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Abstract

With the advent of increasingly detailed molecular portraits of tumor speci-

mens, much attention has been directed toward identifying clinically distinct

subtypes of cancer. Subtyping of tumors can also be accomplished with the goal

of identifying distinct etiologies. We demonstrate the use of new methodologies

to identify genes that distinguish etiologically heterogeneous subtypes of breast

cancer using data from the case–control Cancer and Steroid Hormone Study.

Tumor specimens were evaluated using a breast cancer expression panel of 196

genes. Using a statistical measure that distinguishes the degree of etiologic het-

erogeneity in tumor subtypes, each gene is ranked on the basis of its ability to

distinguish etiologically distinct subtypes. This is accomplished independently

using case–control comparisons and by examining the concordance odds ratios

in double primaries. The estrogen receptor gene, and others in this pathway

with expression levels that correlated strongly with estrogen receptor levels,

demonstrate high degrees of etiologic heterogeneity in both methods. Our

results are consistent with a growing literature that confirms the distinct etiolo-

gies of breast cancers classified on the basis of estrogen receptor expression lev-

els. This proof-of-principle project demonstrates the viability of new strategies

to identify genomic features that distinguish subtypes of cancer from an etio-

logic perspective.

Introduction

It has long been recognized that cancers defined by dis-

ease site are not homogeneous disease entities. Indeed

since the advent of the genomics era many investigations

have been undertaken to identify disease subtypes that

are clinically distinct [1–4]. Research on the topic of etio-

logic heterogeneity has usually involved the investigation

of distinct risk factor profiles of predetermined subtypes,

such as studies that have demonstrated the distinctive

relationship of smoking history on lung cancer histologic

types [5, 6], and the considerable body of work that has

examined differences in the risk factor profiles of breast

cancers defined by hormonal disease markers [7–18]. In
this article, we seek to demonstrate the application of

two parallel methodological strategies for exploring

tumor characteristics as a means to identify those charac-

teristics that best define groups of cases with distinctive

etiologies.

The investigation of etiologic heterogeneity from the

perspective of defining subtypes is not immediately

straightforward for several reasons. On one hand, cancer

risk may be influenced by many factors. On the other

hand, the somatic characteristics of tumors may be repre-

sented in many different ways, and on the basis of large

numbers of markers. We thus need an organizing frame-

work for simultaneously investigating numerous candidate

groups of subtypes while distinguishing promising candi-

dates from unpromising ones. To address this problem, in

previous work our group has proposed a scalar measure of

etiologic heterogeneity that captures the distinctiveness of

risk factor profiles for a set of candidate subtypes [19].

This can be used to rank subtyping options and identify

the ones that appear most promising on the basis of
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known risk factors using data from case–control studies.
We have also shown that a very similar measure can be

derived using the concordance odds ratio of the subtypes

in double primary cancers [20].

The goal of this article is to report a demonstration of

these two strategies using data from a well-characterized

case–control study of breast cancer in which available

tumor tissue was used to conduct expression profiling of a

panel of 196 genes linked with breast cancer. We first con-

trast the risk profiles of the cases and controls in subtypes

created on the basis of expression levels of each of the genes

in turn. This allows us to rank the genes on the extent to

which they define etiologically distinct subtypes. In parallel,

we evaluated tumor tissue from both tumors of women

with contralateral breast cancer using the same expression

panel, and used the odds ratios from the cross-classifica-

tions of the tumors for each gene in turn to rank the genes

on the extent to which they define etiologically distinct

subtypes. The two rankings are then compared to identify

genes that exhibit a high rank by both methods.

Material and Methods

Data

We use data from the Cancer and Steroid Hormone

(CASH) Study, augmented with additional molecular pro-

filing of tumor specimens. The CASH Study was led by the

Centers for Disease Control in the early 1980s. The investi-

gators made use of the Surveillance, Epidemiology and

End Results (SEER) registries for identification of incident

cases of breast cancer [21, 22]. The cases were women aged

20–56 with invasive primary breast cancer diagnosed

between 1980 and 1982 in eight SEER registries. Unaf-

fected frequency-matched controls were ascertained

through random digit dialing in the geographic areas

served by the study registries. All participants were inter-

viewed at the time the study was conducted to determine

known and suspected risk factors including age at diagno-

sis, age at menarche, nulliparity, number of children, age

at first birth, months of breastfeeding, body mass index

(BMI), menopausal status, age at menopause, race, prior

benign breast disease, and family history of breast cancer.

