
Ochoa et al. BMC Bioinformatics 2013, 14:187
http://www.biomedcentral.com/1471-2105/14/187

METHODOLOGY ARTICLE Open Access

QualComp: a new lossy compressor for quality
scores based on rate distortion theory
Idoia Ochoa*, Himanshu Asnani, Dinesh Bharadia, Mainak Chowdhury, Tsachy Weissman and Golan Yona

Abstract

Background: Next Generation Sequencing technologies have revolutionized many fields in biology by reducing the
time and cost required for sequencing. As a result, large amounts of sequencing data are being generated. A typical
sequencing data file may occupy tens or even hundreds of gigabytes of disk space, prohibitively large for many users.
This data consists of both the nucleotide sequences and per-base quality scores that indicate the level of confidence
in the readout of these sequences. Quality scores account for about half of the required disk space in the commonly
used FASTQ format (before compression), and therefore the compression of the quality scores can significantly reduce
storage requirements and speed up analysis and transmission of sequencing data.

Results: In this paper, we present a new scheme for the lossy compression of the quality scores, to address the
problem of storage. Our framework allows the user to specify the rate (bits per quality score) prior to compression,
independent of the data to be compressed. Our algorithm can work at any rate, unlike other lossy compression
algorithms. We envisage our algorithm as being part of a more general compression scheme that works with the
entire FASTQ file. Numerical experiments show that we can achieve a better mean squared error (MSE) for small rates
(bits per quality score) than other lossy compression schemes. For the organism PhiX, whose assembled genome is
known and assumed to be correct, we show that it is possible to achieve a significant reduction in size with little
compromise in performance on downstream applications (e.g., alignment).

Conclusions: QualComp is an open source software package, written in C and freely available for download at
https:// sourceforge.net/ projects/ qualcomp. It is designed to lossily compress the quality scores presented in a FASTQ
file. Given a model for the quality scores, we use rate-distortion results to optimally allocate the available bits in order
to minimize the MSE. This metric allows us to compare different lossy compression algorithms for quality scores
without depending on downstream applications that may use the quality scores in very different ways.

Keywords: Next generation sequencing, Quality scores, Compression, FASTQ format, Rate distortion,
Mean squared error

Background
It has been more than a decade now since the first draft
of the human genome was published [1]. The Human
Genome Project, which required a significant collabo-
rative effort of many scientists for more than 10 years,
was completed using the Sanger sequencing technology.
Just a decade later, many medium and small size labo-
ratories achieve the task of sequencing complete mam-
malian genomes within a few weeks using the new Next
Generation Sequencing (NGS) technologies. The cost per
genome has decreased from $100M in 2001 to $10K in
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2012 [2]. Current sequencers are capable of generating
close to tera-base worth of data that needs to be stored
and processed. Several recent studies, such as the cow
rumen [3] and the MetaHit [4] metagenomic projects
resulted in hundreds and hundreds of gigabase worth of
datasets. As project scales continue to grow, it is expected
that the bottleneck will move towards the computational
aspects, in particular with respect to the analysis and stor-
age of the data. For example, there is an explosive growth
of data submitted to the freely available next-generation
sequence data archive, the Sequence Read Archive (SRA)
[5]. Thus compressing this data will facilitate its storage
and dissemination.
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Several methods are used by the different NGS tech-
nologies for the readout of the sequencing signal (known
as base calling). This process may be affected by vari-
ous factors, which may lead to a wrong readout of the
sequencing signal. In order to assess the probability of
base calling mistakes, the sequencers generate, in addition
to the nucleotide sequences (reads), quality scores that
reflect the level of confidence in the readout of each base.
That is, the higher the quality score, the higher the reliabil-
ity of the corresponding base, and vice versa. Specifically,
the quality score Q is the integer mapping of P (the proba-
bility that the corresponding base call is incorrect) and can
be represented in (at least) the following scales/standards:

• Sanger or Phred scale [6]: Q = −10 log10 P.
• Solexa scale: Q = −10 log10

P
1−P .

Different NGS technologies use different scales, Phred +
33, Phred + 64 and Solexa + 64 being the most common
ones. For example, Phred + 33 corresponds to values of Q
in the range [ 33 : 73].

Quality scores are important and very useful in many
downstream applications such as trimming (used to
remove untrusted regions) [7,8], alignment [9-12] or
Single Nucleotide Polymorphism (SNP) detection [13,14],
among others. However, they significantly increase the
size of the files storing raw sequencing data.

The literature abounds in efforts to compress genomic
data. Whole genome level compression without the aid of
any external information has been the focus of [15-19] and
references therein. More recent contributions show that
further compression can be achieved by mapping the tar-
get genome to a reference genome, and encoding only the
differences between the two [20-27]. Compression of raw
sequencing data has also been studied in the literature.
While the compression scheme proposed in [28] focuses
only on the nucleotide sequences, most approaches con-
sider the compression of the entire file, including the
quality scores [29-37].

In this paper, we concentrate on the lossy compression
of the quality scores, as they take up a significant chunk
of the storage space. FASTQ files are widely accepted as
a standard for storing sequencing data, and are the ones
considered in this paper. FASTQ files consist of sepa-
rate entries for each read, each consisting of four lines.
The first one is for the header line, which begins with
the ‘@’ character and is followed by a sequence identifier
and an optional description. The second one contains the
nucleotide sequence. The third one starts with the ‘+’ char-
acter and can be followed by the same sequence identifier
and optional description as the first line. Finally, the fourth
line is for the quality scores (encoded in ASCII) associ-
ated with the bases that appear in the nucleotide sequence
of line two (both lines must contain the same number of

symbols). The following is an example of a FASTQ file cor-
responding to a read of length 26 and quality scores in the
scale Phred + 33.
@SRR001666.1
GATTTGGGGTTCAAAGCAGTGCAAGC
+
IIIHIIHABBBAA=2))!!!(!!!((

Unlike header lines and nucleotide sequences, quality
scores are particularly difficult to compress, due to their
higher entropy and larger alphabet. The importance of
lossy compression in the context of reducing storage of
sequenced data has been highlighted in [38]. Although
discarding information may not always be welcome, sev-
eral lossy compression schemes for the quality scores have
been proposed recently in the literature as a partial solu-
tion to reduce the storage space of genomic data. It has
been presented as a plausible idea in [5] and as a concrete
algorithm as part of the SLIMGENE package in [32]. The
SLIMGENE package considers the compression of both
the nucleotide and quality score sequences, and it includes
a module which performs lossy compression of quality
scores based on fitting a fixed state markov model on adja-
cent quality scores as well as on reducing the alphabet.
They use SNP variant calling as their performance metric
and show that lossy compression has a minimal effect on
performance. In [33], a metric called “quality-budget” is
used to selectively discard the quality scores which match
perfectly to the reference, with only quality scores with
sufficient variation being retained. Cramtools [36] is a
software built on this principle of reference-based com-
pression that also allows lossy compression of the quality
scores. Recently, [39] considered relative mapping accu-
racy of the reads as the metric and applied various lossy
transform techniques to show that impressive compres-
sion can be achieved with a small loss in performance.
The software fastqz [34] has the option of quantizing the
quality scores for lossy compression. Finally, the SCALCE
software [35] provides an optional controlled lossy trans-
formation approach that reduces the alphabet size based
on the observation that “neighboring” quality scores are
similar in general.

