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Plant-derived phytochemicals have gifted humans with vast therapeutic potentials. Yet,
the unique features of the blood–brain barrier significantly limit their accession to the target
tissue and thus clinical translation in brain disease treatment. Herein, we explore the
medicinal outcomes of both the rare examples of phytochemicals that can easily
translocate across the blood–brain barrier and most of the phytochemicals that were
reported with brain therapeutic effects, but a bizarre amount of dosage is required due to
their chemical nature. Lastly, we offer the nanodelivery platform that is capable of
optimizing the targeted delivery and application of the non-permeable phytochemicals
as well as utilizing the permeable phytochemicals for boosting novel applications of
nanodelivery toward brain therapies.
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INTRODUCTION

The modern pharmaceutical industry was gifted by natural phytochemicals to develop popular
medicinal compounds. Phytochemical is a term defining a wide range of natural compounds
derived from plants (phyto) (1). Most celebrated examples include aspirin, artemisinin, and
paclitaxel (2). Back in the very early days, humans discovered the therapeutic effects of herbs by
either intentional or accidental intake and thus raised medicinal science from herbology. Modern
pharmaceutical engineering has successfully applied plant-derived compounds to drug translation.
Its general process involves isolating and purifying target phytochemicals followed by
pharmacological capacity and pharmacodynamic evaluation in the laboratory and then
transferring to druggability evaluation and drug development process. For better efficacy, some
phytochemicals are subject to structural optimization and derivatized (Figure 1). Phytochemicals
have also been incorporated into various small-molecule libraries for high-throughput drug
screening and computer-based virtual drug screening. Their relatively complex structures also
provide a new source for drug design and expansion of existing libraries. Moreover, the total
synthesis of naturally produced phytochemicals with high economic values is also an important
June 2022 | Volume 12 | Article 9360541

https://www.frontiersin.org/articles/10.3389/fonc.2022.936054/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.936054/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.936054/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.936054/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:x.xia@henu.edu.cn
https://doi.org/10.3389/fonc.2022.936054
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.936054
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.936054&domain=pdf&date_stamp=2022-06-23


Liu et al. Phytochemical Nanomedicine for Brain Therapy
research area of modern organic chemistry, which focuses on
reducing synthesis costs, improving yield and purity, and
obtaining precursors that can be derivatized in various ways.

The entry of plant-derived drugs into the human body can
involve different routes. Current main administration
approaches include intravenous injection, oral administration,
and nasal feeding (Figure 1). Since discoveries of the
pharmacological properties of many phytochemicals were food
sourced, they are generally equipped with relatively high gastric
acid tolerance and intestinal absorption and thus make their oral
administration possible (3). However, due to their low targeted
organ accumulation, and the existence of the blood–brain barrier
(BBB), the bioavailability of orally administrated phytochemicals
is generally low. Thus, a large number of phytochemical
candidates remained in their laboratory evaluation stage, or
became healthcare products, for their unsatisfying direct
therapeutic effects (3, 4). Intravenous administration avoids
drug loss in the gastrointestinal tract and thus increase drug
concentrations in the blood, yet it is still limited for brain
targeting. The booming development of nanomedicine has
provided a whole collection of cutting-edge brain delivery
platforms with promising results in animal experiments (5–7),
and some even made to clinical approval (Figure 1). In addition,
nasal administration is also considered a potential strategy to
increase drug accumulation in the brain. Combining nasal
administration with special drug formulations, such as lipid-
soluble solvents, could ideally reduce the drug loss in blood
circulation and enter the brain through the olfactory bulb easily.
However, due to the huge difference of the olfactory bulbs
between mice and human in terms of their size proportion to
the brain, many drugs remain non-applicable for human (8). In
regard to this, nanodelivery formulations are also expected to
improve the BBB translocation efficiency of nasogastric
administration (Figure 1).

