indicate the entrywise multiplication. Note
that (6) is essentially a Markov chain, since next location
at generation 𝑔 + 1 only depends on the current location
at generation 𝑔 and a transition probability, given by the
first and second terms of (6), respectively. This transition
probability is modulated by the Lévy distribution as

levy (𝜆) ∼ 𝑔
−𝜆
, (1 < 𝜆 ≤ 3) , (7)

which has an infinite variance with an infinite mean. Here
the steps essentially form a random walk process with a
power-law step-length distribution with a heavy tail. From
the computational standpoint, the generation of random
numbers with Lévy flights is comprised of two steps: firstly, a
random direction according to a uniform distribution is cho-
sen; then, the generation of steps following the chosen Lévy
distribution is carried out. The authors suggested using the
so-called Mantegna’s algorithm for symmetric distributions,
where “symmetric” means that both positive and negative
steps are considered (see [64] for details). Their approach
computes the factor

𝜙 = (
Γ (1 + 𝛽) ⋅ sin ((𝜋 ⋅ 𝛽) /2)

Γ (((1 + 𝛽) /2) ⋅ 𝛽 ⋅ 2(𝛽−1)/2)
)

1/𝛽

, (8)

where Γ denotes the Gamma function and 𝛽 = 3/2 in the
original implementation by Yang and Deb [22]. This factor is
used in Mantegna’s algorithm to compute the step length 𝑠 as

𝜍 =
𝑢

|V|1/𝛽
, (9)

where 𝑢 and V follow the normal distribution of zero mean
and deviation 𝜎2

𝑢
and 𝜎2V , respectively, where 𝜎𝑢 obeys the

Lévy distribution given by (8) and 𝜎V = 1. Then, the stepsize
𝜂 is computed as

𝜂 = 0.01𝜍 (x − xbest) , (10)

where 𝜍 is computed according to (9). Finally, x is modified
as x ← x+𝜂 ⋅Υ, whereΥ is a random vector of the dimension
of the solution x and that follows the normal distribution
𝑁(0, 1).

The CS method then evaluates the fitness of the new
solution and compares it with the current one. In case the new
solution brings better fitness, it replaces the current one. On
the other hand, a fraction of the worse nests (according to the
fitness) are abandoned and replaced by new solutions so as to
increase the exploration of the search space looking for more
promising solutions. The rate of replacement is given by the
probability 𝑝

𝑎
, a parameter of the model that has to be tuned

for better performance. Moreover, for each iteration step, all
current solutions are ranked according to their fitness and the
best solution reached so far is stored as the vector xbest (used,
e.g., in (10)).

This algorithm is applied in an iterative fashion until a
stopping criterion is met. Common terminating criteria are
that a solution is found that satisfies a lower threshold value,
that a fixed number of generations have been reached, or that
successive iterations no longer produce better results.

5. The Method

We have applied the cuckoo search algorithm discussed in
previous section to our optimization problem described in
Section 3. The problem consists in minimizing the weighted
Bayesian energy functional given by (2) for a given family
of global-support blending functions. To this aim, we firstly
need a suitable representation of the variables of the problem.
We consider an initial population of 𝑛 nests, representing the
potential solutions of the problem. Each solution consists of
a real-valued vector of dimension 𝐷 ⋅ 𝛿 + 3𝜁 + 2 containing
the parameters 𝜌

𝛽
, vector coefficients Θ

𝛼
, and weights Ω

𝛽
, 𝛿,

and 𝛾. The structure of this vector is also highly constrained.
On one hand, the set of parameters {𝜌

𝛽
}
𝛽
is constrained to

lie within the unit interval [0, 1]. In computational terms,
this means that different controls are to be set up in order
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to check for this condition to hold. On the other hand, the
ordered structure of data points means that those parameters
must also be sorted. Finally, weights are assumed to be strictly
positive real numbers.

