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Abstract
Over the last decades, the growing understanding on DNA damage response
(DDR) pathways has broadened the therapeutic landscape in oncology. It is
becoming increasingly clear that the genomic instability of cells resulted from
deficient DNA damage response contributes to the occurrence of cancer. One
the other hand, these defects could also be exploited as a therapeutic opportunity,
which is preferentially more deleterious in tumor cells than in normal cells. An
expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors
of multiple members involved in DDR pathways, including PARP, ATM, ATR,
CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the com-
plex network of DNA repair machinery in cancer cells and discuss the underly-
ing mechanism for the application of DDR inhibitors in cancer. With the past
preclinical evidence and ongoing clinical trials, we also provide an overview of
the history and current landscape of DDR inhibitors in cancer treatment, with
special focus on the combination of DDR-targeted therapies with other cancer
treatment strategies.
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1 INTRODUCTION

As early as 1914, a German scientist Theodor Boveri pub-
lished his work on the origin of malignant tumors, which
suggested the “specific and abnormal chromosome con-
stitution” could attribute to the onset of cancer.1 Through
out the century, compelling data are emerging to sup-
port the role of genomic instability in cancer, includ-
ing the alteration in chromosome number and structure,
and moreover, in DNA compositions. These changes may
lead to oncogenic transformation and confer resistance
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to anticancer therapies. Alongside direct damage caused
by genetic alterations, some mutations have been char-
acterized as collateral damage from the loss of genome
integrity caused by carcinogens. Common oncogenic fac-
tors that result in genomic instability include chemi-
cal carcinogens in the environment, genotoxic anticancer
drugs,2 and endogeneous carcinogens such as microbial
metabolism products3 and free radicals produced by ion-
izing radiation.4
To limit the progression of DNA lesions, cells have

evolved complex DNA repair machinery, which triggers
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cell-cycle checkpoints and allows DNA damage repair
before it further interferes with the replication process.
Excessive DNA damage or deficient DNA repair would
thus result in accumulating genomic disorders that ulti-
mately contribute to cell death. Thus, the fate of a cell
following critical DNA damage is largely decided by the
amount of DNA damage and its repair capacity. On the
other hand, the misrepair of single-strand breaks (SSBs)
and double-strand breaks (DSBs) of DNA may result in
genome rearrangement. The DNA repair capacity varies
among different cell types, with some tumor cells exhibit
significantly enhanced DNA repair following replication
and genotoxic stress.5
In parallel with the advances in tumor biology that

introduce DDR as potential therapeutic targets, a range
of inhibitors targeting DDR components have emerged,
some of which are now under clinical investigation. More-
over, emerging evidence suggests the sensitization effect of
DDR inhibitors to conventional cancer therapies, and the
correlation between DDR pathways and immune check-
point inhibitor (ICI) response, which together encourages
the design DDR inhibitor-based combination treatments.
In this review, we sought to summarize the complex net-
work of DNA repair machinery in cancer cells and to dis-
cuss the underlyingmechanism for the application of DDR
inhibitors in cancer. With the past preclinical evidence
and ongoing clinical trials, we especially summarized the
ongoing clinicals that involve DDR inhibitors, with spe-
cial focus on the combination therapy of DDR inhibitors
including chemotherapy, radiotherapy, immunotherapies,
and combinations DDR inhibitors, hopefully providing an
overview of the history and current landscape of DDR
inhibitors.

2 DNA DAMAGE AND THE DNA
DAMAGE RESPONSE

To maintain genomic integrity, an intricate DNA repair
system is evolved to counteract various forms of DNA
lesions, and these mechanisms are referred to as the DNA
damage response (DDR). Here we classified DDR path-
ways into three functionally interwoven parts: the sen-
sor that detects DNA damage, signal transducer that trig-
gers signaling cascades, and effector that impedes DNA
repair. Numerous efforts have been undertaken to eluci-
date the machinery for the repair of genotoxic lesions in
mammalian cells. These pathways are not mutually exclu-
sive processes, but rather coordinated with each other to
form a precise regulation network of DNA repair. Figure 1
presents an overview of major pathways for the repair of
different DNA damage.

2.1 Base excision repair (BER) and
nucleotide excision repair (NER)

The genome of all organisms are continuously experienc-
ing subtle changes due to various genotoxicants gener-
ated endogenously such as reactive oxygen species (ROS),
or environmental insults such as ionizing radiation and
alkylating agents. The majority of these subtle changes
in DNA such as SSBs are repaired through the base exci-
sion repair (BER) pathway. BER is initiated with damaged
bases, which are then excised and replacedwith newly syn-
thesizedDNA.6 In the next step, the apurinic/apyrimidinic
(AP)-endonuclease (APE) cleaves the AP site to form 3′
OH terminus at the damage site.7 Finally, the DNA poly-
merase and DNA ligase are recruited at the nucleotide gap
produced by lesion base removal, thereby sealing the nick.
Whereas BER is responsible for the repair of small lesions,
the nucleotide excision repair (NER) is needed for bulkier
SSBs that deform the DNA helical structure.8 The NER
machinery involves a crucial protein, the excision repair
cross-complementing protein 1 (ERCC1), which takes an
active part in the excision of DNA surrounding the lesion
followed by replacement with normal DNA replication.9

2.2 Homologous recombination (HR)
and nonhomologous end joining (NHEJ)

In mammalian cells, HR and NHEJ represent the two
major pathways for repairing DSBs.10,11 Since a homolo-
gous sister chromatid is required as a template for new
DNA synthesis, HR pathways arguably repair DSBs dur-
ing the S/G2 cell-cycle phase, whereas NHEJ are active
through all cell-cycle phases except M phase. The HR
analyses the homologous sequences from other parts of
genome and thus collects the lost information at break
sites. The HR pathway is initiated with the resection of
break ends, followed by the formation of Rad51 nucleo-
protein filament by Brca2 and Rad51, which retrieves the
homologous sequence and promotes the formation of a
joint molecule between the broken DNA and the homol-
ogous template.12 With minimal processing on DNA break
ends, NHEJ is believed to be mechanistically simpler than
HR, which directly rejoins the break ends together. The
fundamental factor required for NHEJ is the heterodimer
composed of Ku70/Ku80 and the catalytic subunit of the
DNA-dependent protein kinase (DNA-PKcs) which rec-
ognize DSBs and facilitates downstream signaling fac-
tors for NHEJ, such as XRCC4, XLF, and DNA ligase
IV.13 Although simpler among these repair mechanisms,
NHEJ sometimes leads to rearrangements, especially the
slow resection-dependent NHEJ process, whereas HR is
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F IGURE 1 Overview of major pathways for the repair of different DNA damage. Single-strand breaks (SSBs) are repaired by direct and
indirect base excision repair (BER) and double-strand breaks (DSBs) are repaired by homologous recombination (HR) and nonhomologous
end joining (NHEJ). Replication error is repaired by mismatch repair (MMR) and DNA adducts by nucleotide excision repair (NER). Figure
was created with Biorender

believed to be error free. However, in some cases, cross-
overs are formed in HR pathways, resulting in potential
chromosomal rearrangements.10,14,15 These scenarios con-
tribute to the preference of cells to NHEJ over HR in the
absence of sister chromatid.
In addition to HR and NHEJ, a group of DSB repair

pathways that share similar mechanisms to the two major
DSB repair pathways, but are genetically distinct, are col-
lectively known as alternative end-joining (a-EJ) path-
ways. The a-EJ pathway can either share similar initia-
tion process or constitute factors with HR,16,17 but also
with NHEJ in terms of DNA ends joining without homol-
ogous templates. Growing body of literature has reported
that a-EJ can cause gene deletions, translocations, and
rearrangements in cancer cells.18,19 Growing interest has
been attached to a-EJ pathways as potential therapeutic
targets in cancer cells with compromised NHEJ or HR
activities.20–22

2.3 Mismatch repair (MMR)

Apart from those produced by cells exposed to genotox-
ins, DNA damage can also derive from aberrant DNA

processing. A DNA repair pathway targeting replication-
associated errors is known as MMR. During DNA syn-
thesis, MMR corrects nucleotide misincorporation and
thereby prevents permanent DNA change in dividing
cells.23–25 Thus, defects in MMR either by gene mutation
or epigenetic silencing may contribute to increased inci-
dence of spontaneous mutation, which is typically associ-
ated with inherited and sporadic cancers.26,27

2.4 Translesion synthesis and template
switching

As an essential bypass mechanism for the repair of
replication-stalling DNA lesions, DNA damage tolerance
(DDT) allows DNA replication across the obstructing
element.28 The translesion synthesis (TLS) is one of the
two distinct DDT modes that depends on the function of
a special TLS polymerase, rather than replicative DNA
polymerases, and directly replicates across the lesions.29
The TLSmechanismhas been characterized as error-prone
due to the deficient proofreading activity of the TLS poly-
merase, which increases the risk of mutation. Not sur-
prisingly, TLS is a major source of cellular mutagenesis.30
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In contrast, another mode of DDT, the template switch-
ing (TS), involves recombination to a homologous DNA
template on a sister chromatid, which is similar to the
HR process and is believed to be more accurate in the
outcome than TLS 21539841. The repair activities of TLS
and TS start behind the replication fork, suggesting that
they could occur during or after DNA replication, with TS
beginning earlier in the S cell-cycle phase and TLS in the
late S phase.31–33

2.5 The Fanconi anemia (FA) pathway

Fanconi anemia is a rare genetic disease resulting from
biallelic mutations of FANC genes, and affected patients
are companied by deficient response to DNA damage.34–38
Affected patients have deficient ICL repair. The Fanconi
anemia (FA) has been identified as a DNA repair pathway
for its removal of a barrier that impedes DNA replica-
tion and transcription, the DNA interstrand crosslink
(ICL).39 ICLs can be formed by aldehydes during multiple
metabolic reactions such as lipid peroxidation and alcohol
metabolism, and chemotherapies such as platinum.40,41
Whereas intrastrand crosslinks are repaired by NER
pathway as described above,42,43 the highly toxic ICL is
primarily repaired by the FA pathway.44 Following the
detection of ICL by UHRF1 protein and the FANCM–
MHF1–MHF2 complex, the FA core complex is recruited
to chromatin and monoubiquitylates FANCD2-I incor-
poration with UBE2T/FANCT E2 conjugating enzyme.
Ubiquitylated FANCD2-I recruits scaffolding protein
for various DNA endonucleases, which split the strands
near the ICL and facilitate the production of ICL-derived
double-strand breaks. Given the considerable role that the
FA pathway plays in DNA repair, it is not surprising that
the FA pathway is also extensively studied in the context
of cancer and that targeting the FA pathway is a potential
cancer intervention strategy.45,46

2.6 O6-methylguanine-DNA
methyltransferase pathway

DNA methylating agents are known for their ability to
inhibit DNA methylation and produce a wide range of
DNA adducts, such as O6-methylguanine (O6MeG) and
O4-methylthymine, which may result in base mispairing
and subsequent point mutations.47 Given the smaller inci-
dence of O4-methylthymine production by methylating
agents (< 0.3% compared with 8% of O6MeG),48 O6MeG is
referred to as major source of methylating agents-induced
DNA adducts that cause mutagenesis and carcinogene-

sis. O6MeG can be repaired by O6-methylguanine-DNA
methyltransferase, also known as MGMT, in a single-step
suicide reaction.49 MGMT transfers the methyl at O6 site
of damaged guanine to its cysteine residues, and thus pre-
vents gene mutation. It is conceivable that MGMT reduces
the efficacy of alkylating agents in cancer cells, potentially
contributing to chemoresistance. Because DNA methyla-
tion can inhibit transcription, the methylation of MGMT
promoter, which hampers its transcription, could be used
to increase cell sensitivity to alkylating agents.50 A wide
breadth of recent literature has identified the methylation
of MGMT promoter as a response predictor for alkylating
agents in gliomas.51–55

3 MECHANISMS UNDERLYING THE
THERAPEUTIC APPLICATION OF DDR

AsDNA-damaging chemotherapies and ionizing radiation
are used as the backbone of many therapeutic regimens in
cancer, it is intriguing to speculate whether DNA repair
deficiency represents a good source of anticancer thera-
peutic targets. Moreover, in some cases, the DDR defi-
ciency is characterized as predicting biomarkers both for
prognosis and treatment responses. A typical example has
been discussed earlier in the review that MGMT promoter
methylation can be used to predict the response to temo-
zolomide in glioblastoma multiforme.52,56 The underly-
ing mechanisms for increased sensitivity of tumor cells to
DNA-damaging agents relative to normal cells lie in the
three differentiating aspects: loss of at least one DDR path-
ways, elevated replication stress, and increased endoge-
nous DNA damage.