Reducing the storage space of quality scores by per-
forming lossy compression may affect the performance of
downstream applications, and therefore minimizing the
loss in performance is an important goal. However, due to
the noisy nature of the several models/technologies that
generate the quality scores and the varied use that differ-
ent downstream applications make of them, it is difficult
to design a compression scheme that achieves this goal
independently of the technology and downstream applica-
tion. Furthermore, it is not clear how to compare the dif-
ferent lossy compression schemes proposed so far in the
literature, in the absence of a defined metric. In this work,
we propose a scheme based on rate distortion theory that



Ochoa et al. BMC Bioinformatics 2013, 14:187 Page 3 of 16
http://www.biomedcentral.com/1471-2105/14/187

compresses the quality scores by allocating as many bits
per quality score sequence as specified by the user, while
minimizing a given distortion between the uncompressed
(i.e., the original quality scores) and the reconstructed
quality scores after the lossy compression. We choose
a mathematical quantity for the distortion rather than
a “physical distortion” or performance loss with respect
to downstream applications, thus making the proposed
scheme independent of the sequencing technology and
the downstream analyzers.

Specifically, we use mean squared error (MSE) as
the measure of performance for our lossy compression.
We believe that reduced MSE translates to minimiz-
ing the incurred loss in the downstream applications.
Our algorithm assumes that the quality scores are gen-
erated by a multivariate Gaussian. This is justified by
the fact that, given a vector source with a particular
covariance structure, the Gaussian multivariate source
is the least compressible and, further, a code designed
under the Gaussian assumption will perform at least as
well on any other source of the same covariance [40].
Then, using the singular value decomposition (SVD) tech-
nique, we decorrelate the quality scores thereby getting a
multivariate Gaussian characterized by a diagonal covari-
ance matrix, or in other words, “independent” streams
of quality scores. This allows us to use optimization
techniques from rate distortion theory to optimally allo-
cate bits to minimize the MSE. Because reads within a
file may have very different qualities and the proposed
method is based on the statistics of the quality score
sequences, the proposed algorithm also allows the user
to cluster the data prior to compression, to improve the
statistics and hence the performance. We compare sev-
eral lossy compression schemes based on this criterion,
and see that our algorithm achieves much smaller MSE
for small rates. Also, we show that our algorithm can
work at rates not achieved by other lossy compression
algorithms. We further show that, for a data set where
the assembled genome is known and assumed to be
correct, one can get performance in some downstream
applications comparable to that achieved using the origi-
nal (uncompressed) quality scores. Finally, our algorithm
allows the user to specify the rate prior to compres-
sion, which as far as we know is the first implementa-
tion of lossy compression of quality scores that has this
characteristic.

Methods
The compression method
We now formalize the problem of lossy compression
of quality scores and describe the proposed method.
As stated in previous sections, the FASTQ format is
widely accepted as the standard to store sequencing data.
Therefore, we consider the compression of quality scores

presented in this format, and assume all the reads are
of the same length n within a file. Denote the number
of entries in the FASTQ file by N, where each entry is
composed of four lines. The quality score sequences pre-
sented in a FASTQ file are denoted by {Qi}N

i=1, where
Qi =[ Qi(1), . . . , Qi(n)]. Our goal is to design an encoder-
decoder pair that describes the quality score vectors
using only as many bits as specified by the user, while
minimizing a given distortion D between the original
vectors {Qi}N

i=1 and the reconstructed vectors {Q̂i}N
i=1.

More specifically, we consider that each Qi is com-
pressed using at most nR bits, where R denotes the
rate (bits per quality score), and that the distortion D
is computed as the average distortion of each of the
vectors, i.e., D = 1

N
∑N

i=1 D(i). Furthermore, we con-
sider the MSE as our given distortion function d :
(Q, Q̂) → R+, which operates symbol by symbol (as
opposed to block by block), so that D(i) = d(Qi, Q̂i) =
1
n

∑n
j=1 d(Qi(j), Q̂i(j)) = 1

n
∑n

j=1(Qi(j) − Q̂i(j))2. These
assumptions allow us to model the encoder-decoder pair
as a rate-distortion scheme of rate R, where the encoder
is described by the mapping fn : Qi → {1, 2, . . . , 2nR},
which represents the compressed version of the vec-
tor Qi of length n using nR bits, and the decoder
is described by the mapping gn : {1, 2, . . . , 2nR} →
Q̂i, where Q̂i = gn(fn(Qi)) denotes the reconstructed
sequence.

With this formulation of the problem we can use some
results on rate distortion theory to guide the design of
QualComp. For a detailed description on rate distortion
theory and proofs, please refer to [41]. We are interested
in the following result:

Theorem 1. For an i.i.d. Gaussian vector source X ∼
N (0, �X), with �X = diag[ σ 2

1 , . . . , σ 2
n ] (i.e., independent

components), the optimal allocation of nR bits that min-
imizes the MSE is given as the solution to the following
optimization problem:

min
ρ=[ρ1,··· ,ρn]

1
n

n∑

j=1
σ 2

j 2−2ρj (1)

s.t.
n∑

j=1
ρj ≤ nR, (2)

where ρj denotes the number of bits allocated to the jth
component of X.

Next we describe how we use this result in the design
of QualComp. In real data, quality scores take inte-
ger values in a finite alphabet Q, but for the pur-
pose of modeling, we assume Q = R (the set of
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real numbers). Although the quality scores of different
reads may be correlated, we model correlations only
within a read, and consider quality scores across dif-
ferent reads to be independent. Thus we assume that
each quality score vector Qi is independent and iden-
tically distributed (i.i.d.) as PQ, which will be specified
below.