Current clinical applications of phytochemicals are faced with
challenges for sufficient targeted organ accumulation, for which
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much clearer mechanisms of their functional pathological
mechanisms must be further investigated. Many phytochemicals
were found to play a role in a wide collection of therapies, yet their
molecular functioning mechanisms remain elusive. Differing from
healthcare products, a clinical drug requires a clear understanding
of its pathological interaction and metabolism, as well as a defined
dose, efficacy, and clear indications. Further studies on its
functioning mechanisms, especially in combination with
structural biology and computational drug design, may provide
more novel drug candidates from phytochemical sources to cope
with the limited screening libraries and the relatively simple
structures in the current pharmaceutical screening banks.

The current review provides an update and evaluation of
BBB-permeable and non-permeable phytochemicals with
existing knowledge of their therapeutic effects toward brain
treatment, particularly introducing the nanodelivery platform
for maximizing the utility of phytochemicals in brain
therapies (Figure 1).
BRAIN DISEASES AND THE BBB

The BBB is a dynamic multicellular layer separating the
peripheral blood circulation and the central nervous system
(CNS). It is constituted by endothelial cells (ECs) of brain
micro-vessels and supported by astrocytes, pericytes, and
extracellular matrix components (9). The BBB is critical for
maintaining the proper environment, nutrients, and oxygen to
neuronal functions, as well as limiting entries of toxins,
pathogens, or cells from the blood into the brain. Brain ECs
(BECs) have a complex molecular transporting system and have
their unique features in comparison to ECs in other tissue. The
built-in continuous intercellular tight junctions (TJs) of BECs
(Figure 2) lack fenestrations and undergo an extremely low rate
of transcytosis, thus greatly limiting both paracellular and
transcellular molecular exchanges (9) of nearly 98% of generic
FIGURE 1 | Illustration of phytochemicals undergoing different engineering approaches toward clinical and market-ready available drugs; nanodelivery platforms
could potentially optimize their application for brain disease therapies.
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molecules, leaving only some lipid-soluble small molecules (i.e.,
molecular weight < 400 Da or containing less than eight
hydrogen bonds) (10) that are able to cross (11). Therefore,
delivery of nutrients is limited only to be mediated via a series of
specific transporters that allow selective cargoes (i.e., nutrients,
ions, few peptides, proteins, and fluid) across the BBB (Figure 2)
(12). For instance, BBB transport of water and ions is mainly
mediated by aquaporin (AQP) and the abluminal sodium pump
(Na+-, K+-ATPase), respectively. Ethanol and other small
lipophilic molecules can cross the BBB through simple
diffusion. Metabolites, nucleotides, and other substrates can be
transported by solute carrier-mediated transport with
concentration gradient, while peptides and proteins are mainly
transported by receptor-mediated transcytosis (RMT) (13). In
addition, a few immune cells can infiltrate into the healthy CNS
across the BBB due to the BECs having a relatively low
expression of immune cell recognition markers, i.e., leukocyte
adhesion molecules (14). Therefore, the immune surveillance
system in CNS is also unique. Taken together, all these
differences limited our further understanding of brain diseases.

Emerging studies revealed that the BBB has a very close link
to brain pathological changes. The breakdown of intact BBB by
tissue damage, injury, pathogen, or pathological molecular
events disturbs the microenvironment and/or transport
processes and can cause a series of brain diseases. Debris from
damaged brain must also be cleared by immune cells. Moreover,
the subsequently increased immune cell incursion and molecule
flux dysregulations happen when the BBB breaks down, and
immune surveillance and effector responses to brain infections
may trigger inflammation and multiple diseases (15). Ample
examples of neurodegenerative disease development are linked
to breakdown of the BBB, during which multiple pathological
changes are involved, such as increased BBB permeability,
microbleeds, impaired p-glycoprotein function, compromised
Frontiers in Oncology | www.frontiersin.org 3
glucose transport, CNS leukocyte infiltration, capillary
leakages, pericyte degeneration, endothelial degeneration,
abnormal angiogenesis, and other molecular pathological
changes (12).
GLIOBLASTOMA THERAPY
AND BBB PERMEABILITY