3.1 DDR defects

Although DDR defects are implicated in the initiation
and progression of cancers,57 defects in DDR pathways
also provide therapeutic opportunities to target tumor cells
with minimum impact on normal cells.58 Tumor cells car-
rying DDR deficiency leads to enhanced genomic insta-
bility and its dependency on remaining DDR pathways
for survival. The combinational targeting of the remaining
DNA repair pathways as a therapeutic approach reflects
a concept known as synthetic lethality.59 The concept of
synthetic lethality was based on two concurrent loss-of-
function genetic events, either of which alone does not
cause lethality but collectively contribute to cell death.60
As one genetic alteration onDDRpathways that are unique
to cancer cells occurs, the second loss-of-function event
caused by pharmacological inhibition with DDR inhibitor
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then becomes synthetic lethal to a cancer cells without
affecting normal cells.58,61–63
DNA-damaging agents such as chemotherapies and

radiotherapies have been used for years as the keystone
of many anticancer therapeutics. Although these agents
have demonstrated potent activity in a wide range of
cancers, treatment resistance occurs through a variety of
mechanisms and presents ongoing challenges including
the upregulation of DDR components.64 DDR inhibitors
were first developed as a combination partner for with
platinum compounds, but later presented difficulty in
application due to overlapping toxicities.65 Targeting DDR
components as monotherapies is largely based on the con-
cept of synthetic lethality.66 This approach would deliver
considerable benefit to cancer patients compared with
conventional treatments such as cytotoxic chemothera-
pies. Small-molecule inhibitors targeting DDR are often
DDR components that demonstrate enzymatic activities,
including the PIKK family kinases, ChK1/2 and PARP-1.

3.2 Replication stress

The intricate DNA replication system of Eukaryotic cells
is tightly regulated during cell division by various proteins
in cell cycles.66,67 This is issue is a particularly prominent
in the early S-phase due to the fact that replication stress
can be induced by untimely entry into S cell-cycle phase
before necessary molecules required for replication are
generated.68 Numerous DNA nucleotides need to be
accurately polymerized to ensure cellular homeostasis.
Endogenous or exogenous obstacles that retard or termi-
nate the progression of replication forks activate conserved
cellular response pathways, which is referred to as repli-
cation stress. The molecular mechanism for replication
stress is the stalled progression of DNA polymerase and
the subsequent uncoupling of DNA polymerization from
DNA helicases.69 One example of replication stress induc-
ers are deficient G1/S cell-cycle checkpoints, either caused
by the loss of retinoblastoma tumor suppressor (pRb)
function, deletion of the CDKN2A,70 or amplification of
Cyclin D1 or Cyclin E.71,72
Early stages of tumorigenesis is characterized with

chronic replication stress and the subsequent collision of
replication forks.73,74 Some of collapsed replication forks
are resolved by DDR pathways such as HR75 or mitotic
DNA synthesis.76 However, increased genomic instability
and mutagenesis can not be rescued in regions where
the DNA replication process is not resumed. In order to
accomplish bulk genome replication, cells often recruit
error-prone DNA polymerases. On the other hand, the
replication failures and the subsequent presence of

incompletely-replicated DNA in mitosis would further
lead to chromosomal entanglements between sister
chromatids77 or the generation of micronuclei.78 Finally,
if replication stress is not eliminated after mitosis, nuclear
bodies, characterized by the DNA damage response pro-
tein p53 binding protein 1 (53BP1), are formed in daughter
cells as protective machinery.79 Recent evidence has
revealed an important role of RNA in DDR, particularly
in human cells. Two substes of RNA were identified,
damage-induced long noncoding RNAs (dilncRNAs)
and small DDR RNAs (DDRNAs).80,81 The dilncRNAs
potentially forms DNA–RNA hybrids and attracts DNA
repair-associated proteins such as BRCA1, BRCA2, RAD51,
and MRE11 to the DNA damage sites and thus promotes
DNA repair.82
Apart from being a crucial etiologic factor for

cancer,71,83,84 elevated replication stress has also been
observed during cancer therapies. Nucleoside analogues
are widely used as chemotherapies such as acute myeloid
leukemia (AML) induction therapy, which decrease the
amount of dNTPs and delay DNA synthesis, and thus
promote replication stress. For example, fluorouracil (5-
FU) is a pyrimidine analogue, which is incorporated into
RNA following its conversion to 5-fluoro-deoxyuridine
monophosphate (5-FdUMP).85 In addition to RNA
metabolism, 5-FU has also been found to hamper DNA
metabolism according to reported genetic screening
results, which suggested increased 5-FU sensitivity in
cells deficient in the ATR-Chk1 signaling pathway and
homologous recombinational repair.86 Oxaliplatin, a
platinum-type chemotherapeutic drugs, inhibits DNA
replication and G2/M cell-cycle progression independent
of ATM and ATR.87,88 The underlying mechanism for the
independence of oxaliplatin on DDR pathway lies in its
ability to induce ribosome biogenesis stress by suppress-
ing the transcription of deoxyuridine triphosphatase and
the enzymes required for thymidylate biosynthesis.89,90
Similar inhibitory effect on DNA synthesis can also be
observed on TFTD (TAS-102), a novel anticancer drug
that suppresses dTTP biosynthesis91 and accelerates its
incorporation into DNA.92

4 INHIBITORS TARGETING DNA
REPAIR PATHWAYS

The current anticancer strategies that exploit DDR defects
have largely been addressed by the development of tar-
geted agents that inhibit molecules involved in DNA
repair process. We herein summarized single-agent DDR
inhibitors currently under clinical trial development
(Table 1).
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TABLE 1 Single-agent DDR inhibitors currently under clinical trial development

Target Conditions Interventions Phase Clinical trial*

PARP
Metastatic breast cancer Drug: PARP inhibitor 2X-121 Phase II NCT03562832
Breast cancer Talazoparib Phase II NCT03990896
Ovarian cancer AK112 Phase I/II NCT04999605
Breast cancer Rucaparib Phase I NCT03911453
BRCA-positive advanced
breast cancer

KU-0059436 (AZD2281) Phase II NCT00494234

Ovarian cancer EP0057 olaparib Phase II NCT04669002
Pancreatic cancer Niraparib Phase II NCT03601923
Neoplasms Talazoparib Phase I NCT03343054
Ovarian carcinoma, breast cancer AZD2281 Phase II NCT00679783
Advanced breast cancer Talazoparib tosylate Phase II NCT02401347
Advanced malignant solid neoplasm Talazoparib Phase II NCT04550494
HRR mutated
solid tumors (VASTUS)

IDX-1197 Phase I/II NCT04174716

Ovarian cancer Niraparib Phase II NCT02354586
Advanced tumors with
ATM/BRCA1/2 gene mutation

Talazoparib Phase II NCT02286687

Ovarian neoplasms Niraparib Phase III NCT01847274
Advanced/metastatic solid tumors NMS-03305293 Phase I NCT04182516
Solid tumor RP12146 Phase I NCT05002868
Platinum sensitive BRCAm Serous
ovarian cancer

Olaparib, Cediranib,AZD2281 Phase I NCT02855697

Ovarian neoplasms KU-0059436 (AZD2281) Phase I NCT00516373
Ovarian cancer (neoadjuvant
setting)

Niraparib Phase II NCT04284852

Advanced tumors with HRR gene
mutations

Olaparib oral capsule Phase II NCT03967938

Ovarian cancer Fluzoparib capsules Phase III NCT03863860
Advanced malignant solid neoplasm Olaparib Phase II NCT03212274
Ovarian cancer IMP4927 Phase III NCT04169997
Ovarian cancer ZL-2306 (nirapairb) Phase III NCT03709316
Ovarian, breast cancer Lynparza (olaparib) Phase I NCT04041128
Ovarian cancer ZL-2306 (niraparib) Phase II NCT04392102
Ovarian cancer Talazoparib oral capsule Phase I NCT04598321
Digestive cancers Individualized PARP inhibitor Not applicable NCT04584008
gBRCA mutated pancreatic cancer Olaparib Phase III NCT02184195
BRCAm pancreatic cancer Olaparib Phase II NCT04858334
Pancreatic cancer RUCAPARIB Phase II NCT03140670
Metastatic breast cancer Olaparib � �

Relapsed ovarian cancer Olaparib tablets Phase III NCT03534453
Metastatic bladder urothelial
carcinoma

Olaparib Phase II NCT03375307

Advanced solid tumors TALZENNA capsule Phase I NCT04672460
Relapsed ovarian cancer Olaparib tablets Phase III NCT01874353
Stage IV pancreatic cancer Olaparib Phase II NCT02677038

(Continues)
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TABLE 1 (Continued)

Target Conditions Interventions Phase Clinical trial*

HER2-negative, germline BRCA
mutation-positive breast cancer

Niraparib Phase III NCT01905592

Ovarian, fallopian tube, primary
peritoneal cancer

Niraparib Phase II NCT03891576

Metastatic castration-resistant
prostate cancer

Rucaparib Phase III NCT02975934

Ovarian, fallopian tube, primary
peritoneal cancer

Rucaparib Phase III NCT01968213

Ovarian, fallopian tube, primary
peritoneal cancer

Rucaparib � NCT04539327

Prostatic neoplasms Niraparib Phase II NCT02854436
Breast cancer patients with chest
wall recurrences

Olaparib Phase I NCT03955640

gBRCAm breast cancer Olaparib Phase III NCT02000622
Biliary tract cancer with aberrant
DNA repair gene mutations

Olaparib Phase II NCT04042831

Solid tumors and with deleterious
mutations in HRR genes

Rucaparib Phase II NCT04171700

Ovarian, fallopian tube, or primary
peritoneal cancer

Oral rucaparib Phase II NCT01891344

Advanced malignant solid neoplasm Olaparib Phase II NCT03233204
Castration-resistant prostate
carcinoma

Olaparib Phase II NCT03516812

Advanced malignant neoplasm AMXI-5001 Phase I/II NCT04503265
Metastatic carcinoma of the cervix Nirapaib Phase I/II NCT03644342
Solid tumor, adult RBN-2397 Phase I NCT04053673
Recurrent solid tumor Olaparib Phase II NCT01078662
Prostate, ovarian cancer Rucaparib Phase III NCT04676334
IDH1/2-mutant Grade I–IV gliomas Drug: PARP Inhibitor BGB-290 Phase I NCT03749187
Advanced gastric adenocarcinoma Olaparib Phase II NCT04209686
Malignant mesothelioma Rucaparib Phase II NCT03654833
Acute myeloid leukemia Olaparib Phase II NCT03953898
Advanced or inoperable
gastric cancer

Pamiparib (BGB-290) Phase II NCT03427814

Endometrial serous carcinoma Niraparib Phase II NCT04716686
Small cell lung carcinoma IDX-1197 Phase II NCT03672773
Urothelial carcinoma Olaparib+EP0057 Phase I/II NCT02769962
Neoplasms Niraparib tablet/capsule Phase I NCT03329001
Advanced ovarian cancer Olaparib tablets Phase III NCT01844986
Head and neck squamous cell
carcinoma

Niraparib Phase II NCT04681469

Advanced solid tumors JPI-547 Phase I NCT04335604
Metastatic melanoma with HR
mutation

Niraparib Phase II NCT03925350

ATM
Advanced solid tumors M4076 Phase I NCT04882917
Neoplasms BAY1895344 Phase I NCT03188965
NSCLC VX-970 (M6620) Phase I/II NCT02487095

(Continues)
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TABLE 1 (Continued)

Target Conditions Interventions Phase Clinical trial*

Cancers of the stomach and
intestines

BAY 1895344 Phase I NCT04535401

SCLC, neuroendocrine cancer,
pancreatic cancer

BAY 1895344 Phase I NCT04514497

Urothelial cancer BAY 1895344 Phase I NCT04491942
Advanced cancers LY2606368 (Prexasertib) Phase II NCT02873975
Unresectable solid tumors M1774 Phase I NCT04170153
Advanced stage solid tumors M6620 Phase I NCT03309150

ATR
Advanced solid tumor RP-3500 Phase I/II NCT04497116
Advanced solid tumors and
lymphomas

BAY1895344 Phase I NCT03188965

Cancers of the stomach and
intestines

BAY 1895344 Phase I NCT04535401

Advanced cancer ART0380 Phase I/II NCT04657068
Unresectable solid tumors M1774 Phase I NCT04170153
Pancreatic and ovarian cancer BAY 1895344 Phase I NCT04616534

CHK1
Advanced cancers LY2606368 Phase II NCT02873975

WEE1
Advanced solid tumors IMP7068 Phase I NCT04768868
Uterine cancer AZD1775 Phase II NCT03668340
Prostate cancer Adavosertib Phase II NCT03385655

DNA-PK
Advanced solid tumors,
non-Hodgkin’s lymphoma, or
multiple myeloma

CC-122 Phase I NCT01421524

*Data from https://clinicaltrials.gov.