Regarding the fitness function, it is given by either
the weighted Bayesian energy functional in (2) or by the
weighted strain energy functional in (3), where the former
penalizes any unnecessarily large number of free parameters
for the model, while the latter imposes additional constraints
regarding the smoothness of the fitting curve. Note also that
the strength of the functionals can be modulated by the
parameter 𝛾 to satisfy additional constraints.

5.1. Parameter Tuning. A critical issue when working with
metaheuristic approaches concerns the choice of suitable
parameter values for the method. This issue is of paramount
importance since the proper choice of such values will
largely determine the good performance of the method.
Unfortunately, it is also a very difficult task. On one hand,
the field still lacks sufficient theoretical results to answer
this question on a general basis. On the other hand, the
choice of parameter values is strongly problem-dependent,
meaning that good parameter values for a particular problem
might be completely useless (even counterproductive) for
any other problem. These facts explain why the choice
of adequate parameter values is so troublesome and very
often a bottleneck in the development and application of
metaheuristic techniques.

The previous limitations have been traditionally over-
come by following different strategies. Perhaps the most
common one is to obtain good parameter values empirically.
In this approach, several runs or executions of the method
are carried out for different parameter values and a statistical
analysis is performed to derive the values leading to the
best performance. However, this approach is very time-
consuming, especially when different parameters influence
each other. This problem is aggravated when the meta-
heuristic depends on many different parameters, leading to
an exponential growth in the number of executions. The
cuckoo search method is particularly adequate in this regard
because of its simplicity. In contrast to other methods that
typically require a large number of parameters, the CS only
requires two parameters, namely, the population size 𝑛 and
the probability 𝑝

𝑎
. This makes the parameter tuning much

easier for CS than for other metaheuristic approaches.
Some previous works have addressed the issue of param-

eter tuning for CS. They showed that the method is
relatively robust to the variation of parameters. For instance,
authors in [21] tried different values for 𝑛 = 5, 10, 15, 20, 50,

100, 150, 250, and 500 and 𝑝
𝑎
= 0, 0.01, 0.05, 0.1, 0.15, 0.2,

0.25, 0.4, and 0.5. They obtained that the convergence rate
of the method is not very sensitive to the parameters used,
implying that no fine adjustment is needed for the method
to perform well. Our experimental results are in good
agreement with these empirical observations. We performed
several trials for the parameter values indicated above and
found that our results do not differ significantly in any case.
We noticed, however, that some parameter values are more

adequate in terms of the number of iterations required to
reach convergence. In this paper, we set the parameters 𝑛 and
𝑝
𝑎
to 100 and 0.25, respectively.

5.2. Implementation Issues. Regarding the implementation,
all computations in this paper have been performed on a
2.6GHz Intel Core i7 processor with 8GB RAM. The source
code has been implemented by the authors in the native
programming language of the popular scientific program
MATLAB, version 2012a. We remark that an implementation
of the CS method has been described in [21]. Similarly,
a vectorized implementation of CS in MATLAB is freely
available in [65]. Our implementation is strongly based
(although not exactly identical) on that efficient open-source
version of the CS.

6. Experimental Results

We have applied the CS method described in previous
sections to different examples of curve data fitting. To keep
the paper in manageable size, in this section we describe only
five of them, corresponding to different families of global-
support basis functions and also to open and closed 2D
and 3D curves. In order to replicate the conditions of real-
world applications, we assume that our data are irregularly
sampled and subjected to noise. Consequently, we consider a
nonuniform sampling of data in all our examples. Data points
are also perturbed by an additive Gaussian white noise of
small intensity given by a SNR (signal-to-noise ratio) of 60
in all reported examples.