These characteristics are described in Table 1 for the sub-

set of women for whom tumor tissue was available and for

their frequency-matched controls. For modeling purposes,

we used imputations for items such as age at first birth for

nulliparous women following the guidelines advocated by

Thompson [23]. In an earlier study, tumor tissue was eval-

uated using immunohistochemistry for the estrogen recep-

tor alpha (ESR1), progesterone receptor (PGR), human

epidermal growth factor receptor (ERBB2), and TP53

[12].

RNA extraction and molecular profiling

Total RNA was isolated from precut 4 lm formalin-

fixed paraffin-embedded sections with the RNeasy FFPE

kit (Qiagen) using the manufacturer’s recommendations.

The RNA quantities and A260/280 ratios were determined

with a Nanodrop 2000 (Thermo Scientific/NanoDrop pro-

ducts, Wilmington, DE, USA) and the A260/280 ratios

had an average value of 1.79 (range 1.28–2.26).
Tumor tissues were profiled using a targeted breast can-

cer expression panel, and the results were used to deter-

mine if expression of genes other than ESR1, PGR, and

ERBB2 contain relevant signals that can improve our ability

to define etiologically distinct subtypes. Gene expression

analysis was performed using the NanoString nCounterR

Virtual Breast Cancer—Estrogen panel [24]. This measures

expression levels of 196 human genes known to be differen-

tially expressed in breast cancers or relevant to estrogen

receptor signaling. The genes encompass other breast can-

cer-related pathways including the following: apoptosis;

epidermal growth factor receptor; Fas cell surface death

receptor; interleukin; androgen/estrogen/progesterone bio-

synthesis; transforming growth factor beta signaling; p53;

RAS-RAF-MEK-ERK. A full list of genes in the panel is pro-

vided in Table S1. The nCounterTM (Nanostring, Seattle,

WA, USA) expression assays were run using 500 ng of

RNA following manufacturer’s recommendations. Briefly,

hybridizations were carried out at 65°C for 18 h on a ther-

mocycler. After the posthybridization processing in an

nCounter Prep station samples were scanned using 600

fields of view on an nCounter Digital Analyzer (NanoString

Table 1. Risk factor distributions.

Risk factor

Controls

(n = 2990)

Cases

(n = 551)

Age (range) 47 (20,55) 47 (24,55)

White race (%) 87% 93%

Premenopausal BMI, median (range) 23 (16,55) 23 (16,44)

Postmenopausal BMI, median (range) 24 (16,62) 24 (17,35)

Family history of breast cancer 7% 13%

Prior benign breast disease 12% 18%

Age at menarche, median (range) 13 (8,20) 12 (8,18)

Nulliparity 14% 15%

Number of children, median (range) 3 (1,13) 3 (1,9)

Age at first birth, median (range) 23 (11,43) 23 (13,40)

Months of breastfeeding, median (range) 1 (0,168) 1 (0.98)

Postmenopausal 40% 37%

Age at menopause, median (range) 42 (21.53) 42 (23,53)

Estrogen receptor positive by IHC1 NA 57%

Progesterone receptor positive by IHC1 NA 51%

ERBB2 (HER2) positive by IHC1 NA 21%

BMI, body mass index; IHC, immunohistochemistry; ERBB2, human

epidermal growth factor receptor.
133 cases are missing immunohistochemistry data.
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Technologies, Seattle, WA). Raw transcript counts were

subtracted from background (negative input control).

Expression data normalization, technical
reproducibility, and robustness

We used the nSolver software analysis. The mean of each

of the positive controls for each sample was calculated

with the software tool to estimate the overall assay effi-

ciency. Counts were normalized for all target RNAs in all

samples based on the positive control RNA to account for

differences in hybridization efficiency and posthybridiza-

tion processing, including purification and immobiliza-

tion of complexes (samples <0.3 or >3 were flagged).