4.1 Poly (ADP-ribose) polymerase
(PARP)

4.1.1 Mechanisms underlying the
application of PARP inhibitors

The development of PARP inhibitors represents the
paradigm of the concept discussed earlier, known as syn-
thetic lethality.93 PARP1 and PARP2 are key DDR enzymes
that sense DNA damage and pass on signals by modi-
fying target proteins with negatively charged poly(ADP-
ribose) (PAR) chains, known as PARylation.94 The struc-
tural changes of PARP1 following its binding to damaged
DNA activate its catalytic function,95,96 which facilitates
the recruitment of DNA repair effector molecules and the
structural remodeling of chromatins around DNA dam-
age sites. In this way, PARP1 PARylates itself, a process
known as autoPARylation, which potentially contributes
to its release from repaired DNA.97 Recent advances in
epigenetics have revealed the correlation of specific chro-

matin remodeling factors with DDR.98 One such exam-
ple is PARP1, which PARylates MORC2 and increases its
ability to induce chromatin remodeling. Since eukaryotic
DNA is surrounded by condensed chromatin, the dynamic
remodeling of chromatin would largely affect the effi-
ciency of DNA repair.99,100 More studies are thus war-
ranted to shed light on the collaborative interplay between
chromatin-associated enzymes and DDR. Given the piv-
otal role of PARP in promoting the effective repair of DNA,
PARP inhibitors selectively kill tumor cells with homol-
ogous recombination deficiency. Conflicting results were
reported regarding whether PARP is required for BER,101
with some evidence suggesting the increased sensitivity
of PARP1-deficient cells to base-damaging agents,102–104
whereas some studies found that PARP was not necessary
for the repair of base.105
Alongside the inhibition on enzymatic activities of

PARP, the process referred to as PARP trapping provides
an additional mechanism for PARP inhibitors, where
PARP1 and PARP2 are trapped at the site of DNA damage

https://clinicaltrials.gov
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and block the recruitment of proteins involved in DNA
repair. Since a complete set of repair-associated proteins is
the prerequisite for accurate DNA repair, PARP-inhibited
cells lost the capacity to properly repair their DNA during
replication, eventually inducing mitotic catastrophe and
subsequent cell death.94 Multiple PARP inhibitors have
demonstrated comparable antitumor efficacy and selec-
tive inhibition on PARP1 and PARP2, but their abilities to
induce PARP trapping vary, which contributes to the differ-
ence of recommended doses among PARP inhibitors.106,107
PARPi is a promising therapeutic strategy for BRCA-

mutant tumors, which is a typical setting of synthetic
lethality.108 BRCA gene has long been identified as cru-
cial components of the HR pathway.109 In cells har-
boring BRCA mutation, alternate DNA repair mecha-
nisms such as the PARP pathway are initiated to fix
the damage. Thus, PARP inhibition in a BRCA-deficient
setting likely causes the accumulation of DNA dam-
age and thereby leads to cell death. However, as cells
with BRCA1 or BRCA2 germline mutation are unable
to fix treatment-induced DSBs, toxicity caused by PARP
inhibitor has received considerable attention. Previous
studies investigated the association between myelosup-
pression occurrence andBRCA1 or BRCA2mutation status
in patients receiving platinum-based chemotherapy and
revealed no significant correlation between BRCA muta-
tion status and hematological toxicities.110 However, it
remains unclear whether PARPi toxicity could also be used
as a predictive biomarker for PARPi treatment response.

4.1.2 PARP inhibitors as the first-line
therapy

Ovarian cancer is the leading cause of gynecologic cancer-
related deaths in women worldwide,111 and the standard
care for the newly diagnosed advanced ovarian cancer
(NADOC) patients in the last two decades is the surgi-
cal debulking followed by platinum–taxanes-based sys-
temic chemotherapy. Unfortunately, an estimated number
of 70% of patients with advanced ovarian cancer experi-
ence relapsed disease within 3 years posttreatment.112 The
concurrent andmaintenance anti-VEGF bevacizumabwas
later recommended for the standard first-line systemic
treatment of epithelial ovarian cancer, which improves
PFS in patients with higher risk of recurrence (Interna-
tional Federation of Gynecology andObstetrics FIGO stage
IV or suboptimally debulked stage III ovarian cancer—
OC).113 However, the efficacy of the combinational treat-
ment diminishes over time with a 5-year survival rate
being around 35%, and adverse effects accumulate as
chemotherapy cycles proceed.114–116 Thus, recent research
of this field aims to identify more efficient drug combi-

nations to aid the systemic treatment of ovarian cancer
patients.
In a recent European Society for Medical Oncol-

ogy (ESMO) Congress, research teams reported prelimi-
nary results from clinical trials of three different PARP
inhibitors in patients with ovarian cancer, including the
PAOLA-1/ENGOT-OV25 Phase III trial where the combi-
nation of PARP-inhibitor olaparib and bevacizumab was
assessed for the first time as maintenance therapy fol-
lowing platinum-based chemotherapy in the overall pop-
ulation regardless of the BRCA status.114–116 The mech-
anism underlying the application of PARP inhibitors in
patients with advanced ovarian cancer is illustrated in Fig-
ure 2. Following the promising results from these trials, the
oncology community starts to review the practice regime
of PARP inhibitors in first-line treatment of NADOC and
the selection criterion for patients that would receive the
maximum benefits. The defined subset of patients based
on their molecular diagnosis include those with BRCA-
mutation, HR-deficiency, and HR-proficiency.117 Here, we
discuss the updated data from the ongoing as well as
previous clinical trials regarding the application of PARP
inhibitors.

Olaparib
The first human clinical trials of PARPi evaluated
the chemopotentiation effect of low-dose rucaparib in
patients with metastatic melanoma.118 Currently, four
PARP inhibitors, olaparib, rucaparib, niraparib, and tala-
zoparib, have been approved by the US Food and Drug
Administration (FDA). Based on accumulating research
results on synthetic lethality observed between PARP inhi-
bition and BRCA mutation status,119,120 a clinical evalua-
tion of olaparibwas initiated in 2005, where 63% of patients
cancer with germline BRCA1 or BRCA2 mutations (gBR-
CAm) exhibited durable clinical benefit.121 The evaluation
of olaparib later extended to patients with gynecological
malignancies and reported a favorable response to ola-
parib in patients who response better to prior platinum
chemotherapies. This finding accorded with the hypoth-
esis that platinum-based therapies and PARPi shared simi-
lar molecular targets.122 Phase II trials further supported
significant clinical benefit in multiple gBRCAm cancer
types including breast, ovarian, pancreatic, or prostate
cancers.123–125 In 2014, olaparib was approved as main-
tenance therapy for platinum-sensitive advanced ovar-
ian cancer with germline BRCA1 or BRCA2 mutations
(gBRCAm).126 More recently, a randomized Phase III trial
reported improved survival outcomes in gBRCAm/HER2-
negative breast cancer patients receiving olaparib than
those with standard chemotherapy.127
A growing number of clinical trials have been con-

ducted since 2009 to investigate the efficacy and safety of
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F IGURE 2 The mechanism underlying the application of PARP inhibitors in patients with advanced ovarian cancer. SSBs, single-strand
breaks; DSBs, double-strand breaks. Figure was created with Biorender

PARP inhibitors in multiple cancer types irrespective of
the BRCA status.128–132 A Phase II trial metastatic investi-
gated the treatment response to olaparib in patients with
castrate-resistant prostate cancer (mCRPC) by evaluating
clinical parameters including PSA decline and radiologic
responses.133 Notably, the overall response rate in uns-
elected CRPC population to PARP inhibitors was only
33%, possibly attributed to the observed tumor mutations
in other DDR members.134 The team then conducted
next-generation sequencing on enrolled patients and
the genetic map of these patients revealed homozygous
deletions or mutations in DRR-associated genes including
ATM, PALB2, CHEK2, FANCA, and HDAC2. This trial
not only granted olaparib approval for the treatment of
BRCA1/2- or ATM-mutant mCRPC patients, but also pro-
vided additional application of PARPi in DDR-defective
patients beyond BRCA mutations. Thus, it may be insuffi-
cient only to use BRCA1 or BRCA2mutations as predictive
biomarker for PARPi responders. Based on the observation
that ATM gene alteration resulted in increased sensitivity
of cells to PARP inhibition, ATM gene mutation was
included as a predictive biomarker for PARPi response in
the FDA breakthrough therapy designation.135,136 It has
to be addressed that the ideal predicting factor for PARPi
response would be recombination deficiency, which does
not exist in practice.

Rucaparib
The combination of rucaparib and temozolomide were the
first clinical trial containing PARPi treatment regimens.118
Rucaparibwas first indicated for the treatment of advanced
ovarian cancer with either germline or somatic BRCA1/2

mutations, and was then approved in 2018 for the main-
tenance treatment of platinum-sensitive ovarian, fal-
lopian tubal, and peritoneal cancer regardless of the
BRCA status.137 In the maintenance setting (ARIEL 2,
NCT01891344), advanced ovarian cancer patients were
divided into three groups based on the genomic fea-
tures of their tumors including the germline or somatic
BRCA status and chromosomal loss of heterozygosity
(LOH). The longest progression-free survival (PFS) was
observed in the BRCAmutant group, followed by the high
LOH group.138 BRCA status appeared to be a significant
predictor in the maintenance setting of rucaparib, given
that the proportion of BRCA wild-type patients displaying
durable responses was smaller than that of patients receiv-
ing standard platinum-based chemotherapies.139 Thus,
the following Phase III trial (NCT01968213) aimed to
investigate the potential of the genome-wide LOH to be
transformed into a clinically applicable biomarker for
patients’ responses to rucaparib 27908593. Along with
the promising results from an additional Phase II trial
HGSOvCa (NCT01482715),140 rucaparib was approved for
chemotherapy-pretreated patients with gBRCAm or sBR-
CAm advanced ovarian cancer. However, rucaparib has
been reported as the least selective clinical PARP1 inhibitor
with simultaneous inhibition on multiple PARPs ranging
from PARP1, PARP2 to mono(ADP-ribosyl) transferases
PARP3, PARP4, PARP10, PARP15, and PARP16.141,142