First example corresponds to a set of 100noisy data points
obtained by nonuniform sampling from the Agnesi curve.
The curve is obtained by drawing a line 𝑂𝐵 from the origin
through the circle of radius 𝑟 and center (0, 𝑟) and then
picking the point with the 𝑦 coordinate of the intersection
with the circle and the 𝑥 coordinate of the intersection of
the extension of line 𝑂𝐵 with the line 𝑦 = 2𝑟. Then, they
are fitted by using the Bernstein basis functions. Our results
are depicted in Figure 1(a), where the original data points are
displayed as red emptied circles, whereas the reconstructed
points appear as blue plus symbols. Note the good matching
between the original and the reconstructed data points. In
fact, we got a fitness value of 1.98646 × 10

−3, indicating
that the reconstructed curve fits the noisy data points with
high accuracy. The average CPU time for this example is
3.01563 seconds. We also computed the absolute mean value
of the difference between the original and the reconstructed
data points for each coordinate and obtained good results:
(9.569738 × 10

−4, 1.776091 × 10−3). This good performance
is also reflected in Figure 1(b), where the original data points
and the reconstructed Bézier fitting curve are displayed as
black plus symbols and a blue solid line, respectively.

Second example corresponds to the Archimedean spiral
curve (also known as the arithmetic spiral curve). This curve
is the locus of points corresponding to the locations over
time of a point moving away from a fixed point with a
constant speed along a line which rotates with constant
angular velocity. In this example, we consider a set of 100
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Figure 1: Application of the cuckoo search algorithm to the Agnesi curve: (a) original data points (red emptied circles) and reconstructed
points (in blue plus symbol); (b) data points (black plus symbol) and fitting curve (solid blue line).
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Figure 2: Application of the cuckoo search algorithm to the Archimedean spiral curve: (a) original data points (red emptied circles) and
reconstructed points (in blue plus symbol); (b) data points (black plus symbol) and fitting curve (solid blue line).

noisy data points from such a curve that are subsequently
fitted by using the canonical polynomial basis functions. Our
results for this example are depicted in Figure 2. We omit
the interpretation of this figure because it is similar to the
previous one. Once again, note the good matching between
the original and the reconstructed data points. In this case we
obtained a fitness value of 1.12398×10−2 for these data points,
while the absolute mean value of the difference between the
original and the reconstructed data points for each coordinate
is (1.137795 × 10−2, 6.429596 × 10−3). The average CPU time
for this example is 4.68752 seconds. We conclude that the CS
method is able to obtain a global-support curve that fits the
data points pretty well.

Third example corresponds to a hypocycloid curve. This
curve belongs to a set of a much larger family of curves
called the roulettes. Roughly speaking, a roulette is a curve
generated by tracing the path of a point attached to a curve

that is rolling upon another fixed curve without slippage. In
principle, they can be any two curves. The particular case
of a hypocycloid corresponds to a roulette traced by a point
attached to a circle of radius 𝑟 rolling around the inside of a
fixed circle of radius 𝑅, where it is assumed that 𝑅 = 𝑘 ⋅ 𝑟.
If 𝑘 = 𝑅/𝑟 is a rational number, then the curve eventually
closes on itself and has 𝑅 cusps (i.e., sharp corners, where
the curve is not differentiable). In this example, we consider a
set of 100 noisy data points from the hypocycloid curve with
5 cusps. They are subsequently fitted by using the Bernstein
basis functions. Figure 3 shows our results graphically. In this
case, the best fitness value is 2.00706×10−3, while the absolute
mean value of the difference between the original and the
reconstructed data points for each coordinate is (1.661867 ×
10
−3, 1.521872×10−3).The averageCPU time for this example

is 9.82813 seconds. In this case, the complex geometry of
the curve, involving several cusps and self-intersections, leads
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Figure 3: Application of the cuckoo search algorithm to the hypocycloid curve example: (a) original data points (red emptied circles) and
reconstructed points (in blue plus symbol); (b) data points (black plus symbol) and fitting curve (solid blue line).

to this relatively large CPU time in comparison with the
previous (much simpler) examples. In fact, this example is
very illustrative about the ability of the method to perform
well even in case of nonsmooth self-intersecting curves.