To the best of our knowledge, there are no known
statistics of the quality score vectors. However, given
a vector source with a particular covariance matrix,
the multivariate Gaussian is the least compressible. Fur-
thermore, compression/coding schemes designed on the
basis of Gaussian assumption, i.e., worst distribution
for compression, will also be good for non-Gaussian
sources, as long as the mean and the covariance matrix
remain unchanged [40]. Guided by this observation,
we model the quality scores as being jointly Gaus-
sian with the same mean and covariance matrix, i.e.,
PQ ∼ N (μQ, �Q), where μQ and �Q are empiri-
cally computed from the set of vectors {Qi}N

i=1. Due
to the correlation of quality scores within a read, �Q
is not in general a diagonal matrix. Thus to apply
Theorem 1, we need to first decorrelate the quality score
vectors.

In order to decorrelate the quality score vectors, we
first perform the singular value decomposition (SVD)
of the matrix �Q. This allows us to express �Q as
�Q = VSV T , where V is a unitary matrix that satis-
fies VV T = I and S is a diagonal matrix whose diagonal
entries sjj, for j ∈[ 1 : n], are known as the singular
values of �Q. We then generate a new set of vectors
{Q′

i}N
i=1 by performing the operation Q’i = V T (Qi −

μQ) for all i. This transformation, due to the Gaus-
sian assumption on the quality score vectors, makes the

components of each Q’i independent and distributed
as N(0, sjj), for j ∈[ 1 : n], since Q’i ∼ N (0, S).
This property allows us to use the result of Theorem 1.
The number of bits alloted per quality score vector,
nR, is a user specified parameter. Thus we can for-
mulate the bit allocation problem for minimizing the
MSE as a convex optimization problem, and solve it
exactly. That is, given a budget of nR bits per vec-
tor, we allocate the bits by first transforming each Qi
into Q’i, for i ∈[ 1 : N], and then allocating bits to
the independent components of Q’i. In order to min-
imize the MSE, we solve the following optimization
problem:

min
ρ=[ρ1,··· ,ρn]

1
n

n∑

j=1
sjj2−2ρj (3)

s.t.
n∑

j=1
ρj ≤ nR, (4)

where ρj represents the number of bits allocated to the
jth position of Q’i, for i ∈[ 1 : N], i.e., the alloca-
tion of bits is the same for all the quality score vec-
tors and thus the optimization problem has to be solved
only once. Ideally, this allocation should be done by
vector quantization, i.e., by applying a vector quan-
tizer with Nρj bits to Q’i(j)N

i=1, for j ∈[ 1 : n].
However, due to ease of implementation and negligi-
ble performance loss, we use a scalar quantizer. Thus
for all i ∈[ 1 : N], each component Q’i(j), for j ∈
[ 1 : n], is normalized to a unit variance Gaus-
sian and then it is mapped to decision regions rep-
resentable in ρj bits. For this we need ρj to be an
integer. However, this will not be the case in general,
so we randomly map each ρj to ρ′

j , which is given by

Encoding the quality scores of a FASTQ file using nR bits per sequence
Precompute:

1. Extract the quality score vectors {Qi}N
i=1 of length n from the FASTQ file.

2. Compute μQ and �Q empirically from {Qi}N
i=1.

4. Compute the SVD: �Q = VSV T .
5. Given S and the parameter nR, solve for the optimal ρ = [ ρ(1), . . . , ρ(n)] that minimizes the MSE.

For i = 1 to N :
1. Q’i = V T (Qi − μQ).
2. For j = 1 to n:
2.1. Q′′

i (j) = Q′
i(j)√sjj

.
2.2. Randomly generate integer ρ′

j from ρj.
2.3. Map Q′′

i (j) into its corresponding decision region.
2.4. Encode the decision region using ρ′

j bits and write them to file.
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either the closest integer from below or from above,
so that the average of ρ′

j and ρj coincide. In order
to ensure the decoder gets the same value of ρ′

j , the
same pseudorandom generator is used in both functions.
The decision regions that minimize the MSE for dif-
ferent values of ρ and their representative values are
found offline from a Lloyd Max procedure [42] on a
scalar Gaussian distribution with mean zero and vari-
ance one. For example, for ρ = 1 we have 21 deci-
sion regions, which correspond to values below zero
(decision region 0) and above zero (decision region 1),
with corresponding representative values −0.7978 and
+0.7978. Therefore, if we were to encode the value
−0.344 with one bit, we will encode it as a ‘0’, and
the decoder will decode it as −0.7978. The decoder, to
reconstruct the new quality scores {Q̂i}N

i=1, performs the
operations complementary to that done by the encoder.
The decoder constructs round(V Q′ + μQ) and replaces
the quality scores corresponding to an unknown base-
pair (given by the character ‘N’), by the least reli-
able quality value score. The steps are summarized
below.

Notice that the final size is given by nRN plus an
overhead to specify the mean and covariance of the qual-
ity scores, the length n and the number of sequences
N. This can be further reduced by performing a loss-
less compression using a standard universal entropy
code.

Since the algorithm is based on the statistics of the
quality scores, better statistics would give lower distor-
tion. With that in mind, and to capture possible cor-
relation between the reads, we allow the user to first
cluster the quality score vectors, and then perform the
lossy compression in each of the clusters separately.
For that we use the standard k-means algorithm [43],
which we explain below. Notice that the total size in
this case is just increased by a small amount for each
of the clusters, since we do not preserve the order
of the sequences. Specifically, after decoding the qual-
ity scores, we create the corresponding FASTQ file by
incorporating the remaining information, i.e., the first
three lines of each entry (including the header and the
nucleotide sequence), and sorting the entries in alphabet-
ical order with respect to the headers. This guarantees
that related FASTQ files with paired end reads will have
the same ordering after applying the lossy compression
algorithm.

Finally, notice that R = 0 is not the same as discard-
ing the quality scores, since the decoder will not assign
the same value to all the reconstructed quality scores.
Instead, the reconstructed quality score vectors within a
cluster will be the same, and equal to the empirical mean
of the original quality score vectors within the cluster, but

each quality score within the vector will in general be
different.

Clustering
The clustering is based on the k-means algorithm [43],
and it is performed as follows. For each of the clusters,
we initialize a mean vector V of length n, with the same
value at each position. The values are chosen to be equally
spaced between the minimum quality score and the max-
imum. For example, if the quality scores go from 33 to
73 and there are 3 clusters, the mean vectors will be ini-
tialized as all 33’s, all 53’s, and all 73’s. Then, each of the
quality score vectors will be assigned to the cluster that
minimizes the MSE with respect to its mean vector V, i.e.,
to the cluster that minimizes 1

n
∑n

i=1(Q(i) − V (i))2. After
assigning each quality score vector to a cluster, the mean
vectors are updated by computing the empirical mean of
the quality score vectors assigned to the cluster. This pro-
cess is repeated until none of the quality score vectors is
assigned to a different cluster, or until a maximum number
of iterations is reached.