Veliparib and niraparib
Some PARP1/2 inhibitors are not highly selective such
as rucaparib discussed earlier.142 For example, niraparib
has been reported to interact with non-PARP targets such
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as deoxycytidine kinase (DCK).143 The cross-inhibition
on DCK, which is fundamental for the activation of
nucleoside analogs, would decrease the efficacy of nira-
parib/gemcitabine synergy.143 On the other hand, due to
its formation of a PARP1/2-unique water-mediated hydro-
gen bond that interacts with a highly conservative sub-
domain D766, veliparib has been identified as the most
selective clinical inhibitors targeting PARP1/2, with 100-
fold higher affinities to PARP1/2 relative to olaparib and
talazoparib.144 In a Phase III clinical trial, themedian dura-
tion of PFS was significantly increased in ovarian can-
cer patients receiving niraparib, irrespective of gBRCA sta-
tus (NCT01847274).145 Though non-gBRCA mutant, these
tumors were identified with a unique mutational pro-
file similar to the genome of gBRCAm tumors, which is
referred to as BRCAness DNA scar.146 Though BRCAness
DNA-scar positive patients appeared to have improved
prognosis compared to BRCAness-scar negative patients,
the prognostic value of BRCAness-scar as a predictive
biomarker remains incompletely defined and requires fur-
ther clarification in larger cohorts.139,145
Though effective in the clinical practice, PARP

inhibitors have also demonstrated certain limitations
like any other novel development in history. Predom-
inantly, the varying PARP trapping ability by different
PARP inhibitors potentially lead to the off-target PARP
trapping on the DNA of normal cells.147 Besides, the
emerging resistance to PARP inhibitors also poses
challenges to their clinical application, the underlying
mechanisms of which include loss of PARP trapping,148,149
upregulated drug efflux protein expression,150,151 stabilized
replication fork stabilization,152–154 and the restoration of
HR pathway.155–163

4.2 Poly(ADP-ribose) glycohydrolase
(PARG)

The above limitations of PARP inhibitors motivated
the design of additional therapeutic targets for BRCA-
proficient and deficient tumors, or PARPi-resistant
tumors. PARG reverses the action of PARP enzymes by
hydrolyzing the ribose–ribose bonds in PAR following
DNA damage.164–166 Likewise, the active role of PARG in
DNA replication and repair leads to increased sensitivity
to DNA damaging agents in PARG-deficient cells. Though
extensive studies have suggested the correlation between
PARP inhibitors and synthetic lethality, research on
therapeutic mechanisms of PARG inhibition has lagged
behind. It has been reported that depletion of the HR
proteins such as BRCA1/2 in breast cancer cells could
stimulate synthetic lethality in PARG-inhibited cells,167,168
and that COH34, a PARG inhibitor, is able to induce cell

death of ovarian and breast cancers with BRCAmutations
or resistance to olaparib.169 However, conflicting results
were reported in other cancer cells.170 Of the six tested
breast cancer lines, only one BRCA-proficient cell line
was sensitive to PARG inhibitor PDD00017273, whereas
five cell lines failed to respond to PDD00017273 including
those with BRCA mutations.171
PDD00017273 is a quinazolinedione-type PARG

inhibitor with improved specificity, efficiency, and cell
permeability, but lacks bioavailability.172 Unlike cyto-
toxic PARP inhibitors, the major effect by PDD00017273
is cytostasis where the replication catastrophe does
not progress into mitosis but rather remains static in
interphase.171 However, the exposure to ionizing radiation
enhanced centrosome amplification and the subse-
quent multipolar spindle formation and chromosome
missegregation caused by PARG deficiency.173,174 Thus,
it is intriguing to speculate that under some circum-
stances such as PARG inhibition coupled with cell-cycle
checkpoint blockades or DNA-damaging agents, mitotic
abnormalities would occur.175–177
Neither of the first-generation PARG inhibitor (GPI

16552 and gallotannin) demonstrates sufficient activity in
vitro and its frequent off-target effects in cells makes
it a less than ideal strategy.178,179 Another early PARG
inhibitor, rhodanine-based PARG inhibitor (RBPI) is more
selective than previous generation PARGi, with limited
cell permeability.180,181 The recently reported COH34 is
a novel small-molecule PARG inhibitor with nanomo-
lar potency both in vitro and in vivo, and notably, with
efficiently killing effect on PARP inhibitor-resistant can-
cer cells, which makes it a good candidate for clinical
studies.169 Chemical library screening identified methylx-
anthine derivatives JA2–4 and JA2131 as selective bioavail-
able PARG inhibitors, which showed comparable killing
on PARP inhibitor-resistant A172 glioblastoma cells.182

4.3 Ataxia telangiectasia mutated
(ATM)

The DDR signaling cascades are driven by serial pro-
tein phosphorylation. ATM, ATR, and DNA-PKs are the
key kinases involved in this process and are similar in
molecular structure, the C-terminus of which is respon-
sible for phosphorylation activity especially on serine
or threonine residue (Ser/Thr).183–185 Activated by DNA
double-strand breaks, ATM is recruited to DSB sites by
the MRE11-RAD50-NBS1 (MRN) complex.186 Substrates of
ATM include p53, CHK1, and CHK2, the phosphoryla-
tion of which would lead to intra-S or G2/M cell-cycle
arrest.187,188 Despite its canonical role in a wide variety of
molecular processes such as DNA repair, ATM has also
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been characterized with noncanonical functions includ-
ing spliceosomedisplacement.189 AsATM is rightly consid-
ered as a tumor suppressor, ATM deficiency or deleterious
alterations are commonly seen in solid tumors and B-cell
lymphoma.190 Germline ATM mutation likely contributes
toAtaxia Telangiectasia (A-T), a neural degeneration disor-
der characterized by increased predisposition to cancer.191
The main reason for ATM deficiency in cancer cells

is hypermethylation of the ATM promoter,192 with mul-
tiple cancer types including brain cancer, breast cancers,
lung cancer, and head and neck squamous cell carcinoma
exhibiting hypermethylated ATM promoter region.193–196
However, ATM signaling can also be advantageous to
tumors, increasing their risks of therapeutic resistance to
radiation and chemotherapies.197 Several ATM inhibitors
are now under investigation for cancer therapy.198,199 The
loss of ATMoccurs in prostate cancer andwas recently sug-
gested to increase cell sensitivity to ATR inhibition.200
The first reported selective ATM inhibitor, 2-morpholin-

4-yl-6-thianthren-1-yl-pyran-4-one, (KU-55933), was devel-
oped by screening the PIKK family-targeting compound
library and exhibited 100-fold higher selectivity for ATM
over ATR, DNA-PK, and PI3K.199,201 Exposure to KU-55933
sensitizes cells to cytotoxic agents that causeDSB, by block-
ing HR repair signals and thereby increasing γ-H2AX and
RAD51 foci accumulation.202 In response to chemother-
apy, KU-55933 inhibits ATM-mediated repair signals in
the presence of inositol polyphosphate-4-phosphatase type
II (INPP4B), which has contradictory roles in cancer
progression.203 In colon cancer cells, INPP4B acts as an
oncogenic factor that positively regultates AKT 26411369,
whereas INPP4B suppresses cancer progression in prostate
cancer cells by reducing tumor migration, invasion, and
angiogenesis.204
KU-60019 is an analogue of KU-55933 with improved

pharmacokinetics and bioavailability and is reported to
interrupt radiation-induced ATM phosphorylation in
glioma cells.205 Given that PTEN is an active participant
of DNA repair process, it is not surprising that KU-60019
was specifically toxic to PTEN mutant cancer cells.206
Besides, the combination of KU-60019 and cisplatin would
induce synthetic lethality in PTEN-deficient cells,207,208
the underlying mechanism of which involves increased
PARP cleavage and γ-H2AX formation.209 Thus, PTEN-
deficiency is a potential biomarker for predicting repines
to DDR-targeting agents. KU59403 is the first ATM
inhibitor tested in preclinical trials with improved solubil-
ity, bioavailability, and selectivity.210 KU-59403 potentiates
the efficacy of chemotherapies and IR at low doses in can-
cer cells irrespective of TP53 mutation status.210 However,
KU-59403 monotherapy failed to demonstrate antitumor
effects either in vitro or in vivo, which largely limited
its clinical application and was not widely used there-

after. CP466722 was identified as a ATM kinase inhibitor
by screening targeted compound library, which does
not display inhibitory activities on PI3K family members.
Noteworthy, even transient inhibition ofATMbyCP466722
is sufficient to induce radiosensitization in cells and sug-
gests that therapeutic radiosensitization, indicating that
ATM is required for early stage of the DDR process.211
The major limitations of earlier developed ATM

inhibitors are their bioavailability in central nervous
system via the blood brain barrier (BBB). Modified ATM
inhibitors AZ31 and AZ32 have higher free brain concen-
trations and their radiosensitization effects were more
prominent in p53 mutant cells than p53 wild-type glioma
cells.212 In contrary to this finding, previous evidence
suggested increased sensitivity of wild-type p53 glioblas-
toma cells to radiation than p53 mutant cells.213 AZD0156
has been reported to enhance the efficacy of DSBs in
mouse xenograft models but lack BBB penetration.214 The
further optimized compound, AZD1390, is now under
investigation as a radiosensitizer for nervous system
malignancies.215

4.4 Ataxia telangiectasia and
Rad3-related protein (ATR)

In contrast to ATM, which is triggered by DSBs, ATR
is activated by and recruited to replication protein A
(RPA)-coated single-strand DNA (ssDNA).216,217 Single-
strand DNA can be produced by nucleolytic processing of
DSBs as well as the uncoupling of the replicative DNA
helicase from the DNA polymerase machinery. The intra-
cellular ATR signaling involves the phosphorylation of a
series of downstreammolecules, triggering a wide array of
responses including blocking cell-cycle checkpoints, DDR,
and cell apoptosis.218 In response to genotoxic stress, Chk1
is phosphorylated on serines 317 (S317) and 345 (S345) by
ATR, thereby activating WEE1,219,220 which in turn phos-
phorylates CDK1 on tyrosine 15 and suppresses mitotic
entry.221 CDC25A is responsible for removing the inacti-
vated phosphates on CDK2. Once CDC25A is phosphory-
lated by CHK1, the activation of intra-S phase checkpoints
impairs the rate of CDC25-mediated replication, allowing
cells to repair DNA damage. In addiction, as CDK1 is fun-
damental for the progression via G2/M checkpoints, ATR
has been described colloquially as the apex of DDR signal-
ing that acts on both S and G2/M cell-cycle checkpoints,
preventing the entry of damagedDNA into replication pro-
cess before it has been properly repaired.187,222–224
Cancer-associated inflammation and cytotoxic treat-

ments such as chemotherapies and radiotherapies are
known to cause replication stress, which increases cell
reliance on the ATR-mediated S and G2/M checkpoints
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activation as countermeasures. Thus, it is intriguing to
speculate whether inhibition of ATR would sensitize cells
toDNAdamaging agents such as chemotherapy, encourag-
ing the development of selective ATR inhibitors. However,
compared with other DDR proteins such as PARP, devel-
opment of ATR inhibitors has lagged behind. Contribut-
ing factors may include the large size of the ATRmolecule
and the lack of knowledge on its crystal structure. In addi-
tion, its highly homologous active sites in all PIKKs and the
demand for coactivating proteins further restrict its drug
design.
The first chemicals reported to inhibit ATR were nat-

ural molecules caffeine and schisandrin B, the inhibi-
tion of which was nonspecific and only worked at high
concentrations.225,226 This finding further confirmed the
potential of natural compound for future synthesis of
DDR-regulating drugs.227 Several approaches were used
to identify potentially potent ATR inhibitors. One such
example is the cell-based high-throughput microscopy
that enables the screening of compounds, investigating
their specific activity on ATR,228,229 where they identi-
fied a highly selective compound, ETP-46464 with specific
action on ATR, rather than ATM or DNA-PKcs.229 Recent
advancement in gene editing suggests that CRISPR DDR
screens can also be used to identify drug candidates.230
Another identification strategy is the in vitro use of

recombinant ATR to test its kinase reactions, through
which researchers were able to characterize compounds
that directly and specifically targeted ATR, such as
VE-82.66,231 With further modification on pharmaco-
logical properties, VE-821 was later named VE-822 and
is now under clinical investigation as VX-970 (M6620)
(NCT03309150, NCT03022409, NCT02723864, etc.).232
Interestingly, some ATR inhibitors were discovered during
research on inhibitors developed for other targets. NU6027
was originally selected for CDK2 inhibition and was later
found to impair HR pathway, thereby sensitizing cells
to DNA-damaging agents and PARP inhibitors.233 The
new-generation ATR inhibitors include AZD6738, an
derivate of the compound AZ20, which is currently under
clinical investigations (NCT02567422, NCT03022409,
NCT02157792), BAY1895344 (NCT03188965),234–236
berzosertib (NCT02157792),237 and a recently reported
pyrazolopyrimidine-containing inhibitor of ATR.238