Glioblastoma is the most frequent and aggressive malignant
primary brain tumor of the central nervous system in adults
(16). Its extremely poor prognosis left patients with a median
survival less than 15 months (17, 18). Current treatments for
GBM include chemotherapy, radiotherapy, and surgery. Yet, the
chemotherapy compounds for GBM therapy are extremely
limited, with temozolomide (TMZ) being the only orally
administered drug approved by the US Food and Drug
Administration (FDA) (19). TMZ is a DNA-alkylating agent
that mediates the breakdown of the DNA double strand and
eventually leads to cell death. Being the only frontline treatment
against GBM, TMZ was administered in GBM xenograft mouse
models via different routes. Intraperitoneal injection at 50 mg/kg
for three times across a 2-week period (20) or a single orally
administered TMZ treatment at 600 mg/kg (21) both showed
ideal outcomes in mouse GBM xenograft models. The
development of an instructive dosage of chemotherapy drugs
like TMZ (sourced from Medscape and Mayo Clinic) requires
extensive preclinical (animal models) and clinical trials. More
importantly, it is the active amount of drugs at the site (i.e., brain
tumor tissue) that is of greater importance for GBM therapy than
the given dosage. For instance, a study using the intracerebral
microdialysis determined the neuropharmacokinetics of TMZ in
the brain interstitium after oral administration (150 mg/m2 in
human) and reported a mean peak TMZ concentration in the
FIGURE 2 | The blood–brain barrier monitored transportation from the capillary endothelium to the brain.
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brain of 0.6 ± 0.3 mg/ml after about 2 h (22). However, our
understanding of the at-site active concentration remains mostly
elusive for current clinical-approved drugs (23) and future
potential drugs (24) and thus require much further investigation.

Unfortunately, as the standard-of-care chemotherapy drug for
GBM, TMZ is faced with significant drug resistance challenges, with
at least 50% of TMZ-treated patients failing to respond (25).
Therefore, the search for new chemotherapy drugs with better
outcomes and fewer side effects is still in the chase.
Phytochemicals come in the hunt as a natural product and thus
attracted the most attention. Application of phytochemicals for
cancer therapy was suggested in clinical tests for various cancer
types. Examples include Allium sativum for the treatment of
inoperable colorectal, liver, or pancreatic cancer [more clinical
cases were excellently reviewed by Hosseini and Ghorbani (26)].
Nevertheless, as stated above, the BBB restricted the brain access for
most external compounds. To bemore specific, the BBB permeation
decreases 100-fold when the molecular weight of a drug increased
from 150 to 450 Da (27), and with each pair of hydrogen bonds on
the solute, a 10-fold decrease is reported in its in vivo BBB transport
(28). Thusly, the generally more complex chemical structures of
phytochemicals are likely to be impermeable to the BBB and
restricted their subsequent therapeutical use toward brain diseases,
leaving rare examples for phytochemical treatment toward GBM.
To this end, one study employed quercetin and demonstrated that
at a dosage of 20 mg/kg/day for 14 days, quercetin was able to
sensitize GBM to t-AUCB by dual inhibition of Hsp27 and COX-2
both in vitro and in vivo (29). Meanwhile, another group
demonstrated that Angelica sinensis showed an anti-GBM effect,
although a higher dose (500 mg/kg/day) was exercised for the study
(30). In the meantime, other investigations targeting GBMs are
primarily performed at the in vitro level (31). However, the silver
lining is that phytochemicals indeed demonstrated neuroprotective
capacities while targeting other brain diseases (neurodegenerative
diseases), including Alzheimer’s disease (AD) and Parkinson’s
disease (PD) (32), which could be potentially referenced by future
GBM therapy studies.
LIMITED NUMBERS OF
PHYTOCHEMICALS ARE BBB
PERMEABLE FOR BRAIN DISEASES