Subsequently the mRNA content normalization was per-

formed using a panel of six reference genes (CLTC, GAP-

DH, GUSB, HPRT1, PGK1, TUBB). For each sample, we

calculated the ratio of endogenous counts to the average

of endogenous counts across all samples. Samples with

ratios below 0.10 or above 10 were flagged and repeated.

Analytic strategy

The goal of the analysis is to identify tumor subtypes that

are etiologically distinct. In the previous work, we have

outlined how novel clustering methods can be used to

identify subtypes [19]. However in this demonstration

project where tissue was available from only 44 double

primaries, we have limited the scope of our analysis to

identifying genes individually that demonstrate evidence

that they can distinguish etiologically heterogeneous sub-

types. Specifically, the use of a quantitative measure of

etiologic heterogeneity, denoted D, allows us to rank

genes to determine the extent to which the individual

genes are capable of identifying etiologically distinct sub-

types. For each gene, we calculate D by contrasting the

distinctive risk profiles for subtypes classified at the med-

ian into high (H) versus low (L) expressions of the gene.

The rationale for using D for this purpose was explained

in detail in our earlier publication [19]. If individuals

with a high risk of H tumors also tend to have a high risk

of L tumors and vice versa then the risk profiles are clo-

sely aligned and the subtypes possess low etiologic hetero-

geneity. Conversely, if the risks of H tumors are unrelated

to the risks of L tumors then the tumors have distinct,

that is, independent, risk profiles, and are thus etiologi-

cally heterogeneous. D is defined as follows:

D ¼ pHpLðK2
H þ K2

L � 2KHLÞ (1)

where pH and pL are the relative frequencies of the two

subtypes, K2
H is the coefficient of variation in the risks of

type H cancer in the population, K2
L is the coefficient of

variation in the risks of type L cancer in the population,

and KHL is the coefficient of covariation in these risk pro-

files. Note that D is negatively related to the correlation

in risk profiles. All of these terms can be estimated

directly based on observable risk factors using data from

the case–control study. Specifically, we perform a polyt-

omous logistic regression comparing cases in subtypes H

and L with the common control group. We then use the

estimated parameters from this model to predict the risks

of subtype H cancers and subtype L cancers for all con-

trol subjects, and use these risks to calculate directly the

terms KH; KL; KHL and thus D. We evaluate the statistical

significance of the heterogeneity signal by randomly allo-

cating H/L labels to the cases, conducting the polytomous

regression, calculating individual risks and the measure D,

and repeating this process a large number of times

(100,000) to obtain a reference distribution. The P-value

is the proportion of these permuted values of D that are

at least as large as the observed value.

We also evaluate the etiologic heterogeneity explained

by each of the genes using a completely independent

methodology. In this approach, we focus solely on the co-

occurrence of subtypes in both tumors among cases with

double primaries. That is, we cross-classify the pairs of

double primaries on the basis of high versus low expres-

sion of the gene of interest and calculate the odds ratio.

In an earlier paper [20], we showed that the logarithm of

this odds ratio (w), weighted as above by pHpL is a

first-order approximation to the term D in (1) above.

Specifically

logðwÞ ¼ logð1þ K2
HÞ þ logð1þ K2

LÞ � 2 logð1þ KHLÞ:

Based on this similarity, we use the following as our

corresponding heterogeneity measure:

D� ¼ pHpL logðwÞ: (2)

We use this to rank the genes on the basis of their etio-

logic heterogeneities as before. We note that in this

method all risk factors for breast cancer influence the het-

erogeneity measure, regardless of whether they are known

or unknown. By contrast, in the previous (case–control)
method the heterogeneity measure reflects only the risk

factors that are employed in the analysis. Nonetheless we

regard it as confirmatory if a gene has a high rank on

both methods.

Since for each of these analyses we are ranking and

testing a large number of genes we must account for the

possibility of false discovery. This was evaluated by calcu-

lating the false discovery rate [25] and identifying those

genes with a sufficiently high observed value of D that the

false discovery rate adjusted for multiple testing is less
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than 5%. Comparisons of the odds ratios for individual

risk factors from the polytomous logistic regression analy-

ses allow us to identify the risk factors that have the most

distinctive relative risks for the different subtypes.