Table 1 MSE results of QualComp when applied to the PhiX
dataset

R C MSE

0 1 32.71

0 3 18.62

0 5 15.13

0.2 1 10.67

0.2 3 8.75

0.2 5 8.37

0.5 1 7.23

0.5 3 5.94

0.5 5 5.70

1.0 1 4.49

1.0 3 3.63

1.0 5 3.47

2.0 1 2.05

2.0 3 1.62

2.0 5 1.54

2.5 1 1.42

2.5 3 1.12

2.5 5 1.06

3.0 1 1.03

3.0 3 0.89

3.0 5 0.83

MSE obtained by our lossy compression algorithm for different rates (R) and
number of clusters (C) with the PhiX dataset. As can be observed, increasing the
number of clusters decreases the MSE for the same rate.
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Figure 1 MSE vs. compression rate for the PhiX dataset. Results of QualComp when applied to the PhiX dataset for rates R = {0, 0.2, 0.5, 1, 2,
2.5, 3}, and 1, 2 and 3 clusters. As can be observed, increasing the number of clusters improves the performance of QualComp in terms of the MSE.

Results and discussion
Ideally, when testing a lossy compression scheme over
quality scores, one would like to know how the com-
pression affects the results of downstream algorithms
which use the quality scores. However, lossy compres-
sion of quality scores has been introduced only recently,
and has not been tested extensively in that respect.
In general, even without compression, there is a lim-
ited amount of work on the behavior of downstream
application with respect to quality scores. Further com-
plicating the assessment is the fact that there are no
standard benchmarks, and there are very few datasets
for which results (e.g., assembled genome, SNPs) were
validated.

When assessing the performance of our lossy com-
pression algorithm we consider two aspects. First is the
distortion rate tradeoff achieved. That is, the MSE vs.
the compression rate. This measure is independent of
the downstream application and provides a framework
that can be used for an evaluation of different lossy-
compression algorithms. Second, we use a few publicly
available datasets to test the impact of our algorithm on
two downstream applications: short-read alignment and
SNP detection.

Datasets
We consider the lossy compression of three different
datasets. We use two of the datasets used in [39], both

Table 2 Rate and MSE obtained by running the algorithm proposed in [39] on the PhiX dataset

LogBinning R MSE UniBinning R MSE Truncating R MSE

60 0 836.54 2 0.08 629.25 33 0.30 189.63

32 0.78 352.20 4 0.10 493.59 40 0.35 165.27

30 0.76 207.50 6 0.11 452.24 60 0.42 142.76

25 0.63 102.14 10 0.15 339.58 70 0.50 122.08

20 0.41 118.67 20 0.22 243.96 80 0.59 103.19

15 0.9 39.86 30 0.26 215.86 90 0.59 103.19

10 1.09 17.67 60 0.42 142.76

6 1.36 8.13 70 0.50 122.08

4 1.90 2.92 80 0.59 103.19

2 2.74 0.54 90 0.59 103.19

MSE obtained by the LogBinning, UniBinning and Truncating schemes proposed in [39] with different parameters.
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Table 3 Rate and MSE obtained by running SCALCE [35] on
the PhiX dataset

Error threshold R MSE

60 0.84 7.87

70 0.77 6.06

80 0.77 6.06

90 1.02 5.99

100 0.96 5.59

40 1.49 3.03

20 2.25 0.55

0 2.95 0

MSE obtained by SCALCE with different error thresholds.

generated by Solexa technology. Specifically, we consider
the lossy compression of the SRR032209 dataset [44] from
a M. musculus species, with N = 18828274, n = 36 and
quality scores in the range [ 33 : 67], and the SRR089526
dataset [45] from an H. sapiens with N = 23892841,
n = 48 and quality scores in the range [ 33 : 73]. We
also consider a dataset from the PhiX [46] virus used in
the control lane in the Illumina technology, where the
genome from which the reads are generated is assumed to
be known. This data set contains N = 13310768 quality
score sequences of length n = 100 and values in the range
[ 66 : 98]. All data sets are available for download at [47].

Timing and memory usage
We provide estimates of the time and memory used
by QualComp to compress and decompress the quality

scores presented in the FASTQ files of the PhiX, SRR03229
and SRR089526 data introduced above. Recall that the
number of reads in each file is 13310768, 18828274 and
23892841, respectively, and the length of each read is
100, 36 and 48, respectively. Computing the statistics
needed for compression took 20, 4 and 10 minutes,
respectively. However, notice that the statistics need to
be computed only once. The compression time increases
with the rate, varying from 0 seconds with zero rate to
9 minutes with R = 2.5 and PhiX data, 3 minutes with
R = 2 and SRR032209 data and 8 minutes with R = 2.5
for SRR089526 data.

The decompression time of the algorithm increases
with the rate as well, and varies from 3 minutes (R = 0)
to 7 minutes (R = 2.5) for the PhiX data, from 1 minute
(R = 0) to 2 minutes (R = 2) for SRR032209 data and
from 2 minutes (R = 0) to 4 minutes (R = 2.5) for
SRR089526 data.

Finally, the memory usage for all the datasets during
the compression and the decompression was about 16
MB, making it suitable for execution on any personal
computer.

Simulation results
Performance in terms of the MSE
We apply QualComp to the data sets introduced above.
For each of the data sets, we run the algorithm with several
rates and different number of clusters. We then compute
the MSE between the uncompressed quality scores (i.e.,
the original quality scores) and the quality scores recon-
structed by QualComp. To evaluate the performance, we

0 0.5 1 1.5 2 2.5 3
10

−1

10
0

10
1

10
2

10
3

1 Cluster

3 Clusters

5 Clusters

LogBinning

UniBinning

Truncating

Scalce

Figure 2 Comparison of the MSE of different compression methods on the PhiX dataset. Comparison between the MSE obtained by
QualComp and the schemes proposed in [39] and SCALCE [35] for different rates. Note that for small rates QualComp presents the smallest MSE,
and it achieves rates not attainable by other lossy compression algorithms.
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Table 4 MSE results of QualComp when applied to the M.
musculus dataset

R C R’ MSE

0 1 0 143.0

0 2 0 37.58

0 3 0 27.49

0.33 1 0.3343 16.46

0.33 2 0.3420 14.39

0.33 3 0.3459 13.09

0.66 1 0.6685 12.94

0.66 2 0.6811 11.00

0.66 3 0.6825 9.82

1.00 1 1.0026 10.01

1.00 2 1.0153 8.59

1.00 3 1.0278 7.35

2.00 1 2.0051 4.58

2.00 2 2.0177 3.76

2.00 3 2.0300 3.12

MSE obtained by our lossy compression algorithm for different rates (R) and
number of clusters (C) on the M. musculus dataset. R’ denotes the actual rate
obtained after compression. Note that the effective rate R’, while still close to R,
grows with the number of clusters.

consider the lossy compression schemes proposed in [39],
SCALCE [35] and fastqz [34]. To that end, we run the
algorithm of [39] with the options for lossy compres-
sion LogBinning, UniBinning and Truncating, for different
parameters, and SCALCE with different error thresh-
olds. We choose the option gzip for the final compression
method in both algorithms. We also run the algorithm
fastqz with different quantization levels and command “c”,
since it offers more compression than the command “e”

while creating the same reconstructed quality scores.
For a fair comparison, we compute the number of bits
per quality score employed on average by each of the
algorithms and plot it versus the MSE. We do not
consider the scheme proposed in [32], because we did
not succeed in running the lossy compressor of quality
scores presented in the SLIMGENE package. Also, the
schemes proposed in [33] and Cramtools [36] employ
a reference for compression, so we did not consider
them.