Current therapeutic applications of phytochemicals toward brain
diseases are heavily relying on their permeability across the BBB,
and their corresponding therapeutical dosage remains
controversial. As discussed above, the administered dosage of a
drug is only one of the instructions in determining whether the
drug has high therapeutic efficacy. However, with the very
limited information available, we try to gather more
instructions and hereby report examples of phytochemicals
that are more likely or unlikely to have BBB permeability when
their administered dosage was lower or higher than 10 mg/kg/
day, respectively. This dosage measurement only plays a
suggested guidance and irrespective of the administered routes,
Frontiers in Oncology | www.frontiersin.org 4
as all current routes suffer from significant loss during blood
circulation or gastric consumption. Among known candidates,
polyphenols (33) and flavonoids (34) are the most well-studied
subtypes of phytochemicals and were considered to have
neuroprotective effects and broad-spectrum disease treatment
effects including cardiovascular diseases, metabolic syndrome,
and cancer. Unfortunately, the translocation mechanism of these
defined phytochemicals that are easier to pass through the BBB
remains elusive.

Moreover, understanding of the underlying functional
mechanisms of bioactive phytochemicals toward brain disease
therapies remains limited. Some rare examples with scarce clues
include luteolin, the abundant flavonoid in the leaves of Capsicum
annuum (35, 36); peripherally administered luteolin (5 and 10 mg/
kg/day by gavage for 4 weeks) was able to significantly abolish
amyloid-b (Ab) deposition, glycogen synthase-3 (GSK-3)
activation, phospho-tau, and pro-inflammatory cytokines in a
traumatic brain injury-induced mouse model (37). Luteolin also
promotes the translocation of nuclear erythroid 3-related factor 2
(Nrf2) to the nucleus in both in vivo and in vitro conditions, and
the neuroprotective effects of luteolin in traumatic brain injury
were suggested to be through the activation of the Nrf2–ARE
pathway (38). Moreover, icariin (ICA), a natural compound
derived from Herba Epimedii (39), showed neuroprotective
effects on dopaminergic neurons in a PD mouse model, and the
potential mechanisms might be related to phosphatidylinositol-3-
kinase (PI3K)/protein kinase B (Akt) and mitogen-activated
protein kinase kinase (MEK)/extracellular signal-regulated
kinase (ERK) pathways (40). Application of icariin at 2 or 6 mg/
kg/day for 4 months in Sprague-Dawley rats is able to upregulate
autophagy-related proteins in the cortex and hippocampus of aged
rats (41), while a higher gavaging dosage at 80 mg/kg/day for 3
months in a senescence-accelerated mouse-prone 8 (SAMP8)
model exhibited a reduced number of senescence cells, neuronal
loss, and the expression of autophagy-related proteins (42). In the
meantime, administration of 4-O-methylhonokiol, isolated from
Magnolia officinalis, elevated lipopolysaccharide-induced
neuroinflammation, amyloidogenesis, and memory impairment
via inhibition of nuclear factor-kappaB (NF-kB) signaling
pathway in in vitro and in vivo models in a dose-dependent
manner (43). Swedish Ab PPADmodel mice pretreated with 4-O-
methylhonokiol (1 mg/kg/day) for 3 months showed recovered
memory impairment and inhibited neuronal cell death by limiting
the expression level as well as the activity of beta-site Ab PP
cleaving enzyme (BACE-1) (44). Another study using the same
dosage on presenilin 2 mutant mice revealed its capacity of
reducing TNF-a, IL-1b, reactive oxygen species (ROS), and
nitric oxide (NO) in neurons and ERK pathway activation in
cultured astrocytes. Moreover, withanamides of the Withania
somnifera L. fruit extract were reported to be equipped with
lipid peroxidation inhibitory capacity. Intraperitoneal injection
(i.p. injection of 5 mg/kg for once) of withanamides in mice
confirmed their BBB permeability (45). Selective activation of p53
by withanamides in tumor cells results in limited growth and
apoptosis. Moreover, the cellular toxicity is addressed via
inhibition of mitochondrial respiration (46) and DNA damage
June 2022 | Volume 12 | Article 936054
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(47), evidenced by the increase in g-H2AX and number of cells
expressing the phosphorylated form (48).