Fourth example corresponds to the so-called piriform
curve, which can be defined procedurally in a rather complex
way. Once again, we consider a set of 100 noisy data points
fitted by using the Bernstein basis functions. Our results
are shown in Figure 4. The best fitness value in this case is
1.17915×10

−3, while the absolutemean value of the difference
between the original and the reconstructed data points for
each coordinate is (8.64616 × 10−4, 5.873391 × 10−4). The
average CPU time for this example is 3.276563 seconds. Note
that this curve has a cusp in the leftmost part; moreover, the
data points tend to concentrate around the cusp,meaning that
the data parameterization is far from uniform. However, the
method is still able to recover the shape of the curvewith great
detail.

The last example corresponds to a 3D closed curve called
Eight Knot curve. Two images of the curve from different
viewpoints are shown in Figure 5. The CS method is applied
to a set of 100 noisy data points for the Bernstein basis
functions. Our results are shown in Figure 6. The best fitness
value in this case is 3.193634 × 10

−2, while the absolute
mean value of the difference between the original and the
reconstructed data points for each coordinate is (2.7699870×
10
−2, 2.863125 × 10−2, 1.3710703 × 10−2). The average CPU

time for this example is 8.75938 seconds.

7. Conclusions and Future Work

This paper addresses the problem of approximating a set of
data points by using global-support curves while simulta-
neously minimizing the degrees of freedom of the model
function and satisfying other additional constraints. This
problem is formulated in terms of a weighted Bayesian

energy functional that encapsulates all these constraints into
a single mathematical expression. In this way, the original
problem is converted into a continuous nonlinear multi-
variate optimization problem, which is solved by using a
metaheuristic approach. Our method is based on the cuckoo
search, a powerful nature-inspired metaheuristic algorithm
introduced recently to solve optimization problems. Cuckoo
search (especially its variant that uses Lévy flights) has been
successfully applied to difficult optimization problems in
different fields. However, to the best of our knowledge, this
is the first paper applying the cuckoo search methodology in
the context of geometric modeling and data fitting.

Our approach based on the cuckoo search method has
been tested on five illustrative examples of different types,
including open and closed 2D and 3D curves. Some examples
also exhibit challenging features, such as cusps and self-
intersections. They have been fitted by using two different
families of global-support functions (Bernstein basis func-
tions and the canonical polynomial basis) with satisfactory
results in all cases. The experimental results show that the
method performs pretty well, being able to solve our difficult
minimization problem in an astonishingly straightforward
way. We conclude that this new approach can be successfully
applied to solve our optimization problem.

Amajor advantage of thismethod is its simplicity: cuckoo
search requires only two parameters, many fewer than other
metaheuristic approaches, so the parameter tuning becomes
a very simple task.This simplicity is also reflected in the CPU
runtime of our examples. Even though we are dealing with a
constrained continuous multivariate nonlinear optimization
problem andwith curves exhibiting challenging features such
as cusps and self-intersections, a typical single execution
takes less than 10 seconds of CPU time for all the examples
reported in this paper. In addition, the method is simple
to understand, easy to implement and does not require any
further pre-/postprocessing.
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Figure 4: Application of the cuckoo search algorithm to the piriform curve example: (a) original data points (red emptied circles) and
reconstructed points (in blue plus symbol); (b) data points (black plus symbol) and fitting curve (solid blue line).
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Figure 5: Two different viewpoints of the 3D Eight Knot curve.
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Figure 6: Application of the cuckoo search algorithm to the 3D Eight Knot curve example: (a) original data points (red emptied circles) and
reconstructed points (in blue plus symbol); (b) data points (black plus symbol) and fitting curve (solid blue line).
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In spite of these encouraging results, further research
is still needed to determine the advantages and limitations
of the present method at full extent. On the other hand,
some modifications of the original cuckoo search have been
claimed to outperform the initial method on some bench-
marks. Our implementation has been designed according to
the specifications of the original method and we did not test
any of its subsequent modifications yet. We are currently
interested in exploring these issues as part of our future work.
The hybridization of this approach with other competitive
methods for better performance is also part of our future
work.
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