Notice that, in our scheme, there is a small overhead
due to some extra information needed for the decoder to
decompress the quality scores. As a result, the actual rate
(bits per quality scores) after the compression, which we
denote by R′, may not be exactly equal to the parameter
R we set when calling the program. The use of a gen-
eral compression tool such as gzip after our compression
could further decrease the size of the output file, but the
reduction is very small so we do not include it in our final
results.

1. PhiX data:
We run our lossy compression algorithm with rates
R = {0, 0.2, 0.5, 1, 2, 2.5, 3}, and 1, 3 and 5 clusters.
Table 1 shows the MSE obtained with the different
parameters, where R and C denote the rate and the
number of clusters specified when running
QualComp. As can be observed from these results,
increasing the rate for a given number of clusters
decreases the MSE, especially for small values of R.
Similarly, increasing the number of clusters for the
same rate decreases the MSE, as expected. This can
be clearly seen in Figure 1. The overhead incurred by
setting the number of clusters to 1, 3 and 5 is 100 KB,
292 KB and 488 KB, respectively, which represents an

Table 5 Rate and MSE obtained by running the algorithm proposed in [39] on the M. musculus dataset

LogBinning R MSE UniBinning R MSE Truncating R MSE

60 0 684.29 5 0.25 405.14 33 0.01 684.29

34 0.29 632.13 10 0.35 279.63 40 0.26 404.92

26 0.65 80.160 17 0.41 226.08 50 0.58 137.08

17 0.62 129.42 26 0.47 178.60 60 1.58 15.01

10 1.13 14.51 34 0.51 157.10 70 3.24 0.00

5 1.42 6.03 60 0.61 118.58

70 0.67 101.53

80 0.74 85.92

90 0.74 85.92

100 0.79 71.82

200 1.08 37.53

MSE obtained by the LogBinning, UniBinning and Truncating schemes proposed in [39] for different parameters.
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Table 6 Rate and MSE obtained by running SCALCE [35]
and fastqz [34] on the M. musculus dataset

Scalce fastqz

Error threshold R MSE Quantization R MSE

90 0.80 7.47 70 0.05 596.15

80 0.80 7.47 50 0.05 596.15

100 0.93 6.62 40 0.05 596.15

60 0.96 5.36 30 0.67 234.36

40 1.29 3.31 20 0.46 76.19

20 1.94 1.18 10 1.04 17.83

0 2.65 0 5 1.33 3.53

1 2.59 0

MSE obtained by SCALCE with different error thresholds and by fastqz with
different quantization levels.

increase in rate of 6.15 × 10−4, 1.79 × 10−3 and
3.00 × 10−3. The results obtained by running the
schemes proposed in [39] and SCALCE [35] are
shown in Table 2 and Table 3, respectively. No
results are provided for the fastqz software [34],
because it only accepts Sanger files with quality
scores between 33 and 73. For ease of comparison,
we plot the rate versus the MSE for all the schemes in
Figure 2. As can be observed, QualComp presents a
smaller MSE than that of [39] and SCALCE for the
same rates in most of the cases. For rates above 2,
both the LogBinning scheme proposed in [39] and
SCALCE present a smaller MSE than QualComp
with rate 3. This is due to our assumption that
Q = R, instead of Q = [ 66 : 98].

As a result, QualComp may perform worse than
other algorithms for rates close to those of lossless
compression. However, in such a scenario (when the
rate is high), the savings with lossy compression are
marginal compared to a lossless compressor.
Finally, notice that in the LogBinning scheme
proposed in [39] (as well as in SCALCE), there is no
clear correlation between the number of quality
scores per bin (the error threshold) and the
corresponding rate and MSE. Moreover, both
schemes present an MSE that is not monotonically
decreasing with increasing rate. Notice also that
SCALCE can not achieve rates smaller than 0.77 in
this case, whereas QualComp can work at any rate.
Also, the schemes UniBinning and Truncating are
unable to get an MSE less than 100 with this data.

2. M. musculus data (SRR032209):
We run QualComp with rates R = {0, 0.33, 0.66, 1, 2},
and 1, 2 and 3 clusters. Table 4 shows the MSE
obtained with the different parameters. R and C
denote the rate and the number of clusters, and R′
denotes the actual rate obtained after applying the
compression. The results we get are consistent with
what we observed in the previous dataset. Note that
the difference between R and R′ is due to the extra
information (fixed) about the statistics and the
number of clusters. This additional rate per read (i.e.,
R′ − R) becomes negligible for a large number of
reads N, as can be observed in Table 4.
With two clusters, 24.31% of the quality score
sequences are in one cluster and the remaining ones
in the other, with the small cluster corresponding to

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10
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1
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3 Clusters
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UniBinning
Truncating
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Fastqz

Figure 3 Comparison of the MSE of different compression methods on the M. musculus dataset. Comparison between the MSE obtained by
QualComp and the schemes proposed in [39], SCALCE [35] and fastqz [34] for different rates. Note that QualComp presents the smallest MSE for
small rates.
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Table 7 MSE results of QualComp when applied to the H.
sapiens dataset

R C MSE

0 1 75.64

0 2 25.21

0 3 17.32

0.25 1 12.55

0.25 2 8.53

0.25 3 7.26

0.50 1 9.18

0.50 2 7.17

0.50 3 5.90

1.00 1 6.53

1.00 2 5.42

1.00 3 4.16

2.00 1 3.50

2.00 2 3.02

2.00 3 1.99

MSE obtained by our lossy compression algorithm for different rates (R) and
number of clusters (C) with the H. sapiens dataset.

that of quality scores with lower mean. In the case of
three clusters, the division is 21.17%, 15.01% and
63.81%. Finally, the overheads for one, two and three
clusters are 20 KB, 40 KB and 52 KB, respectively.
In order to compare the performance of QualComp,
we run the schemes proposed in [39], SCALCE [35]
and fastqz [34], with different parameters. The
corresponding rate and MSE for the different
schemes are shown in Table 5 and Table 6, and in
Figure 3.
As can be seen, QualComp performs well in terms of
the MSE, especially for small values of R, as in the
previous case. Notice that, as before, SCALCE can
not work at small rates. Similarly, fastqz can not work

below rate 0.05, and the MSE is not decreasing as a
function of the rate. Among the schemes proposed in
[39], LogBinning performs better for higher rates,
and Truncating for smaller rates.