4.5 CHK1

As described earlier, CHK1 is actively involved in the
ATR- and ATM-initiated DNA damage response by phos-
phorylating and recruiting a series of regulatory proteins.
CHK1 regulates the intra-S checkpoint by phosphorylating
CDC25A, leading to the degradation of CDC25A and the

subsequent decrease of cyclin-dependent kinase 2 (CDK2)
activity in S cell-cycle phase,239,240 and the phosphoryla-
tion ofCDC25C andWEE1 byCHK1 regulatesmitotic entry
and G2/M checkpoints.241 Moreover, CHK1 also phospho-
rylates RAD51 on Thr-309 promoting its interaction with
BRCA2 during HR.242–245 Noteworthy, CHK1 also acts on
a number of physiological processes that are critical to
cell survival. For example, the suppression of CHK1 leads
to p53-induced death domain (PIDD) signaling and the
associated caspase 2-mediated cell death.246 It has been
recently reported that the phosphorylation of nucleophos-
min (NPM) by CHK1, a chaperone protein involved in var-
ious cellular functions including, disrupts its interaction
with PIDD, thus protecting cells from caspase 2-mediated
cell death.247 Further studies are warranted to clarify the
importance, yet poorly defined role, of CHK1 in other cel-
lular processes independent of DDR.
Though CHK1 deficiency has been reported to induce

early embryonic lethality in vivo,219 the knockdown of
which is preferentially more deleterious in tumor cells
than in normal cells, suggesting the potential of Chk1 as
a therapeutic target in cancer treatments. On the other
hand, increased CHK1 levels have been reported to cor-
relate to worse prognosis, disease recurrence, and thera-
peutic resistance,248–252 further supporting the therapeutic
potential of Chk1 inhibition. In circumstances where cells
harbor certain genetic alterations, such as c-MYC, CHK1
inhibitors are able to induce synthetic lethality in malig-
nancies driven by oncogene c-MYC.253–255 Likewise, CHK1
inhibitor PF-00477736 exhibited cytotoxic effects on man-
tle cell lymphoma (MCL) and myeloma with translo-
cation t(11;14)-mediated Cyclin D1 overexpression.256,257
Cells with acquired PF-00477736-resistant cells displayed
enriched prosurvival and proliferation-associated gene
patterns, suggesting that inhibition of prosurvival signal-
ing pathways could potentially sensitize cells to CHK1
inhibitors.
The first-generation CHK1 inhibitors were used as

chemosensitizing agents, the majority of which were
nonspecific due to their high affinity to plasma pro-
tein 1-acid glycoprotein, with a long half-life and low
bioavailability.258 The early CHK1 inhibitors were mostly
used as combinational partners with cytotoxic agents in
cancer,187,259 the clinical development of whichwas largely
restricted by their unacceptable toxicities and suboptimal
pharmacological profiles.260 With significantly improved
selectivity toward CHK1, the second-generation CHK1
inhibitors such as LY2606368, LY2880070, SRA737, and
GDC-0575 are now under intense clinical studies. These
CHK1-targeting agents potently synergize with drugs that
produce DNA damage including cytotoxic chemothera-
pies and antimetabolites.261,262 One such example is the
combinational treatment of low-dose gemcitabine with
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GDC-0575, which induced promising objective response
rates in patients with advanced sarcoma.263
Recently, clinical trials (NCT02797977, NCT02797964)

reported promising results that the combination of a novel
CHK1 inhibitor SRA737 with low-dose gemcitabine led to
partial responses in 6 patients and stable disease for at
least 4 months in 32 patients. SRA737 has also demon-
strated synergistic effect with PARP1 inhibitors in cancer
both in vitro and in vivo.264 Despite intense interest in
CHK1 inhibitors, no known agents have reached Phase III
clinical trial or received FDA approval. According to pre-
clinical results, though the single use of CHK1 inhibitors
did not usually cause significant toxicities, the unaccept-
able cytotoxic effects on normal cells caused by the com-
bination therapy with DNA damaging agents outweighed
the modest gains.

4.6 WEE1

In response to DNA damage, the activated ATR phos-
phorylates Chk1, which in turn phosphorylates WEE1
and CDC25.265–267 In contrast to CDC25 whose activity
is suppressed by the phosphorylation, WEE1 is activated
and then phosphorylates downstream CDK1 on Tyr15 and
Thr14 to inhibit its activity, leading to G2/M cycle arrest
and allowing time for DNA damage repair. In addition, by
phosphorylating CDK1 on Tyr15, WEE1 also prevents the
progression of S phase to G2 phase before DNA replication
is completed.268 Moreover, WEE1 has also been reported
to phosphorylate histone H2B on Tyr37, thereby blocking
the transcription of certain histone genes that reduce the
burden of the histone mRNA turnover machinery.269
G1/S and G2/M checkpoints are regulated by p53 gene,

which is frequently absent or deficient in cancer cells.
Under this circumstance, cancer cells become highly
dependent on WEE1-mediated G2/M checkpoint con-
trol for DNA repair.270,271 It is thus not surprising that
some cancers are accompanied by WEE1 overexpression,
which decreases their sensitivity to radiotherapy and
chemotherapy.272,273 Besides, results from whole-genome
characterization of chemoresistant ovarian cancer sug-
gested the feasibility of WEE1 inhibition in multiple
tumor-related pathways.21,274 These evidence support
the early therapeutic rationale of WEE1 inhibitors in
p53-deficient tumors. It is becoming increasingly clear
that neither p53 deletion nor the loss of G1 checkpoint
is a predictor for WEE1 sensitivity.275–277 Currently, most
clinical studies focus on the combinational use of WEE1
inhibition with chemotherapeutic drugs, which will be
discussed further in the review.
The first generation of small-molecule WEE1 inhibitors,

represented by PD0166285, was rather unspecific with an

inhibitory activity against multiple kinases such as EGFR,
CHK1, and c-Src.278–280 The first selective WEE1 inhibitor,
adavosertib (AZD1775), was obtained from screening a
small-molecule compound library.281 Though more selec-
tive than previous-generation WEE1 inhibitors, from
kinase profiling results, AZD1775 was found to target
other kinases as well with reduced potency.282,283 For
example, the unspecific targets of AZD1775 include PLK,
the role of which in cell-cycle progression has been
described as antagonistic to WEE1. This multiple bind-
ing may contribute to the difficulty in interpreting exper-
imental results, but it was recently suggested that thera-
peutic concentrations of AZD1775 were not sufficient to
suppress PLK1 activities.284 Noteworthy, AZD1775 exhibits
potent antitumor activity even as monotherapy.285 Given
that single-agent therapy is believed to be almost equally
toxic to normal and cancer cells, the antitumor activity of
WEE1 inhibitors monotherapy potentially arises from the
increased replication stress in cancer cells.286–288
Whereas the rationale for WEE1 inhibitors is clear,

its clinical application is restricted by its demand
for appropriate therapeutic windows. The substan-
tial >grade 3 adverse effects caused by AZD1775 are often
a concern (NCT02341456, NCT02666950, NCT01357161,
NCT00648648). As WEE1 is required for a number of
physiological processes in normal cells, adverse events
are usually expected to impact cells undergoing frequent
divisions such as the hematopoietic system and intestinal
epithelium.289 For this reason, numerous efforts have been
undertaken to optimize dosing and therapeutic schedule
of AZD1775,290 with its analogues being developed, which
remained effective but brought lower toxicity.291 Another
research attempt is to identify additional biomarkers
for AZD1775 to reduce the off-target effects. AZD1775 is
able to induce synthetic lethality in cells with defects in
the Fanconi Anemia or HR pathways,285,292 suggesting
that the efficacy of AZD1775 may be enhanced by further
inhibiting additional factors that downregulate DNA
replication.

4.7 DNA-PK inhibitors

DNA-dependent protein kinase was initially discovered
by chance in 1985 when scientists added double-stranded
DNA (dsDNA) into the cell extracts and identified
this protein with enhanced phosphorylation.293 Later
in 1990, the DNA-dependent protein kinase catalytic
subunit (DNA-PKcs) was identified.294,295 Encoded
by the PRKDC/XRCC7 gene, DNA-PKcs is abun-
dantly present in human cells with no fewer than
50,000 molecules per cell and the largest PIKK fam-
ily member.296–300 DNA-PKcs shares similar domain
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compositions with two other PIKK family members
involved in DDR, ATM, and ATR, such as the kinase
domain and the conserved FRAP-ATM-TRRAP (FAT)
domain.301
Loss of the key factors in the NHEJ pathway has long

been considered as a hallmark for tumor progression
and increased sensitivity to DSB-inducing agents, possibly
due to increased genomic instability.298,302,303 The upreg-
ulation of DNA-PK expression was observed in various
tumor types including the gastrointestinal cancer, lung
cancer, and hepatocellular carcinoma and was associated
with higher tumor grades and poor prognosis.304–306 In
melanoma, increased DNA-PKcs expression was related
to a progressed phenotype with tumor microenvironment
favoring metastasis.307 In addition, DNA-PKcs upregula-
tion has been reported to promote resistance to radio-
therapy and chemotherapy in thyroid,308 nasopharynx,309
cervix cancers,310 and leukemia.310,311 Moreover, DNA-
PK has been reported to transcriptionally regulate pro-
tumorigenic pathways, leading to tumor progression
and metastasis.312,313These findings have encouraged the
design of multiple DNA-PK inhibitory strategies.
Giving the structural similarity between DNA-PK and

PI3K, early attempts to block DNA-PK were based on
pharmacological approaches that directly targeted PI3K
or its derivatives. Development of DNA-PK inhibitors
mainly focuses on the catalytic activity of DNA-PKcs,
whereas novel anti-DNA-PK approaches such as DNA-
PKcs-inhibiting microRNAs314,315 or inhibitors targeting
the Ku heterodimers were based on the homology model
of the ATP-binding site.316,317 The first reported DNA-PK
inhibiting compound was caffeine, which was identified
with in vitro kinase activities on two other DDR mas-
ter kinases ATM and ATR, and later with inhibition on
DNA-PK.318 Further application of these early DNA-PK
inhibitors such as wortmannin226 and vanillin319 was lim-
ited due to poor selectivity and complexed structure. With
the advent of a lead compound LY294002, more specific
and potent derivate compounds were later developed such
as NU7441, NU7427, NU7026, and NU7163.320–323
In preclinical studies, NU7427 and NU7026 potenti-

ated the therapeutic effect of IR and topoisomerase II
inhibitor chemotherapy in cancer cells,321,324 whereas
NU7441 substantially delayed the repair of IR- and
chemotherapy-induced DSBs both in vitro and in vivo.325
There were compelling preclinical data studies suggest-
ing NU7441 as a potent DNA-PK inhibitor in can-
cer models.326–330 Another class of DNA-PK-targeting
compounds studied in preclinical studies are a series
of arylmorpholine-containing compounds derived from
IC60211,331 which include IC86621, IC486154, IC87102, and
the most intensively used IC87361.332,333 Despite exten-
sive research, clinical evaluation and application of these

inhibitors could not be achieved due to their undesirable
pharmacokinetics.334
VX-984 and M3814 are the new-generation DNA-PK

selective inhibitors, which have already progressed into
clinical trials in combination with IR or chemotherapy.
VX-984 is known for its potential to cross the blood brain
barrier based on the observation that VX-984 enhanced the
response to radiotherapy in glioblastomamousemodels.335
M3814 has been reported to suppress NHEJ repair induced
by chemotherapies and radiation, and to enhance the treat-
ment efficacy in multiple cancer types.336,337 In addition,
clinical studies supported the use of peposertib (formerly
M3814) with desirable safety profile as monotherapy,338
but most ongoing clinical trials investigate its effects
in combination with chemo- or radiotherapy in cancer.
LY3023414 and CC-115 are dual inhibitors that simulta-
neously target DNA-PK and the mammalian target of
rapamycin (mTOR), selectively blocking class I PI3K iso-
forms at low nanomolar concentrations.339,340 CC-115 was
initially designed for mTOR, but was later reported to
inhibitDNArepair and becomeparticularly active inATM-
deficient tumors.341 Recently Phase I trial on LY3023414
reported that LY3023414 was well tolerated as single agent
in advanced cancers.342

5 DDR INHIBITOR-BASED
COMBINATION THERAPY

The combined treatment of DDR inhibitors with other
treatment modalities including chemotherapy, radiother-
apy, immunotherapy, or other targeted therapies. More-
over, recent data also supported the therapeutic value
of concomitant targeting against nonredundant DDR
components.343,344 Herewe summarized the ongoing com-
bination trials on DDR inhibitors with chemotherapy,
radiotherapy, target therapy (Table 2), with other DDR
inhibitors (Table 3), and with immunotherapy (Table 4).