It is very common for phytochemicals to have significant
therapeutic effects reported extensively, but their underlying
working mechanisms rest unclear. Obovatol, a biphenolic
compound from Magnolia obovate, has neuroprotective
capabilities toward neuroinflammation (49), and the
administration of obovatol (1 mg/kg/day for 3 months) with
mouse-expressing mutant human amyloid precursor proteins
significantly improved cognitive functions (50). At a dosage of 10
mg/kg/day via i.p. for 4 days, obovatol showed neuroinflammation
inhibition in lipopolysaccharide-induced neuroinflammation in
C57BL/6 mice (49).

Another subgroup of examples is everyday-accessible
phytochemicals, including caffeine (1,3,7-trimethylxanthine),
the dominant physiologically active compound in coffee beans
and many other soft drinks (51). Classified as a purine alkaloid,
caffeine is able to translocate across the BBB (52), and several
clinical studies have correlated its consumption with lower risk
(30%–38%) of PD (51). Another polyphenol, chlorogenic acid,
found in green coffee beans (70–350 mg per cup of coffee) and in
some other fruits, vegetables, olive oil, wine, and tea (51), is also
demonstrated to be able to cross the BBB (53), and its
neuroprotective effects are linked mainly due to its ability to
reduce oxidative stress. Vardi et al. (54) demonstrated that
chlorogenic acid is able to protect the rat brain cerebellum
from oxidative damage by inhibiting lipid peroxidation,
augmented the antioxidant defense system, and prevented
mitochondrial dysfunction and DNA fragmentation.
BBB IS A CHALLENGING BOUNDARY
FOR MOST PHYTOCHEMICAL
DRUGS WITH GREAT BRAIN
THERAPEUTIC POTENTIALS

Unfortunately, various phytochemicals failed their further
application in brain diseases; although many studies suggested
these phytochemicals are beneficial to brain disease treatment,
their successful clinical translations are rare. The therapeutic
potential of administered phytochemicals is significantly limited
due to the presence of the BBB, restricting accession for most
phytochemicals and thus their brain disease therapeutic use. To
obtain sufficient brain accumulation of the phytochemical drugs,
the incredible high-dose administration thus remains a
biocompatibility concern.

Curcumin, a hydrophobic polyphenol extracted from the dried
rhizomes ofCurcuma longa L., is reportedly able to reduce cytokine
production, inhibiting NF-kB signaling pathway, as well as
suppressing neuroinflammation in amyloid precursor protein and
presenilin 1 (PS1) double-transgenic (APP/PS1)mice (i.p. injection
at150mg/kg/day for 4weeks) (55).Other studiesalsodemonstrated
the beneficial effects of curcumin in preventing Ab42 oligomer
formation and disaggregation of the formed fibrils and thus
benefitting AD outcomes (56). Despite its possession of crucial
Frontiers in Oncology | www.frontiersin.org 5
neuroprotective properties, using curcumin in neurodegenerative
diseases and brain tumor therapies is still limited because of its poor
brain bioavailability owing to poor absorption and stability at
physiological pH, high rate of metabolism, rapid systemic
elimination, and limited BBB permeation (57).

Salidroside from Rhodiola rosea (58) is able to translocate
across the BBB (59) and enhance the cognitive recovery of AD
rats by regulating the expressions of thioredoxin, thioredoxin-
interacting proteins, and NF-kB pathway proteins (60).
Salidroside shows therapeutic effects at a dosage of 50 mg/kg/
day for 3 months in a senescence-accelerated mouse model with
reduced Ab1-42 deposition and microglial activation (61).
Meanwhile, a 25-mg/kg/day for 8-week gavaging treatment
profoundly improved cognition dysfunction in aged mice and
alleviated neuronal degeneration in the aging mice hippocampal
CA1 region. Further evaluation of the treated mice suggested that
salidroside promotes telomerase reverse transcriptase expression
via the PI3K/Akt pathway (62).