3. H. sapiens data (SRR089526):
For this dataset, we run QualComp with a choice of
rates given by R = {0, 0.25, 0.5, 1, 2} and 1, 2 and 3
clusters. The obtained MSE for the different
parameters is shown in Table 7. The overhead for the
choice of 1, 2 and 3 clusters is 28 KB, 56 KB and 84
KB, respectively, which represents an increment (i.e.,
R′ − R) of 2 × 10−4, 4 × 10−4 and 6 × 10−4. As
before, increasing the number of clusters decreases
the MSE, and this difference is more noticeable for
small values of R. For example, with R = 0, we have a
reduction of more than 77% in the MSE when
dividing the data into three clusters instead of one,
whereas the reduction for R = 2 is around 43%.
Finally, Table 8 shows the rate and the MSE obtained
when applying the schemes proposed in [39] for
different parameters, and Table 9 shows the results
for SCALCE and fastqz. We see from these results
and Figure 4, that QualComp can work at rates not
attainable by other algorithms and that it has the
lowest MSE for small rates. This is again consistent
with our observations from the previous datasets.

Impact on downstream applications
We test QualComp on two downstream applications:
short-read alignment and SNP detection. For alignment,
we use the Bowtie algorithm [10], and compare the
results obtained with the original PhiX FASTQ file to
those obtained after applying QualCompa. We chose this
dataset because the virus PhiX has a known assembled
genome [48], which we assume to be correct. This allows
us to consider that a perfect mapping, i.e., a mapping
with no mismatches, is correct and more valuable than
a mapping that has mismatches between the read and

Table 8 Rate and MSE obtained by running the schemes proposed in [39] on the H. sapiens dataset

LogBinning R MSE UniBinning R MSE Truncating R MSE

60 0 1346.35 5 0.05 895.92 33 0.01 1346.35

40 0.72 684.87 10 0.07 680.27 44 0.05 895.87

30 0.31 99.59 20 0.10 538.43 60 0.39 119.04

20 0.84 143.35 30 0.11 494.93

10 1.07 27.80 40 0.13 413.58

5 1.44 4.95 60 0.15 375.73

70 0.17 339.76

80 0.19 305.66

90 0.19 305.66

MSE obtained by the LogBinning, UniBinning and Truncating algorithms proposed in [39] for different parameters.
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Table 9 Rate and MSE obtained by running SCALCE [35]
and fastqz [34] on the H. sapiens dataset

Scalce fastqz

Error threshold R MSE Quantization R MSE

100 0.5339 3.69 70 0.02 1208.02

90 0.64 2.58 50 0.02 1208.02

80 0.64 2.58 40 0.02 1208.02

60 0.85 1.67 20 0.10 246.37

40 0.98 1.18 30 0.28 87.99

20 1.55 0.96 10 0.36 43.86

0 2.04 0 5 0.82 6.31

1 2.04 0

MSE obtained by SCALCE with different error thresholds and by fastqz with
different quantization levels.

the region where it maps in the genome. We present
the alignment results in Table 10. As this table shows,
increasing the rate and the number of clusters results
in a mapping which is closer to that of the original
FASTQ file. Also, notice that the number of reads that
map with zero mismatches is constant with all the tested
parameters. The main differences between the original
FASTQ file and the reconstructed ones (after applying
QualComp) are for alignments with high number of mis-
matches. Even with 0 bits per quality score, the difference
in mapping is about 1.23%, 0.38% and 0.28% for 1, 3
and 5 clusters, respectively, whereas the savings in size
are significant. With 3 clusters, for example, the sav-
ings are 467 MB. With 2 bits per quality score and 3
clusters, the difference in mapping is 0.06% and in size
149 MB.

In order to see how lossy compression affects the SNP
detection for this dataset, PhiX, we run the alignment
algorithm BWA [11] followed by Samtools [49] for the
original and the compressed files with one, three and
five clusters and different rates. However, no SNPs were
detected for any of the files (including the original FASTQ
file), and therefore no results are provided. Therefore, in
this case, the output of the SNP detection is unaffected by
the use of QualComp.

We also perform alignment with BWA [11] followed by
SNP detection with Samtools [49] for the M. musculus
data. Specifically, we use as a reference chromosome one
of the Mus Musculus reference genome release, known
as MGSCv37. We compare the output of Samtools using
the original FASTQ file as an input with the reconstructed
ones after applying QualComp. We show the results of
SNP detection in Table 11, with one, two and three clus-
ters and rates R = {0, 0.20, 0.33, 0.66, 1, 2}. We did not
report results for higher number of clusters because we
observed no noticeable improvements. We also omit the
alignment results since BWA does not use the quality
scores for alignment.

As can be seen, both the selectivity and the sensitiv-
ity parameters (refer to Table 11 for definitions) increase
with the rate, as expected. Also, since increasing the rate
decreases the MSE, a lower MSE yields a performance
closer to that of using the original FASTQ file. For exam-
ple, with two clusters and 0.66 bits per quality score, we
get a selectivity of 92.78% and a sensitivity of 97.25%.
With three clusters and 1 bit per quality score, we increase
both the selectivity and sensitivity to 94.23% and 97.37%,
respectively.
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Figure 4 Comparison of the MSE of different compression methods on the H. sapiens dataset. Comparison between the MSE obtained by
QualComp and the schemes proposed in [39], SCALCE [35] and fastqz [34] for different rates.
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Table 10 Alignment accuracy on the PhiX dataset with and without compression

Mismatches

bits/quality score 0 1 2 3 ≥ 4 Unmapped Size (MB)