Results

Of the 738 tested RNA samples 31 failed various quality

measures, resulting in 707 evaluable samples of which 657

were first primaries and 50 were second primaries. Four-

teen of the 657 single primary samples were technical

duplicates and six of the 50 sec primary samples did not

have a matching pair after exclusions due to failures. In

addition, 92 cases were missing key risk factor data result-

ing in a final sample size for analysis of 551 incident cases

of breast cancer with available expression and risk factor

data. Control data on breast cancer risk factors were

available from 2990 population controls from the four

CASH Study centers that contributed case tumor tissue.

We evaluated the gene expression results by comparing

the expression levels obtained with the Nanostring

nCounter Virtual Breast Cancer for both the estrogen

(ESR1) and PGR genes with immunohistochemistry

results from an earlier study [19]. The ROC curves in Fig-

ure S1 demonstrate close concordances, in line with Du

et al. [26].

We ranked the genes on the basis of the heterogeneity

measure for both the case–control method and the double

primaries method, as outlined in Methods. Results for the

top 20 genes (10% of the 196 genes evaluated) for each

method are displayed in Table 2. (Results for all 196

genes in the panel are available in Table S2). For the

case–control analyses, the top nine genes remain signifi-

cant at the 5% level after adjusting for multiple testing.

For the double primary analyses only the top ranked gene

(KRT19) survives the multiple testing adjustment. How-

ever, it must be recognized that the double primary

analysis is based on only 44 cases and so it has limited

power. Because of the power limitation we focus attention

on any highly ranked genes identified in Table 2 rather

than those that are statistically significant after adjustment

for multiple testing.

The estrogen receptor gene (ESR1) appears among the

top ranked genes in both analyses, confirming the exten-

sive evidence in the literature that breast cancers classified

on the basis of expression levels of this gene have distinc-

tive etiologies. Of the remaining four genes that also were

highly ranked by both analyses, some have expression

profiles that are quite strongly correlated with ESR1

expression: IL6ST (correlation with ESR1 is 0.75); PGR

(correlation with ESR1 is 0.70); NRIP1 (correlation with

ESR1 is 0.69). Only KRT19 has a somewhat more modest

correlation with ESR1 (0.49). These results reflect the fact

that the gene panel contained many genes related to

estrogen receptor signaling, and the fact that three of the

other four genes have very strong correlation with ESR1

confirms the dominance of this pathway in distinguishing

etiologically distinct breast cancers.

We examined for each risk factor the relative risks of

the individual subtypes based on each gene and identified

those that are significantly different for the two subtypes.

Since four of the five selected genes are highly correlated,

the relative risk patterns are quite similar for the analyses

based on each of these genes. As a representative example

we display in Table 3 the results for the overall top

ranked gene, IL6ST. In the table, the overall odds ratios

using all cases are contrasted with the subtype-specific

odds ratios. Thus, for example, the high expression sub-

type is characterized by older age at diagnosis, lower pre-

menopausal BMI, etc. The results suggest that the risk

factors that are primarily driving the etiologic heterogene-

ity are age at diagnosis, previous benign breast disease,

and menopausal status. In Table 4, we present the corre-

sponding results for KRT19 expression, the selected gene

least highly correlated with ESR1, but the observed associ-

ations are generally weaker and no additional risk factors

emerge.

Table 2. Top ranked genes on basis of etiologic heterogeneity.