In themeantime, geniposide, an iridoid glucoside, purified from
Gardenia jasminoides Ellis, was reported able to suppress the
receptor for advanced glycation end product (RAGE)-related
signaling such as ERK and NF-kB (63) and production of tumor
necrosis factor-a (TNF-a) cerebral Ab accumulation in an mPrP-
APPswe/PS1dE9ADtransgenicmousemodel at 25mg/kg/day for3
months (63). For erinacines from Hericium erinaceus (64), a 108-
mg/kg/day for 12-week feeding programof erinacine was proved to
be sufficient for improving the learning andmemory capacity in a 3-
month-old senescence-accelerated mouse model (65). A dosage of
300 mg/kg/day for 30 days was also able to decrease Ab plaque
burden in an AD mouse model (66). Paeoniflorin is highly water
soluble and impermeable for the BBB (67); it exhibits
neuroprotective effects in APP/PS1 mice via inhibiting
neuroinflammation mediated by the GSK-3b and NF-kB
signaling pathways and nucleotide-binding domain-like receptor
protein 3 (NLRP3) inflammasome (68). Another polyphenol,
resveratrol, derived from wine grapes, have potent antioxidant,
anti-inflammatory, antiaging, and neuroprotective activities.
Baicalein (5,6,7-trihydroxyflavone; C15H10O5), wogonin, and
baicalin are flavonoid compounds isolated mostly from the roots
of Scutellaria baicalensis Georgi (Labiatae) (69) that is able to
penetrate the BBB within 30 min. Both baicalein and baicalin
have killing effects to a collection of human tumor cells (70), as
well as inhibiting tumor growth in vivo (71). The tumor-inhibiting
effect is via inducing apoptosis, triggering autophagy, arresting the
cell cycle, and inhibiting 12-lipoxygenase and metastasis
suppression (72). A dose-dependent oral administration of
baicalein (400 mg/kg/day for 42 days) increased the number of
TH+ neurons in rotenone-induced PD model rats (73).
Additionally, epigallocatechin-3-gallate (EGCG), the major
flavanol found in green tea (Camellia sinensis), recovered the
learning ability of brain-accelerated senescence model mice
(SAMP10) that ingested EGCG (20 mg/kg/day for 2 weeks) (74),
showing its beneficial effects on cognitive dysfunctions; however, its
high dosage still limits its clinical application even though the
organic anion-transporting polypeptides (SLC21A3) on the BBB
facilitate EGCG to penetrate into the brain (75, 76).
June 2022 | Volume 12 | Article 936054
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Anothermost celebrated phytochemical that is not permeable to
BBB is the phytocannabinoid derivatives (77). The most famous
and responsible for the pharmacological activity compounds of
Cannabis sativa L. are the psychoactive D9-tetrahydrocannabinol
(THC) and cannabidiol (CBD) (78). Cannabis constituents THC
and CBD also inhibit T-helper type 1 (Th1) cytokines and/or
promote an in vitro and in vivo Th2 immune response. Their
multifunction results from the affinity of these compounds
predominantly for the receptors of the endocannabinoid system
(the cannabinoid receptor type 1 (CB1), type two (CB2), and the G
protein-coupled receptor 55 (GPR55)) but also for peroxisome
proliferator-activated receptor (PPAR), glycine receptors, serotonin
receptors (5-HT), transient receptor potential channels (TRP), and
GPR, opioid receptors (79).

The functional elements of phytochemical identification/
extraction promoted the development of analytical chemistry.
In modern pharmaceutical industry, the screen library
encountered the strike of lack of structural complexity, which
means most of the easy-to-synthesize compounds have been
engaged into the screening bank and no longer sufficient for
further high-throughput screening and need to update with more
structure complexity. The phytochemical derivatives may be a
rich resource for this revolution.