Original

2.95 11315113 1179411 237852 89385 141300 347707 (2.61%) 468.096

1 Cluster

0 11315113 1178443 237493 67493 298 511928 (3.84%) 0.097

0.20 11315113 1179059 237691 86662 90262 401981 (3.01%) 32.097

0.50 11315113 1179153 237726 88051 100677 390048 (2.93%) 80.097

1.00 11315113 1179233 237766 88771 109950 379935 (2.85%) 159.097

2.00 11315113 1179304 237801 89177 120269 369104 (2.77%) 318.097

2.50 11315113 1179318 237813 89250 123610 365664 (2.74%) 397.097

3 Clusters

0 11315113 1179104 237763 79908 100618 398262 (2.99%) 0.285

0.20 11315113 1179221 237793 86486 120835 371320 (2.78%) 32.411

0.50 11315113 1179268 237799 87857 124371 366360 (2.75%) 81.185

1.00 11315113 1179298 237816 88621 128182 361738 (2.71%) 159.985

2.00 11315113 1179346 237827 89108 132675 356699 (2.67%) 318.585

2.50 11315113 1179362 237835 89204 134221 355033 (2.66%) 398.385

5 Clusters

0 11315113 1179057 237742 83060 110348 385448 (2.89%) 0.476

0.20 11315113 1179239 237796 86437 121236 370947 (2.78%) 32.551

0.50 11315113 1179283 237799 87858 124886 365829 (2.74%) 80.606

1.00 11315113 1179321 237813 88664 128682 361175 (2.71%) 160.376

2.00 11315113 1179363 237828 89146 133300 356018 (2.67%) 319.270

2.50 11315113 1179364 237833 89230 134703 354525 (2.66%) 400.176

Alignment results of Bowtie with the original PhiX FASTQ file and the ones reconstructed by QualComp, with different parameters. The first column specifies the rate,
and the remaining ones the number of reads that are mapped to the reference genome with 0, 1, 2, 3 and more than 4 mismatches, and those that did not map. Last
column shows the total size after compression. To compute the size of the quality scores in the original FASTQ file, we apply SCALCE [35] with lossless compression.
Note that the number of reads that map with zero mismatches remain constant for all the choices of rate and number of clusters, and is equal to that of the original file.

Finally, we perform the same simulations with the
H. sapiens data. We use as a reference chromosome
one of the human reference genome release hg19,
also known as GRCh37. We show the results of SNP
detection in Table 12, with one, two and three clus-
ters, and rates R = {0, 0.2, 0.25, 0.5, 1, 2}. As in the
previous case, lower MSE (and therefore higher rate)
yields a performance closer to that of the origi-
nal FASTQ file. For example, with two clusters and
0.25 bits per quality score, we get 92.25% selectiv-
ity and 97.64% sensitivity, and with three clusters and
0.5 bits per quality score, we get 93.06% selectiv-
ity and 97.82% sensitivity. Also, increasing the num-
ber of clusters yields a better selectivity. This, together
with the previous results, supports the use of the
MSE as a metric for evaluating any lossy compression
algorithm.

Setting the compression rate R
The performance of the algorithm in terms of the MSE
and its effect on downstream applications is highly data
dependent, and therefore each user should decide which
rate to use based on their storage capabilities and the
accuracy required for the reconstructed quality scores.

However, based on the results we obtained with the
three datasets we experimented with, we can suggest some
general guidelines on how to select R effectively. The
trade-off between rate and performance for QualComp
is best for small values of R, i.e., for the same increment
in rate, the improvement in performance is higher for
small rates (see Additional file 1: Figure S1). For exam-
ple, although R = 0 gives the most savings in terms of
storage, with R = 0.05 and two clusters, the sensitivity
of SNP calling on the M. musculus dataset jumps from
92.77% to 96.42%, and from 84.41% to 96.30% for the H.
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Table 11 SNP calling on the M. musculus dataset with and without compression

One cluster

R MSE T.P. F.P F.N. Selectivity (%) Sensitivity (%) Size (MB)

0 143.0 11217 2033 1810 84.66 86.11 0.019

0.20 19.16 12585 1159 442 91.57 96.61 16.17

0.33 16.46 12602 1120 380 91.84 97.07 26.68

0.66 12.94 12669 998 358 92.70 97.25 53.34

1.00 10.01 12656 875 371 93.53 97.15 80.82

2.00 4.58 12733 594 294 95.54 97.74 161.62

Two clusters

R MSE T.P. F.P F.N. Selectivity (%) Sensitivity (%) Size (MB)

0 37.58 12086 1534 941 88.73 92.77 0.039

0.20 16.42 12644 1184 383 91.44 97.06 16.19

0.33 14.39 12655 1107 372 91.95 97.14 26.70

0.66 11.00 12669 985 358 92.78 97.25 53.36

1.00 8.59 12687 830 340 93.85 97.39 80.84

2.00 3.76 12751 606 276 95.46 97.88 161.64

Three clusters

R MSE T.P. F.P F.N. Selectivity (%) Sensitivity (%) Size (MB)

0 27.49 12048 1219 979 90.81 92.48 0.050

0.20 14.89 12638 1108 389 91.93 97.01 16.21

0.33 13.09 12645 1070 382 92.19 97.06 26.98

0.66 9.82 12646 909 381 93.29 97.07 53.91

1.00 7.35 12685 776 342 94.23 97.37 80.85

2.00 3.12 12730 554 297 95.83 97.72 161.65

We compare the SNPs detected by Samtools with the original FASTQ file and those obtained with the compressed files, using QualComp with one, two and three
clusters and different rates. In all cases, reads were aligned first using the BWA algorithm. T.P., F.P. and F.N. stand for true positive (detected both with the original
FASTQ file and the reconstructed one), false positive (detected only with the reconstructed FASTQ file) and false negative (detected only with the original FASTQ file),
respectively. The selectivity parameter is computed as T.P./(T.P. + F.P.), and sensitivity as T.P./(T.P. + F.N.). Note that already for R = 0.2 the sensitivity is above 96% and
the selectivity is above 91%.

sapiens data (see Additional file 1: Table S1 and Table S2).
Furthermore, increasing the rate to 0.5 increases the sen-
sitivity for the M. musculus data only slightly to 97.16%,
but increases the storage space drastically (by around 900
percent) from 4.07 MB (R = 0.05) to 40.44 MB (R = 0.5).
Similar observations hold for the H. sapiens data.

Looking at the MSE, we observe a similar behavior.
Specifically, the slope of the MSE with respect to the
rate is more pronounced for small values of R. For exam-
ple, for the PhiX dataset (see Additional file 1: Table S3),
we observe the biggest relative decrease from R = 0
(MSE = 18.62) to R = 0.05(MSE = 11.73), which is
a 37 percent improvement. Then, for R = 0.3 we get
an MSE of 7.58, and for R = 0.5 an MSE of 5.94. Sim-
ilarly, for the H. sapiens dataset we observe a factor of
two reduction in the MSE, from 25.21 with R = 0 to
13.55 with R = 0.05. For R = 0.2 we get an MSE
of 9.09 and further increasing the rate to 0.5 gives an
MSE of 7.17.