Double primary analysis Case–control analysis

Gene1 OR2 D* P-value Gene1 D P-value

KRT19 13.8 0.66 <0.0013 GATA3 0.11 <0.0013

HSD17B1 8.2 0.52 0.002 ESR1 0.11 <0.0013

TOP2A 7.3 0.50 0.005 IL6ST 0.10 <0.0013

IL6ST 6.4 0.46 0.006 TFF1 0.10 <0.0013

PRMT5 6.3 0.46 0.007 BCL2 0.10 <0.0013

ID2 6.3 0.46 0.016 HMGB1 0.10 <0.0013

MK167 5.5 0.43 0.021 TFF3 0.09 <0.0013

ATR 5.5 0.42 0.015 NRIP1 0.09 <0.0013

ESR1 5.5 0.42 0.015 BCL2L2 0.09 <0.0013

PGR 5.5 0.42 0.015 SULT2A1 0.09 <0.001

AZGP1 5.4 0.42 0.015 PGR 0.08 <0.001

NME1 4.5 0.38 0.019 GTF2F1 0.08 <0.001

MT3 4.4 0.37 0.032 ERCC3 0.08 <0.001

MUC1 4.4 0.37 0.032 NFYB 0.08 <0.001

HSPB1 4.4 0.37 0.040 JUN 0.08 <0.001

NRIP1 3.8 0.33 0.053 SLC7A5 0.08 0.001

SERPINA3 3.8 0.33 0.040 GABRP 0.08 0.001

RPL27 3.7 0.32 0.065 KRT19 0.08 0.001

CHEK1 3.6 0.32 0.063 F3 0.08 0.002

CDH1 3.4 0.31 0.066 RAD50 0.08 0.002

OR, odds ratio; ESR1, estrogen receptor alpha; PGR, progesterone

receptor.
1Genes in boldface are represented in both lists.
2Odds ratio.
3These comparisons are significant at the 5% level after adjustment

for multiple comparisons.
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Discussion

Our purpose was to demonstrate an approach for investi-

gating etiologic heterogeneity. Because of the availability

of tissue samples from the case–control study in addition

to available tissues from cases with double primary breast

cancers, we were able to investigate two entirely different

and totally independent strategies. This provides greater

credibility regarding genes for which strong heterogeneity

signals were observed by both methods. Our major obser-

vation is that the estrogen receptor gene and a few other

strongly correlated genes demonstrated the strongest con-

sistent signals using both approaches. This is a reassuring

result from a methodological perspective in that it sup-

ports a body of evidence that has emerged over the past

decade that expression of the estrogen receptor gene is

the strongest known factor that distinguishes etiologic

subtypes of breast cancer. The KRT19 gene demonstrated

the highest heterogeneity signal in the double primary

analysis and also ranked highly in the case–control analy-
sis. This gene is a member of the type 1 keratin family

and has been associated with survival and dormancy of

breast cancer cells as well as with migration and invasion

[27–29]. Our analyses also suggest a subset of known

breast cancer risk factors that appear to most clearly dis-

tinguish the subtypes.

Table 3. Odds ratios1 for subtypes defined by expression levels of the IL6ST gene.

Risk factor All cases

Subtypes

Test for heterogeneityHigh expression Low expression

Age at reference (per 10 years) 1.4 (1.2–1.6) 1.8 (1.4–2.2) 1.1 (0.9–1.3) <0.001

Non-white race 0.7 (0.5–1.0) 0.7 (0.4–1.2) 0.7 (0.4–1.1) 0.86

Premenopausal BMI (per 20 units) 1.2 (0.6–2.1) 0.6 (0.2–1.4) 2.0 (1.0–4.0) 0.03

Postmenopausal BMI (per 20 units) 1.1 (0.5–2.3) 1.0 (0.3–3.1) 1.1 (0.4–2.9) 0.91

Family history of breast cancer 2.0 (1.5–2.6) 2.0 (1.4–3.0) 1.9 (1.3–2.9) 0.87

Prior benign breast disease 1.6 (1.2–2.0) 2.1 (1.5–2.9) 1.1 (0.7–1.6) 0.004

Age at menarche (per 2 years) 0.9 (0.8–1.1) 1.0 (0.8–1.2) 0.9 (0.7–1.0) 0.24

Nulliparous 1.3 (1.0–1.7) 1.7 (1.2–2.4) 1.1 (0.7–1.5) 0.06

Parity 0.9 (0.8–0.9) 0.8 (0.7–1.0) 0.9 (0.8–1.0) 0.48

Age at first birth (per 5 years) 1.1 (0.9–1.2) 1.1 (0.9–1.3) 1.1 (0.9–1.3) 0.99

Months of breastfeeding (per 6 months) 0.9 (0.8–1.0) 1.0 (0.8–1.1) 0.8 (0.7–0.9) 0.04

Postmenopausal 0.7 (0.6–0.9) 0.5 (0.3–0.7) 1.0 (0.7–1.3) <0.001

Age at menopause (per 5 years) 1.0 (0.9–1.1) 1.0 (0.9–1.2) 1.0 (0.9–1.2) 0.84

BMI, body mass index.
1Odds ratios and 95% confidence intervals adjusted for all factors in the table.