The advantages of phytochemical derivatives also rest in many
aspects such as the low cost of biosynthesis and the relatively high
biological reactivity due to is endogeneity. In recent years, the de
novo chemical synthesis for therapeutic phytochemicals has aimed
for lower costs and higher purity is emerging as an important
study in synthetic chemistry. Therefore, it is likely that future
pharmaceutical sciences will continually gain insights from
phytochemicals and their derivatives.

In the meantime, insightful studies have also provided a
collection of databases for phytochemicals; renowned examples
include Dr. Duke’s Phytochemical and Ethnobotanical Databases
at NAL (https://phytochem.nal.usda.gov/phytochem/search)
and Search Phytochemical Databases (leffingwell.com) (80),
while the US Food & Drug Administration also established its
approved phytochemical drugs in its database at https://www.
fda.gov/drugs/development-approval-process-drugs/drug-
approvals-and-databases.
NANODELIVERY SYSTEMS PROVIDE
SOLUTIONS FOR PHYTOCHEMICAL
BRAIN THERAPIES

The above discussions have denoted the BBB-permeable or
-impermeable phytochemicals, which are entitled with numerus
therapeutic potentials. However, their in vivo or potential clinical
application in brain treatment is still restricted by their
bioavailability across the BBB. To this end, nanoparticles could
rise as a potent delivery platform, addressing a series of issues in
regard to the clinical applications of phytochemicals, including
solubility, stability, target specificity, effective accumulation, and
passing through the BBB.
Frontiers in Oncology | www.frontiersin.org 6
Nanoparticles are termed as materials or structures in a
nanometer scale. Their size allows the nanoparticles to have
potential access to cell barriers (81). Therapeutical nanoparticles
can be generally categorized into liposomes, polymers, dendrimers,
micelles, engineered biomaterials, and inorganic nanocarriers (5).
Different formulas of nanoparticles each have their own pros and
cons when it comes to function as drug carriers (82); however, it is
the facile physical and chemical characterization that can be
modified upon requirement that satisfies the optimization of
phytochemicals in vivo or even clinical application toward brain
diseases. Moreover, the targeted delivery and release capacity of
nanoparticles couldpotentially lower the drug dosage viaoral or i.p.
administration substantially.

Loading of its cargo usually employs the intrinsic properties
of the targeted drug formula, such as electronic charges or water
solubility. Upon administration, release-at-site is also required
for a successful nanomedicine (83). To achieve efficient
controlled release, specific conditional stimulus-responsive
mechanisms are implemented. Outstanding examples include
redox-sensitive, pH-sensitive, temperature-sensitive, or aided by
external stimuli such as ultrasonic, magnetic, or laser (84–86).
The unique lower pH and redox-active brain tumor environment
for instance are ideal for redox-sensitive or acidic triggered
tumor site release of nanoparticle cargos.