5.1 Combinations with DNA-damaging
agents

5.1.1 DDR inhibitor–chemotherapy
combinations

As discussed, synergistic treatment of DDR inhibitors with
cytotoxic chemotherapy has been performed, with sched-
ules based on sequential chemotherapy administration
followed by DDR inhibitor being proved clinically more
beneficial and more tolerable.145,345–347 The underlying
mechanism for the synergy is that the rapidly divid-
ing cancer cells are more likely to be affected by DNA
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TABLE 2 Ongoing combination trials of DDR inhibitors with chemotherapy, radiotherapy, and target therapy

Conditions Interventions Phase Clinical trial*

Chemotherapy
PARP

Cancer Veliparib + VX-970 + cisplatin I NCT02723864
Metastatic breast cancer Veliparib +

carboplatin/paclitaxel
III NCT02163694

Ovarian, breast, pancreatic, prostate
cancer

AZD5305 +
Carboplatin/paclitaxe

I /II NCT04644068

Ovarian cancer Veliparib +
carboplatin/paclitaxel

III NCT02470585

Metastatic pancreatic
adenocarcinoma

Veliparib +
fluorouracil/irinotecan
hydrochloride

II NCT02890355

SCLC Veliparib + topotecan I NCT03227016
Advanced solid tumors IMP4297 + temozolomide I NCT04434482
Triple negative breast cancer,
ovarian cancer

KU-0059436 (AZD2281) +
carboplatin/paclitaxel

I NCT00516724

Breast cancer ABT-888 + temozolomide II NCT01009788
Metastatic BRCA-associated breast
cancer

Veliparib + cisplatin II NCT02595905

HR deficient advanced
solid tumor malignancies

Niraparib + carboplatin I NCT03209401

Prostate carcinoma Niraparib + chemotherapy II NCT04592237
Breast cancer Olaparib +

paclitaxel/carboplatin
II/III NCT03150576

Adrenal gland pheochromocytoma,
paraganglioma

Olaparib + temozolomide II NCT04394858

Advanced (stage IIIB-C-IV) ovarian,
primary peritoneal and fallopian
tube cancer

Rucaparib +
paclitaxel/carboplatin

I /II NCT03462212

BRCA-mutated ovarian carcinoma Olaparib + chemotherapy I NCT03943173
Gastric cancer Olaparib + paclitaxel II NCT01063517
Ovarian cancer Olaparib +

carboplatin/paclitaxel
II NCT01081951

Ovarian, fallopian tube, or primary
peritoneal cancer

Rucaparib + chemotherapy III NCT02855944

Recurrent solid tumors and ewing
sarcoma

Talazoparib + onivyde I /II NCT04901702

Uterine leiomyosarcoma Olaparib + temozolomide II NCT03880019
Ovarian cancer Talazoparib + chemotherapy III NCT03642132
Acute leukemia Veliparib + temozolomide I NCT01139970
Recurrent ovarian carcinoma Niraparib + chemotherapy +

atezolizumab
III NCT03598270

Metastatic malignant
solid neoplasm

Veliparib + topotecan
hydrochloride

I NCT01012817

IDH1 mutation BGB-290 + temozolomide I/II NCT03914742
Recurrent glioma Talazoparib + carboplatin II NCT04740190
Refractory lymphomas undergoing
stem cell transplant

Olaparib + chemotherapy I NCT03259503

(Continues)
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TABLE 2 (Continued)

Conditions Interventions Phase Clinical trial*

ATM
Refractory cancer AZD6738 + paclitaxel I NCT02630199
Advanced cancer ART0380 + gemcitabine I/II NCT04657068

ATR
Esophageal cancer M6620 + cisplatin I NCT03641547
Advanced stage solid tumors BAY 1895344 + chemotherapy I NCT04514497
Ovarian serous tumor M6620 + gemcitabine I NCT02595892
NSCLC, SCLC VX-970 (M6620) + topotecan I/II NCT02487095
Cancer AZD6738 + gemcitabine I NCT03669601
Metastatic malignant
solid neoplasm

M6620 + irinotecan
hydrochloride

I NCT02595931

Refractory cancer AZD6738 + paclitaxel I NCT02630199
Advanced solid tumors BAY 1895344 + cisplatin I NCT04491942
Small cell cancers outside of the
lungs

M6620 + topotecan II NCT03896503

CHK1
Brain tumor LY2606368 + cyclophos-

phamide/gemcitabine
I NCT04023669

WEE1
Metastatic pancreatic
adenocarcinoma

MK-1775 +
paclitaxel/gemcitabine
hydrochloride

I/II NCT02194829

Ovarian, primary peritoneal, or
fallopian tube cancer

MK-1775 +
paclitaxel/gemcitabine
hydrochloride

II NCT02101775

Radiotherapy
PARP

Triple negative breast cancer Niraparib + radiation
therapy/dostarlimab

II NCT04837209

Triple negative breast cancer Niraparib + radiation therapy I NCT03945721
Breast inflammatory carcinoma Olaparib + radiation therapy II NCT03598257
Malignant glioma without H3 K27M
or BRAFV600 mutations

Veliparib + radiation therapy
+ temozolomide

II NCT03581292

Head and neck neoplasms Olaparib + radiotherapy I NCT02229656
Malignant gliomas Temozolomide (TMZ) +

radiotherapy
I/II NCT03212742

ATM
Brain cancer AZD1390 + radiation therapy I NCT03423628
Advanced cancer XRD-0394 + palliative

radiotherapy
I NCT05002140

WEE1
Esophageal adenocarcinoma Adavosertib + radiation

therapy
I NCT04460937

Cervical carcinoma Adavosertib +
cisplatin/radiation therapy

I NCT03345784

DNA-PK
Rectal cancer Peposertib +

capecitabine/radiotherapy
I/II NCT03770689

(Continues)
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TABLE 2 (Continued)

Conditions Interventions Phase Clinical trial*

Solid tumors M3814 + radiotherapy I NCT03724890
Advanced solid tumors M3814 + fractionated

RT/cisplatin
I NCT02516813

Glioblastoma, gliosarcoma Nedisertib + radiation
therapy/ temozolomide

I NCT04555577

� Advanced solid tumor XRD-0394 + palliative
radiotherapy

I NCT05002140

Other target therapy
PARP

BRCA1/2 gene mutated tumors Niraparib + copanlisib (PI3Ki) I NCT03586661
HER2 positive breast carcinoma Niraparib + trastuzumab I/II NCT03368729
Ovarian cancer Olaparib + cediranib (VEGFR

inhibitor)
N/A NCT02681237

Ovarian cancer patients Niraparib + bevacizumab II NCT04734665
Advanced solid tumors Olaparib + CYH33 (PI3Kα

inhibitor)
II NCT04586335

Breast cancer Talazoparib + sacituzumab
goviteca

I/II NCT04039230

Advanced breast carcinoma Olaparib +
cediranib(VEGFRi)

II NCT04090567

Metastatic breast cancer Talazoparib + belinostat
(HDACi)

I NCT04703920

Metastatic malignant
solid neoplasm

Olaparib + onalespib (Hsp90
inhibitor)

I NCT02898207

Ovarian cancer Niraparib + bevacizumab I/II NCT02354131
High-grade serous ovarian cancer Olaparib + paclitaxel II NCT04261465
Ovarian cancer Olaparib + anlotinib

(VEGFRi)
II NCT04566952

Breast cancer metastatic Olaparib + vorinostat
(HDACi)

I NCT03742245

Endometrial and ovarian cancer Olaparib + AZD5363 (AKTi) I/II NCT02208375
Metastatic prostate carcinoma,
malignant neoplasm in the bone

Olaparib + cediranib
(AZD-2171) (VEGFRi)

II NCT02893917

EGFR-mutated advanced
lung cancer

Niraparib + osimertinib
(EGFRi)

I NCT03891615

Ovarian cancer Olaparib + cediranib III NCT03278717
Advanced malignant solid neoplasm Talazoparib tosylate +

axitinib/ crizotinib
(VEGFRi)

I NCT04693468

Endometrial serous
adenocarcinoma

Olaparib + DS-8201a (HER2i) I NCT04585958

Ovarian cancer with no germline
BRCA mutation

Olaparib + alpelisib (PIK3i) III NCT04729387

Pancreatic cancer Olaparib + cobimetinib
(MEK/ERK inhibition)

I NCT04005690

Recurrent ovarian, primary
peritoneal, or fallopian
tube cancer

Olaparib + cediranib maleate II NCT02345265

Recurrent ovarian, fallopian tube,
or peritoneal cancer

Olaparib + cediranib maleate I/II NCT01116648

(Continues)
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TABLE 2 (Continued)

Conditions Interventions Phase Clinical trial*

Gastric or gastroesophageal
junction cancer

Olaparib + ramucirumab
(VEGFRi)

I/II NCT03008278

Metastatic NSCLC Olaparib + cediranib I NCT02498613
Ovarian, fallopian tube, or primary
peritoneal cancer

Olaparib + cediranib maleate II/II NCT02502266

ATR
Chronic lymphocytic leukemia AZD6738 + acalabrutinib

(BTK inhibitor)
I/I NCT03328273

Other treatments � � �

PARP
Neuroendocrine tumors Talazoparib +

177Lu-DOTA-octreotate
PRRT

I NCT05053854

Prostate cancer with ATM/BRCA1/2
gene mutation

Niraparib + radical
prostatectomy

II NCT04030559

Prostate cancer Olaparib + radium Ra223
dichloride

I NCT03317392

Neuroendocrine tumors, thymoma,
mesothelioma

Olaparib +
177Lu-DOTA-TATE

I NCT04375267

Prostate carcinoma Talazoparib + androgen
deprivation therapy

II NCT04734730

Metastatic castration-resistant
prostate cancer

Rucaparib +
Enzalutamide/zbiraterone

I NCT04179396

Prostate cancer Talazoparib + enzalutamide III NCT04821622
ATR
� SCLC, neuroendocrine cancers Berzosertib + lurbinectedin I/II NCT04802174

*Data from https://clinicaltrials.gov.