We therefore propose to set R = 0.2 as a starting point,
since it offers better performance than R = 0 while still
offering major savings in size (see Additional file 1: Table
S4). For example, while Gzip can compress the dataset
PhiX to 592 MB, QualComp produces a file of size 32.09
MB for rate R = 0.2 and one cluster (94% reduction).
Such savings are very significant for large-scale metage-
nomics projects, which generate massive datasets. Sim-
ilarly, Gzip reduces the H. sapiens dataset to 389 MB,
while QualComp can compress the file to 27.42 MB (R =
0.2 and 3 clusters), which represents a reduction in size
of 93%.

As for the number of clusters, the results show a notable
improvement when switching from one to three clus-
ters. For example, with R = 0.2 the alignment results of
Bowtie on the PhiX dataset show 3.01%, 2.78% and 2.78%
unmapped reads with one, three and five clusters, respec-
tively. Similar results are obtained for different choices of
R. For the H. sapiens data and R = 0.2, we get an MSE of
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Table 12 SNP calling on the H. sapiens dataset with and without compression

One cluster

R MSE T.P. F.P F.N. Selectivity (%) Sensitivity (%) Size (MB)

0 75.64 54945 11560 5482 82.62 90.93 0.027

0.20 13.95 58806 5952 1621 90.81 97.32 27.37

0.25 12.55 58881 5707 1546 91.16 97.44 34.20

0.50 9.18 59078 5022 1349 92.17 97.77 68.38

1.00 6.53 59349 4541 1078 92.89 98.22 136.74

2.00 3.50 59628 3814 799 93.99 98.68 273.45

Two clusters

R MSE T.P. F.P F.N. Selectivity (%) Sensitivity (%) Size (MB)

0 25.21 51007 5010 9420 91.05 84.41 0.054

0.20 9.09 58955 4949 1472 92.25 97.56 27.39

0.25 8.53 59002 4951 1425 92.25 97.64 34.23

0.50 7.17 59188 4784 1239 92.52 97.94 68.41

1.00 5.42 59400 4559 1027 92.87 98.30 136.76

2.00 3.02 59601 3718 826 94.12 98.63 273.48

Three clusters

R MSE T.P. F.P. F.N. Selectivity (%) Sensitivity (%) Size (MB)

0 17.32 52922 4686 7505 91.87 87.58 0.082

0.20 7.80 58913 4823 1514 92.43 97.49 27.42

0.25 7.26 58977 4766 1450 92.52 97.60 34.26

0.50 5.90 59111 4411 1316 93.06 97.82 68.44

1.00 4.16 59247 4041 1180 93.61 98.05 136.79

2.00 1.99 59589 3262 838 94.81 98.61 273.51

We compare the SNPs detected by Samtools with the original FASTQ file and those obtained with the compressed files, using QualComp with one, two and three
clusters and different rates. For more details see Table 11.

13.95 with one cluster, 9.09 with two clusters and 7.80 with
three clusters. Therefore we suggest setting the number of
clusters to 3.

QualComp does take longer to run compared to other
programs (see Additional file 1: Table S4), however most
of it is spent on the computation of the statistics and the
clustering, which do not depend on the rate. For example,
computing the statistics for the H. sapiens (SRR089526)
and the M. musculus (SRR032209) datasets took approx-
imately 10 and 4 minutes (both with 1 and 3 clusters),
respectively. Clustering the H. sapiens and the M. mus-
culus datasets to three clusters took about 24 and 20
minutes, respectively. However, notice that the clustering
only affects the compression and not the decompression
time, which is approximately a few minutes for the consid-
ered datasets (and therefore for FASTQ files with similar
sizes). In general, the decompression time scales linearly
with the number of reads.

Moreover, note that when compressing a dataset with
different rates, the clustering process and the computation
of the statistics need to be performed only once. Fur-
thermore, for large sets of sequencing data, one needs to

perform clustering and estimation of the statistics (mean
and covariance) only on a small subset (can be thought of
as the training set) of the data. One can then use those
estimates to compress every subsequent read. This can
be done by first assigning the read to a cluster and then
using the proposed compression scheme. This will lead to
a significant reduction in the compression time.

In summary, the proposed scheme can offer major
savings in storage space while still enabling accurate
reconstruction of the quality scores. We suggest the use of
small rates (between 0.05 and 0.5) and 3 clusters. We stress
here that our study of downstream applications assumes
read sequences from a single organism. However, the scale
of savings from our scheme becomes more significant
for larger datasets such as those used for metagenomics
studies [3,4]. For the scale of data reported in [3] (268 giga-
bases) our methods can reduce the storage requirements
for the quality values to 1.67 GB using a rate of 0.05 or
16.75 GB (R = 0.5) (as opposed to around 83 GB achieved
by a lossless compressor algorithm if we assume a rate of
2.5 bits per quality score). Similarly for the data sets in [4]
(576.7 gigabases), we could do with 3.6 GB of storage for



Ochoa et al. BMC Bioinformatics 2013, 14:187 Page 15 of 16
http://www.biomedcentral.com/1471-2105/14/187

rate of 0.05 and 36 GB for rate 0.5, instead of 180 GB for
lossless compression.

Conclusions
To tackle the problem of storage and dissemination
of genomic data, we have developed QualComp, a
new algorithm for the lossy compression of the quality
scores presented in a FASTQ file. One advantage of the
proposed method with respect to other lossy compression
algorithms is that it allows the user to specify the rate
(number of bits per quality score) prior to compression.
This choice should be made according to the storage avail-
ability of each user and the amount of accuracy required
for the reconstructed quality scores. Given a model for
the quality scores and using theoretical results on rate-
distortion, QualComp optimally allocates the bits in order
to minimize the MSE. We then compare several lossy
compression schemes by looking at the MSE versus the
rate, thus making the comparison independent of down-
stream applications that use quality scores. We show that
our algorithm results in better MSE, compared to alter-
native schemes, for small rates. QualComp can also work
at rates not attainable with other algorithms, and presents
an MSE that decreases monotonically as a function of the
rate.

We also test QualComp on two downstream applica-
tions (short-read alignment and SNP calling), showing
that little is compromised in performance, while the file
size is reduced significantly after compression. However,
to better understand how the lossy compression algorithm
affects the downstream applications, more simulations
with several datasets and full sequence analysis work-
flow should be performed, once such benchmarks become
available.

Availability
Software name: QualComp

Software home page: https://sourceforge.net/projects/
qualcomp/

Programming languages: C
License: web server freely available without registration
Restrictions to use by non-academics: on request

Endnote
aWe also tried the alignment programs BWA [11] and

MAQ [9]. However, BWA does not use the quality scores
for the alignment and we were unable to run MAQ in our
system.

Additional file

Additional file 1: Choosing the rate R. We present additional
simulations of QualComp on the three datasets to illustrate some of the
trade-offs in choosing R (pdf extension).
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