In employing nanoparticles facilitating phytochemical brain
therapies, different approaches were developed by researchers. The
first technique is loading nanodelivery systems with phyto-
bioactive compounds that have been confirmed to have a
potential to modulate oxidative stress and inflammation known
to be important players in brain-associated pathological
conditions. Over several recent years, numerous convincing
studies have reported that phytochemical-loaded nanocarriers
can be highly effective in counteracting brain/CNS-related
diseases (87) including neurodegenerative disorders, rheumatoid
arthritis, and glioblastoma (88, 89). This approach aims to elevate
the BBB permeability of the active phytochemicals, which are
listed in Section 4 as BBB-impermeable ones (Figure 3). Quite
surprisingly, despite the widely undergoing or even finished
clinical trials [extensively reviewed by Chelliah and colleagues,
Table 8 (87)], the actual application of the therapeutic active
phytochemicals reviewed in Section 5 is still limited due to the
presence of the BBB, and only a few turned to nanocarriers for in
vivo brain tumor treatment. In one study, curcumin-loaded poly
(lactic-co-glycolic acid) at 25 mg/kg (96) and tripalmitin-oleic acid
lipid (5 days/week at 150mg/kg) (97) nanoparticles were used for
brain cancer treatment in an in vivomodel. Resveratrol crosses the
BBB and increased the antioxidant activity in AD rats (98). In a
Sprague-Dawley rat model, researchers have employed spherical
nanoparticles loaded with resveratrol for the treatment of
intracerebral hemorrhage injury whose dosage was reduced to 5
mg/kg for once (99), in comparison to intragastrical
administration of pristine resveratrol at 20 mg/kg/day for 42
days in levodopa-induced dyskinesia treatment (100). Another
study employed resveratrol-loaded polyethylene glycol-polylactic
acid nanoparticles in C6 orthotopic rats and U87MG-xenograft
mice at an equivalent of 10 mg/kg via intravenous injection every
June 2022 | Volume 12 | Article 936054
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second day for six times, significantly reduced the tumor volume,
and prolonged life expectancy (101).

In the meantime, another pathway across the BBB can be
modified via transporter uptake or other mechanisms to be
accessible to the brain (76) (Figure 3). Transporters including
the ATP-binding cassette (ABC) transporters and the solute
carrier (SLC) transporters expressed at the luminal side of the
BBB, via active efflux from the endothelium into the blood, play
pivotal roles in the bioavailability and disposition of most drugs
(76). Phytochemicals, especially ones with a smaller molecular
size, that may be able to cross the BBB via transporter-mediated
transcytosis, in this case reported in Section 4 as BBB-permeable
phytochemicals, could potentially be employed to decorate the
nanocarriers for transcytosis. One of the common examples is
glucose, a common carbohydrate, which can be employed (102)
to mediate nanoparticle transcytosis across the BBB via Glut-1
transporter, which is highly expressed on the luminal side of the
BBB (94).

Other translocating mechanisms employing the unique effect
of the BBB upon receiving the phytochemicals are also explored
Frontiers in Oncology | www.frontiersin.org 7
by researchers (Figure 2). For instance, menthol could enhance
nanoparticles to translocate across the BBB (95), attributing to its
significant enhancement on cell membrane fluidity and thus a
decrease in membrane potential (103), during which process
menthol enhances transport by its disassembly effect on tight-
junction integrity (103). The functionalized menthol NP enabled
nanoparticles across the brain capillary endothelial cell
monolayer by promoting their internalization and BBB
disruption (95). Another small molecule, sinapic acid (SA),
extracted from mustard (93) and cannabidiol (104), was
selected as a novel bioinspired BBB-permeable ligand for
efficient drug delivery into the brain. However, its mediating
transporter(s) across the BBB remains unclear by far.

Moreover, phytochemicals themselves could also be
functionalized into part of the nanoparticle to facilitate their uptake
across theBBBand, upon release inside the brainmicroenvironment,
utilize the therapeutical nature of the phytochemical for treatment.
One study disguised EGCG by functionalized EGCG; EGCG
nanoparticles (NPs) were developed via a one-step polyphenolic
condensation reaction (105).
FIGURE 3 | Illustration of current or potentially applicable nanoparticles loaded with therapeutic active phytochemicals (impermeable to the BBB) (90, 91) or
decorated with BBB-permeable phytochemicals for in vivo brain therapeutic uses. Bolded phytochemicals are ones that have been reported in previous studies
based on PubMed database (92–95).
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CONCLUSION

This review discusses the unique features of the blood–brain
barrier and how it interferes with phytochemical application into
brain diseases. Most phytochemicals show poor blood–brain
barrier penetration capacity, yet ideal brain therapy potentials
are reported. A possible nanodelivery platform was raised to
optimize the utilization of phytochemicals, both permeable and
non-permeable across the blood–brain barrier, thus offering a
new avenue for phytochemicals toward brain disease
clinical applications.
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