damage directly caused by chemotherapy or indirectly
from reactive oxygen species.348 For example, platinum
derivatives (carboplatin, cisplatin, and oxaliplatin) pro-
duce intrastrand DNA cross-links repaired by NER
or the Fanconi anemia pathway.349 Antimetabolites
result in stalling of the replication fork, whereas alky-
lating agents such as temozolomide lead to both single-
and double- DNA strand breaks. Topoisomerase (Top)
inhibitors include Top 1 inhibitors that generate SSBs,
and Top 2 inhibitors that result in DSBs.350,351 Meanwhile,
epigenetics regulation also plays an important role in
DDR, with the hypomethylation of DDR genes signifi-
cantly associated with worse prognosis in glioblastoma
patients.352 The epigenetics silencing of PRPF19 and TERT
genes in glioblastoma cells overcomes their resistance to
temozolomide treatment.352
Combining cytotoxic chemotherapies and PARP

inhibitors has long been proposed based on the capability
of PARP inhibitors to eliminate DNA lesions caused by
chemotherapy. An early study suggested that a PARP
inhibitor 3-AB reversed tumor resistance to temozolo-
mide (TMZ) in glioma models.353,354 The combination

of TMZ and PARP inhibitor NU1025 was later found to
suppress tumor growth and improve overall survival of
central nervous system lymphoma.355 These successful
preclinical results urged the clinical evaluation of the
TMZ/PARPi combination in patients with advanced
gliomas, where the combination regimen demonstrated
modest antitumor efficacy and overall tolerability.356
A randomized Phase II/III study (NCT02152982) inves-
tigated the combination of PARPi veliparib and TMZ,
which improved disease outcome in tumors with MGMT
promoter hypermethylation.357 Interestingly, the combi-
nation was previously found to be ineffective in MGMT-
unmethylated cell lines, suggesting the predicting value of
MGMT promoter methylation status in tumor response to
TMZ/veliparib combination therapy.357 The combination
was further tested in other cancer types (NCT01009788,
NCT01638546), but failed to induce significant survival
benefits in patients with small cell lung cancer.358 Early
PARP inhibitors 3-AB and PJ34 were shown to overcome
tumor resistance to cisplatin in several cancer types,359–361
and olaparib was later suggested to enhance the thera-
peutic effect of cisplatin in lung cancer cells.362,363 These

https://clinicaltrials.gov
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TABLE 3 Ongoing combination trials of concomitant targeting against nonredundant DDR components

Combination Conditions Interventions Phase Clinical trial*

PARPi + ATRi
Advanced solid tumor Talazoparib + RP-3500 I NCT04497116
Advanced solid tumors (excluding
prostate cancer)

Niraparib + BAY1895344 I NCT04267939

High-grade serous carcinoma Olaparib pill + AZD6738 II NCT03462342
Advanced solid tumor Niraparib/Olaparib + RP-3500 I/I NCT04972110
Gynaecological cancers Olaparib + AZD6738 II NCT04065269
Cancer AZD2281 + AZD5363 + AZD1775 +

AZD6738
II NCT02576444

Advanced solid tumors Niraparib +M1774 I NCT04170153
Malignant solid neoplasm Olaparib + Ceralasertib II NCT03878095
Recurrent ovarian, primary peritoneal, or
fallopian tube cancer

Olaparib + Adavosertib II NCT03579316

Prostate cancer Olaparib + AZD6738 II NCT03787680
Clear cell renal cell carcinoma AZD6738 + Olaparib II NCT03682289
Advanced solid tumor RP-3500 + Niraparib/Olaparib I/II NCT04972110

PARPi + BETi
Advanced malignant solid neoplasm Olaparib + Adavosertib I NCT04197713
Ovarian cancer Olaparib + Adavosertib I NCT04633239
Triple negative breast cancer Talazoparib + ZEN003694 II NCT03901469

PARPi + CDK4/6i
Breast cancer Niraparib + Abemaciclib I NCT04481113

PARPi + ATMi
Advanced solid tumours Olaparib + AZD0156 I NCT02588105

Other
Ovarian cancer Olaparib + AsiDNATM I/II NCT04826198

*Data from https://clinicaltrials.gov.

preclinical success allowed the initiation of clinical studies
on olaparib in patients with platinum-sensitive ovarian
cancer (NCT01081951), where olaparib increased PFS in
patients receiving platinum/paclitaxel monotherapy, but
failed to improve overall survival.65,347 The combination
of PARP inhibitor veliparib with carboplatin and pacli-
taxel was tested in patients with triple-negative breast
cancer patients (NCT02032277) but did not bring survival
benefits.364
The ATR inhibitor M6620 demonstrated strong effi-

cacy in combination with cisplatin, which later entered
clinical trial and resulted in objective responses in
clinical trial either as single agent or cotherapy with
carboplatin.365,366 Other DDR inhibitors used along with
definitive chemotherapy are underway, includingDNA-PK
inhibitor M9831, the Phase I evaluation of which was com-
pleted in 2019 to determine the maximum tolerated dose
of M9831 and its efficacy with or without doxorubucin in
advanced cancer patients (NCT02644278).

5.1.2 DDR inhibitor–radiotherapy
combinations

The systematic delivery of chemotherapy poses a challenge
to its the combinatorial therapy with DDR inhibitors. The
overlapping toxicities, predominantly myelosuppression,
have led to the termination of many clinical trials.367,368
To date, DNA-damaging agents still remain the mainstay
of nonoperative cancer treatment, and besides chemother-
apy, radiation therapy is an optional treatment. The ion-
ization effect of radiation producing oxygen free radicals
causes DNA damage in cells with 1 Gy of ionizing radi-
ation being able to generate 1000 SSBs and 35 DSBs.369
While radiation has been proved effective by accumulating
evidence in combating tumors, an important question is
how to reduce the amount of radiation delivered to normal
tissues and thus prevent the acute and chronic toxicities.
A strategy to intensify the efficacy and at the same time
reduce toxicity of radiotherapy is the combination with

https://clinicaltrials.gov
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TABLE 4 Ongoing combination trials of DDR inhibitors with immunotherapy

DDR Conditions Interventions Phase Clinical trial*

PARP
Endometrial neoplasms Olaparib + durvaluma II NCT03951415
Solid tumor Rucaparib + atezolizumab II NCT04276376
Biliary tract cancer Rucaparib + nivolumab II NCT03639935
Lung small cell carcinoma,
neuroendocrine carcinoma

Niraparib + dostarlimab II NCT04701307

Cervical cancer Olaparib + pembrolizumab II NCT04483544
Breast cancer Olaparib + pembrolizumab II NCT03025035
Ovarian, breast, gastric cancer, SCLC Olaparib + durvalumab I/II NCT02734004
Ovarian neoplasms Niraparib + TSR-042 II NCT03574779
Ovarian, fallopian tube, peritoneal cancer Olaparib + tremelimumab I/II NCT02571725
Metastatic pancreatic adenocarcinoma Olaparib + pembrolizumab II NCT04548752
Advanced malignant solid neoplasm Niraparib + atezolizumab I NCT03830918
Advanced malignant solid neoplasm Olaparib + durvalumab/copanlisib I NCT03842228
Metastatic breast carcinoma Olaparib + atezolizumab II NCT02849496
LSCL Olaparib + durvalumab I NCT04728230
Platinum-sensitive ovarian cancer OSE2101 + pembrolizumab II NCT04713514
Advanced malignant solid neoplasm Talazoparib + paclitaxel I NCT02317874
Colorectal, breast neoplasms Olaparib + durvalumab I/II NCT02484404
Prostate carcinoma Olaparib + durvalumab II NCT04336943
Breast cancer Niraparib + TSR-042 (dostarlimab) I NCT04673448
Triple negative breast cancer Olaparib + durvalumab II NCT03167619
Extensive SLSC Talazoparib + atezolizumab II NCT04334941
Fallopian tube mucinous
adenocarcinoma

Olaparib + cediranib + durvalumab II NCT04739800

Metastatic triple negative breast cancer Olaparib + durvalumab II NCT03801369
Breast, ovarian cancer Niraparib + pembrolizumab I/II NCT02657889
BRCAm ovarian, fallopian tube or
primary peritoneal cancer

Olaparib +
durvalumab/tremelimumab

II NCT02953457

Ovarian, fallopian tube, or primary
peritoneal cancer

Rucaparib + nivolumab III NCT03522246

Ovarian carcinosarcoma Niraparib + TSR-042 (dostarlimab) II/III NCT03651206
Pancreatic adenocarcinoma Niraparib + nivolumab/ipilimumab I/II NCT03404960
Endometrial cancer Olaparib + durvalumab II NCT03660826
Metastatic solid tumors Talazoparib + avelumab II NCT03330405
BRCA1/2 and PALB2 mutated metastatic
pancreatic cancer

Niraparib + dostarlimab II NCT04493060

Advanced solid neoplasm Veliparib + nivolumab I NCT03061188
Metastatic melanoma with HR mutation Olaparib + pembrolizumab II NCT04633902

ATM
Advanced solid tumors Drug: BAY1895344 +

pembrolizumab
I NCT04095273

ATR
Advanced solid tumors BAY1895344 + pembrolizumab I NCT04095273

*Data from https://clinicaltrials.gov.

https://clinicaltrials.gov
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novel targeted therapies,which increases the radiosensitiv-
ity of cancer cells to a greater extent than normal cells.370
Given that radiation causes different DNA lesions includ-
ing base damaging, SSBs, and DSBs, the simultaneous
inhibition of key DDR enzymes thus becomes a promis-
ing strategy.371 Furthermore, the clear correlation between
radioresistance and increased DNA repair capacities fur-
ther justify the combinational use of radiotherapy and
DDR inhibition.372 However, early efforts on DDR block-
ade such as PARP inhibitors failed to achieve consistent
results.373–375 The suboptimal synergistic effect might be
attributed to the fact that DSBs caused by conventional
radiation are repaired predominately through the NHEJ
pathway, rather than PARP-regulated BER pathway. More-
over, comparedwith conventional photon-based radiation,
HR repair pathway is more engaged in the repair of heavy
ion (carbon and iron)-induced DNA damage.375,376 The
radiosensitization approaches include inhibitors that pre-
vent S and G2/M cell-cycle arrest that allows DNA damage
repair, such such as PARP, CHK1, WEE1, ATR, and DNA-
PK inhibitors.
VE-821 is a ATR inhibitor with potent inhibitory activi-

ties on the phosphorylation of H2AX and CHK1 by ATR,
and sensitizing effect on cancer cells to radiotherapy
and genotoxic chemotherapeutics.66,231,377–379 Notably, the
radiosensitization of VE-821 was even more profound in
hypoxic cells.377 M6620 (VX-970) is the improved ana-
logue of VE-821 and its synergistic potential with radio-
therapy has been widely studied in preclinical settings.232
In esophageal cancer, M6620 was shown to enhance
radiation-induced tumor growth arrest both in vitro and in
vivo.380,381 The concurrent treatment of M6620 and radi-
ation was recently reported to improve the overall sur-
vival in mouse models, supporting the ongoing clinical
trial (NCT02589522) assessing the sensitizing effects of
M6620 to whole brain irradiation in NSCLC patients with
brain metastases.382 AZD6738 was intensively investigated
in various cancers, especially ATM-deficient cancers as a
monotherapy; recent attempt has converged on its combi-
nation therapies.286,383–385 The multiparametric cell-based
assays measuring DNA damage and cell-cycle transition
are induced by the treatment of AZD6738, and the in
vivo mouse xenograft studies provide strong rationale for
the design of Phase I clinical trials.386 The accumulat-
ing promising results from preclinical studies encouraged
the assessment of AZD6738 in more than 25 clinical tri-
als including monotherapies in hematological malignan-
cies (NCT01955668, NCT03770429) and in refractory solid
tumors (NCT02223923, NCT03022409), and in combina-
tion with radiotherapy (NCT02223923).
WEE1 is involved in the initiation of G2 checkpoint, and

the inhibition ofWee1 would subsequently cause unsched-
uled mitotic entry and increased replication stress.281 It

has been reported that increased sensitivity to WEE1 inhi-
bition through mechanisms outside of cell-cycle check-
point defects, such as DDR aberrations and nucleotide
resource starvation, with single-agent activity observed
even in TP53-wild-type cancer cells.387–390 The critical role
of p53 in the regulation of G1 checkpoints provides a
strong rationale for the use of WEE1 inhibitors in p53-
deficient cells.391 A WEE1 inhibitor, adavosertib (AZD1775
or MK-1775), was shown to sensitize p53-deficient cells to
DNA-damaging radiotherapy via the induction of mitotic
lethality.281,392 Thus, recent clinical development has
focused to the concurrent treatment of WEE1 inhibitors
and DNA-damaging treatments such as radiation therapy
in TP53 mutant tumors. Following the evaluation of Phase
I study as single agent,393 AZD1775 has demonstrated over-
all survival benefits when combining radiation in patients
with advanced pancreatic cancer.290
As NHEJ is the predominant pathway for the repair of

traditional radiotherapy,394 the specific targeting of NHEJ
by DNA-PK inhibitors is thus considered as a potential
combination partner for radiation. Currently, three DNA-
PK inhibitors are under clinical trials: M9831 (VX-984),
nedisertib (M3814), and CC-115. In addition to monother-
apy, CC-115 is now being investigating in combinationwith
androgen-deprivation therapy (ADT) in castrate-resistant
prostate cancer patients (NCT02833883) and with radia-
tion in glioblastoma patients (NCT02977780). Inspired by
results from a Phase I trial involving patients with tumors
in the head and neck or thorax,395 a growing number of
trials are underway to assess the efficacy of nedisertib
monotherapy or with radiation.