Table 4. Odds ratios1 for subtypes defined by expression levels of the KRT19 gene.

Risk factor All cases

Subtypes

Test for heterogeneityHigh expression Low expression

Age at reference (per 10 years) 1.4 (1.2–1.6) 2.0 (1.6–2.4) 1.0 (0.8–1.2) <0.001

Non-white race 0.7 (0.5–1.0) 0.7 (0.4–1.1) 0.7 (0.4–1.1) 0.80

Premenopausal BMI (per 20 units) 1.2 (0.6–2.1) 0.6 (0.2–1.4) 2.0 (1.0–4.0) 0.02

Postmenopausal BMI (per 20 units) 1.1 (0.5–2.3) 1.5 (0.6–4.0) 0.7 (0.3–2.2) 0.33

Family history of breast cancer 2.0 (1.5–2.6) 1.6 (1.1–2.4) 2.4 (1.7–3.5) 0.13

Prior benign breast disease 1.6 (1.2–2.0) 1.8 (1.3–2.5) 1.3 (0.9–1.9) 0.30

Age at menarche (per 2 years) 0.9 (0.8–1.1) 0.9 (0.8–1.1) 0.9 (0.8–1.1) 0.82

Nulliparous 1.3 (1.0–1.7) 1.3 (0.9–1.9) 1.3 (0.9–1.9) 0.90

Parity 0.9 (0.8–0.9) 0.8 (0.7–0.9) 0.9 (0.8–1.0) 0.09

Age at first birth (per 5 years) 1.1 (0.9–1.2) 1.0 (0.9–1.2) 1.1 (0.9–1.3) 0.81

Months of breastfeeding (per 6 months) 0.9 (0.8–1.0) 0.9 (0.8–1.0) 0.9 (0.8–1.0) 0.93

Postmenopausal 0.7 (0.6–0.9) 0.6 (0.4–0.8) 0.9 (0.6–1.2) 0.04

Age at menopause (per 5 years) 1.0 (0.9–1.1) 1.1 (0.9–1.3) 1.0 (0.8–1.2) 0.44

BMI, body mass index.
1Odds ratios and 95% confidence intervals adjusted for all factors in the table.
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Previous studies have demonstrated the importance of

estrogen expression in classifying cases into clinically dis-

tinct subtypes. The pioneering study by Sørlie et al. [30].

identified four subtypes from a clustering analysis of gen-

ome-wide expression arrays that can be approximated by

expression levels of ESR1, PGR, and ERBB2. Much clinical

and epidemiological research over the past decade has

focused on clinical and epidemiological distinctions

between these subtypes. A more comprehensive recent

study of over 2000 cases using an integrated analysis of

expression and copy number profiling suggested a consid-

erably more refined architecture, with 10 distinct subtypes

[31]. We recognize that our study is neither large enough

with respect to numbers of cases, nor with respect to the

extensiveness of the gene expression profiling, to produce

definitive findings with respect to subtype identification.

Consequently we have focused attention on demonstrat-

ing our novel analytic strategies in the context of identify-

ing individual genes that contribute strongly to distinctive

etiologies. Future studies with considerably larger num-

bers of cases are needed to approach the task of clustering

cases into subtypes based on the contributions of combi-

nations of many such genes.

There is strong rationale for investigating etiologic het-

erogeneity. If a disease group is really a mixture of cases

with distinct etiologies then the resulting signal from any

risk factor that is restricted to one of the subtypes will be

diluted in the aggregate disease group, greatly reducing

the power to detect such signals [32]. Thus, identification

of etiologically distinct subtypes can improve substantially

the power to detect unknown risk factors. The study of

double primary cancers is an especially useful strategy

from this perspective in that the subtypes such an analysis

reveals are influenced by all risk factors, both known and

unknown [20]. Subtypes identified in this way are opti-

mal for discovering unknown risk factors in future case–
control or cohort studies. For this reason double prima-

ries with available tumor tissue from both primaries are

an especially valuable resource that can provide unique

insights concerning cancer risk. However, accession of

tumor tissue from both primaries, especially metachro-

nous primaries, is challenging, and this is reflected in the

relatively small number of such cases in our own study.