5.2 DDR inhibitor–DDR inhibitor
combinations

The initial purpose of cotargeting key DDR elements was
to overcome the acquired resistance to a single DDR
inhibitor, predominantly PARP inhibitors. In the light of
the variety of DNA repair mechanisms, the combination of
one or more of DDR inhibitors to induce synthetic lethal-
ity is biologically applicable, even inHR-proficient cells.396
An exciting example was the coinhibition of PARP and
WEE1 inhibitor. The combination of adavosertib and ola-
parib synergistically promoted radiosensitivity of pancre-
atic cancer cells by impairing their HR repair capacity
to achieve synthetic lethality, which led to the initiation
of multiple clinical trials (NCT02723864, NCT02576444,
andNCT02511795).397 In PARPi-resistant cells with SLFN11
deficiency, the additional ATR inhibition would overcome
the resistance due to the fact that SLFN11-inactive cells
were more reliant on the ATR pathway for DNA repair.398
Likewise, ATR blockade further disrupted HR repair
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pathway in BRCA-deficient cancer cells.399 In lymphoma
models, ATR inhibitor AZD6738 displayed a strong syner-
gistic cytotoxic effect when combined with Chk1 inhibtor
or WEE1 inhibitor, further expanding the repertoire of
DDR–DDR therapeutic combinations.400
In addition to ATR, HR-deficient tumor cells are also

increasingly reliant on other alternative repair pathways
such as a type of a-EJ, named microhomology-mediated
end joining (MMEJ) for survival, suggesting the potential
of cotargeting PARP and key members of MMEJ.21 Other
combination partners for PARP inhibitors include the
antagonists of PI3K-AKT pathway401 and BRD4 protein,
which has been shown to downregulate several DDR genes
and increase the sensitivity of HR-proficient tumors to
PARP inhibition.402–404 Previouswork shows that recently,
the combined inhibition of PARP1 andDNA-PKwas found
to suppressHNSCC tumor growth in vitro and in vivo com-
pared to either agent used alone.405 The underlying mech-
anism may be the cooperation between PARP1 and DNA-
PKcs to recruit XRCC1 to mediate DNA repair.406–408

5.3 DDR inhibitor–immunotherapy
combinations

The alteration in immune environment caused by DDR
deficiency may be used to facilitate the sensitization of
immunotherapies.409 Deficient DDR results in accumu-
lated DNA damage in cells and increases their mutational
burden, particularly in tumor cells that normally experi-
ence high level of endogenous or exogenous DNA damage.
It is becoming increasingly clear that DNA damage could
induce the production of immune-regulatory cytokines
such as type I IFNs.410–412 DNA normally resides in the
nucleus ormitochondria, and once it is released to the cyto-
plasm, it triggers a series of immune response. DNA binds
to cyclic guanosine monophosphate (GMP)–adenosine
monophosphate (AMP) synthase (cGAS), which leads to
the conformational change of the catalytic subunit of cGAS
allowing the formation of the second messenger cyclic
GMP–AMP (cGAMP).413 cGAMP then activates STING
and its downstream transcription factors IRF3 and NF-κB
via kinases TBK1 and IKK, respectively. As shown in Fig-
ure 3, IRF3 and NF-κB then translocate into the nucleus
and induce the expression of multiple cytokines such as
IFNs. DDR dysfunction or the combination therapy with
DDR inhibitors further enhances DNA damage, which
when transfers into cytosolic DNA and triggers the stim-
ulator of interferon genes (STING) pathway to activate
innate immune responses.414,415
Tumors harboring mutations in BRCA1/2 or ATM

were identified with high level of cytosolic DNA, which
stimulated the innate immune activities and correlated

with a durable response to ICIs.416,417 In addition, the
induced neoantigens of tumor cells could stimulate the
host immune response including the intratumoral infil-
tration of CD8+ T cells, which have long been character-
ized as a predictive marker for cell response to ICIs.418–420
Recent evidence suggested that deleterious DDR-related
gene mutations are a frequent event in NSCLC, which
indicates improved clinical outcomes in NSCLC patients
with PD-(L)1 antibody treatment.421 Thus, it is conceivable
that DDR inhibitors may be able to convert immunologi-
cally “cold” into “hot” tumors and sensitize tumor cells to
ICIs.422,423 A growing number of clinical trials evaluating
this drug combination in cancer patients are underway.93
Figure 3 presents a simplified scheme of the interaction
between DNA damage with immune responses.
PARP inhibitors are one of the most extensively studied

DDR inhibitors in clinical development and in the context
of synthetic lethality such as cells with BRCA1/2 muta-
tions, PARP inhibition is considered proinflammatory.424
Cells treated with PARP inhibitors exhibited an increased
level of PD-L1 expression, supporting the concomitant
use of PARP inhibitors and ICIs.423 Interestingly, can-
cer stem cells (CSCs) displayed higher expression of PD-
L1 compared to nonstem cell cancer cells, which might
contribute to the long-term survival improvement by
immunotherapy425 and make ICIs a potential strategy to
overcome resistance of CSCs to PARP inhibitors.426 How-
ever, PARP inhibition has recently been shown to attenu-
ate immune response in mice by suppressing thymocyte
maturation.427 It is thus intriguing to speculate whether
toxicity of ICIs could be reduced when used in combina-
tion with PARP inhibitors.
CDK4/6 inhibitors could convert HR into NHEJ mech-

anism in cells treated with ionizing radiation in several
tumor models,428–430 which was likely attributed to the
active involvement of cyclin D-CDK4/6-RB pathway in
DDR.431 Besides their radiosensitization effects, CDK4/6
inhibitors were also reported to reduce the T-cell exclusion
and immune evasion in ICI-resistant melanoma cells.432 It
is therefore not surprising that the combination of CDK4/6
inhibitors and anti-PD-L1 therapy led to substantial tumor
regression in xenograft mouse models.433,434 Clinical trials
sought to determine the efficacy of FDA-approved CDK4/6
inhibitors such as palbociclib and abemaciclib combined
with pembrolizumab in patients with HR-positive breast
cancer (NCT02779751, NCT02778685), where the drug com-
bination induced a higher objective response rate than
either monotherapy and later entered clinical trials on
other cancer types.435
Other combination partner for ICI includes the CHK1

inhibitor prexasertib (LY2606368), which potently acti-
vated the STING/TBK1/IRF3 innate immune pathway and
upregulated tumor expression of PD-L1, suggesting its
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F IGURE 3 The interaction between DNA damage with immune responses. The activated STING pathway leads to upregulation of type I
IFNs, which enhances the cross-presentation of dendritic cells (DCs) and T-cell activation. Unrepaired DNA damage may generate tumor
neoantigens and thereby improving tumor recognition by T cells. However, DNA damage or DDR deficiencies have also been shown to
upregulate PD-L1 expression. cGAS, cyclic GMP–AMP synthase; DDR, DNA damage response; DC, dendritic cell; DSB, double-strand break;
ER, endoplasmic reticulum; IRF3, interferon regulatory factor 3, IFN, interferon; NF-κB, nuclear factor kappa-B; STING, stimulator of
interferon genes; TBK1, TANK-binding kinase 1. Figure was created with bioRender

synergistical potential with ICIs.436,437 Several action
mechanisms of the combination therapy have been pro-
posed. For example, ATR inhibitor (BAY1895433) target-
ing the ATR-CHK1 signaling could activate CDK1-SPOP
axis, wchich results in the destabilization of PD-L1, prov-
ing a strong rationale for the concomitant use of ATRi
with anti-PD-L1 therapy.438 Adavosertib is currently the
only WEE1 inhibitor under clinical trials and its combina-
tion with anti-PD-L1 monoclonal antibody durvalumab is
under assessment in a Phase I trial (NCT02617277).439

6 REMAINING CHALLENGES AND
FUTURE PERSPECTIVES

Cell response to DNA damage is a complex process
involving various signal networks and proteins, which are
differentially activated or inactivated in specific cancer
types. For instance, breast, ovarian, and bladder cancers
are likely accompanied with alterations in HR genes,
whereas some gastric and colorectal tumor subgroups
present a hypermutator phenotype lacking aneuploidy.
Furthermore, the DNA repair capacity also varies among

different cell types. For example, the repair efficiency
of human embryonic stem cells is the higher than dif-
ferentiated cell types,440 and some tumor cells present
upregulated damage repair such as the high level ofMGMT
repair activity in gliomas.441,442 Thus, characterization of
every single type of tumor to identify its specific profile of
deregulated DDR components will facilitate personalized
treatment of cancer patients. Next-generation sequenc-
ing provides an opportunity for precision medicine by
analyzing the whole-genome alterations associated with
DNA repair across different cancer types. It is recently
found through next-generation sequencing that epigenetic
regulators also appear to play a particularly important role
in cancer events.443 For example, epigenetic silencing of
genes leads to loss-of-function events of DDR proteins.
The initial idea for the DDR inhibitor-based combina-

tion therapy was to enhance the efficacy of conventional
treatments. Although DDR inhibitors have been widely
conducted on unselected patients, recent research interest
tends to use these drug combinations in tumors with spe-
cific genetic backgrounds such as p53 mutation and BRCA
alterations, which make cells more susceptible to DDR
inhibitors. Emerging clinical trials are ongoing to explore
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the potential predictive markers for patients’ response to
combinational therapy, including alterations in genes such
as ATM, BRCA1, BRCA2, CDK12, CHEK1, MYC, PARP1,
PIK3CA, and PTEN (NCT03842228, NCT02546661).
The early knowledge that DNA repair deficiency lead-

ing to increased neoantigen and tumor mutational load
makes ICI a potential combination partner for DDR
inhibitors. However, high mutational burden is a not a
guarantee for efficient ICI response, given the varying
level of immunogenicity induced by different DNA repair–
deficient backgrounds. The immune score and muta-
tional signature have been proved feasible in evaluat-
ing the response of ovarian cancer patients to niraparib
and pembrolizumab.444 Reliable predictive biomarkers are
needed to identify the specific subset of patients responsive
to ICI and DDR inhibitor combinations.445 One such strat-
egy is to integrate indexes frommultiple platforms, such as
combining tumor mutational burden with immune activ-
ity marker. The immune activity can be reflected by intra-
tumor immune infiltrations and STING pathway.446
Targeting methylation pathways is a promising anti-

cancer strategy.447 Accumulating evidence has suggested
the epigenetics regulation on DDR. Multiple histone
methyltransferases and demethylases have been described
to facilitate chromatin remodeling and chromatin-based
DDR activities. However, mechanisms of how histone
methylation is involved in DDR remains to be elucidated.
Given the correlation between PARP and histone methyla-
tion, identifying the involvement of methylation signaling
in DDR would bring new therapeutic approaches for can-
cer treatment.
Finally, the increased replication stress and DNA repair

defects in tumors provide a therapeutic opportunity that
makes cancer cells more vulnerable to DDR inhibition
than normal cells. However, the rapid development of clin-
ical DDR inhibitors has raised a concern on toxicity, which
is frequently accompanied with other anticancer thera-
pies. It is rather imperative to identify optimal doses, com-
binations, and schedules of DDR inhibitors to minimize
their adverse effects and more ideally, enhance the effi-
cacy. It has to be addressed that DDR proteins initially pos-
sess essential physiological functions that recognize and
fix DNA damage in normal cells, the repression of which
may be deleterious due to the increased mutagenic load in
normal tissues. Surveillance on long-term toxicity of DDR
inhibition may thus be added into clinical trial design.
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