Our analogous strategy for investigating etiologic hetero-

geneity using case–control studies where the tissues are

available for genomic interrogation is more immediately

practical in that larger sample sizes are more readily avail-

able. These studies rely on information from known risk

factors to identify the etiologically distinct subtypes, and

one cannot make direct inferences about the chances that

the subtypes so identified will segregate also on unknown

risk factors. However, it is a reasonable supposition that

subtypes that are clearly distinct with respect to estab-

lished risk factors may also be distinct with respect to at

least some of the unknown risk factors.

Our study has a number of limitations. First, the sam-

ple sizes are too small for a definitive evaluation of the

complex issue we seek to investigate. We set up the

study from the perspective of a demonstration project of

a novel methodology and we recognize that the results

are necessarily speculative. The strategy relies on labora-

tory evaluation of tumor tissues and these are not typi-

cally available in epidemiologic studies. Second, there is

no evidence to indicate which of the many genomic pro-

filing options are likely to most clearly identify subtypes

with distinctive etiologies. Do somatic DNA events such

as mutations, copy number changes, or methylation pat-

terns contain the basic information that distinguishes eti-

ology? Or are phenotypic tumor characteristics such as

expression patterns more likely to carry the signal? In

constructing our project we thus had very limited evi-

dence to guide our choices regarding molecular profiling.

We elected to use an expression panel in large part

because previous studies have demonstrated the presence

of etiologic heterogeneity based on expression markers,

notably based on the estrogen receptor gene [7–18].
Also, clinical subtyping strategies have focused primarily

on expression profiling, though recent studies have

greatly broadened the focus of investigation [3]. In

short, we elected to study RNA expression because we

knew for sure that signals exist. However, we recognize

that expression profiling may not be the optimal plat-

form for this purpose. Indeed there is a growing litera-

ture supporting the premise that methylation patterns

may usefully delineate etiologically distinct subtypes [33–
37]. Third, the use of expression profiling introduces

potential bias into our analyses of double primaries that

would not be applicable if we were using genomic plat-

forms that identify only somatic mutations. The expres-

sion levels of individual genes may be correlated in

double primaries merely because of germline influences

on expression. To evaluate this issue, we examined the

correlations of expression levels in breast tumors and

normal tissue using publically available data from The

Cancer Genome Atlas [3]. Of the 196 genes in our panel

the mean normal-tumor correlation is a modestly posi-

tive 0.113. Importantly for our purposes the correlations

in expression of double primaries do not seem to be

strongly related to these tumor-normal correlations (cor-

relation of the correlation coefficients is 0.05). For the

key gene in our analyses, ESR1, the tumor normal corre-

lation is 0.096 while the correlation between double

primaries is 0.517, indicating only modest inflation. A

fourth limitation is that our case–control analysis

involved risk factors identified in the 1980s and these

do not include important factors that have since been
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identified such as mammographic density [38] and

germ-line mutations in various genes identified from

family studies and genome-wide investigations [39].

In summary, our study has demonstrated the potential

for studying etiologic heterogeneity using new methodol-

ogy. The methods are aligned with the growing field of

molecular pathologic epidemiology that seeks to under-

stand the relationships of cancer risk factors with molecu-

lar characteristics of the tumors [40–42]. The major

results are consistent with a growing literature that con-

firms the etiological distinctiveness of breast cancers clas-

sified on the basis of expression of the estrogen receptor

gene. The method seeks to identify the most etiologically

distinctive subtypes, and in so doing to optimize risk pre-

diction and the design of future epidemiological studies

to identify new risk factors. Future studies of this type

need larger sample sizes and more extensive genomic pro-

filing of tumors in order to provide reliable and definitive

evidence regarding etiologic heterogeneity.
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