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Lung adenocarcinoma is a malignancy with a low overall survival and a poor prognosis. Studies have
shown that lung adenocarcinoma progression relates to locus-specific/global changes in histone modifi-
cations. To explore the relationship between histone modification and gene expression changes, we
focused on 11 histone modifications and quantitatively analyzed their influences on gene expression.
We found that, among the studied histone modifications, H3K79me2 displayed the greatest impact on
gene expression regulation. Based on the Shannon entropy, 867 genes with differential H3K79me2 levels
during tumorigenesis were identified. Enrichment analyses showed that these genes were involved in 16
common cancer pathways and 11 tumors and were target-regulated by trans-regulatory elements, such
as Tp53 and WT1. Then, an open-source computational framework was presented (https://github.-
com/zlq-imu/Identification-of-potential-LUND-driver-genes). Twelve potential driver genes were
extracted from the genes with differential H3K79me2 levels during tumorigenesis. The expression levels
of these potential driver genes were significantly increased/decreased in tumor cells, as assayed by RT–
qPCR. A risk score model comprising these driver genes was further constructed, and this model was
strongly negatively associated with the overall survival of patients in different datasets. The proportional
hazards assumption and outlier test indicated that this model could robustly distinguish patients with
different survival rates. Immune analyses and responses to immunotherapeutic and chemotherapeutic
agents showed that patients in the high and low-risk groups may have distinct tendencies for clinical
selection. Finally, the regions with clear H3K79me2 signal changes on these driver genes were accurately
identified. Our research may offer potential molecular biomarkers for lung adenocarcinoma treatment.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lung adenocarcinoma (LUAD) is a cancer that occurs due to
abnormal and uncontrolled cell growth in the lung, usually in the
peripheral lung [1]. As the most common histological type of
non-small cell lung cancer, the incidence and mortality of LUAD
are increasing in China, accounting for 40% of all lung cancers
[2]. In recent decades, although many strategies have been devel-
oped, such as chemotherapy, targeted agents and immunotherapy,
the 5-year survival rate of LUAD remains below 20% [3]. Therefore,
further understanding the molecular mechanisms of LUAD tumori-
genesis and identifying the oncogenic drivers of LUAD have
attracted wide attention.

Epigenetic disorders are considered markers of cancer develop-
ment and progression. Abnormalities in epigenetic modifications
can be observed in gene promoters, gene coding regions and other
functional elements [4,5]. Locus-specific changes in histone modi-
fications (HMs) can adversely affect the expression of nearby
genes. Global changes in specific HMs can define previously unrec-
ognized subgroups of cancer patients [6]. Recent studies have
reported that elevated H3K27me3 levels in the promoter region
of FTO inhibit FTO expression. Down-regulated FTO expression sig-
nificantly increases the m6A modifications on MYC, resulting in the
binding of YTHDF1 to promote MYC mRNA translation and LUAD
tumor cell glycolysis and growth [7]. The loss of H3K4me3 is asso-
ciated with defects in activation-induced cytidine deaminase-
induced DNA breakage and reduces mutation frequencies in
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LUAD-related genes, such as MALAT1 and SNHG3 [8]. Genome-
wide loss of histone acetylation can induce tumor suppressor gene
silencing and abnormal transcription, and this mechanism has
emerged as a promising therapeutic target for numerous cancers
[9,10]. H3K36me3 inhibits tumor growth by suppressing CXCL1-
mediated cell cycle activation in LUAD [11]. In addition, high LUAD
incidence rates are related to genetic alterations and outdoor pol-
lution [12,13], and HMs can establish a link between genetic back-
ground and environmental exposure [14]. Thus, abnormal HM
patterns can serve as clinical tools or predictive biomarkers to
assist clinical choices of treatment strategies. As an essential HM,
H3K79me2 is associated with transcriptional regulation, mainte-
nance of enhancer-promoter interactions, DNA replication initia-
tion and DNA damage responses [15,16]. It also plays important
regulatory roles in MLL-rearranged leukemia [17], breast cancer
[18] and colorectal cancer [19]. Not surprisingly, the broad roles
of H3K79me2 make it increasingly important, and thus, it may
become a critical therapeutic target for various cancers.

Based on these findings, we hoped to identify the HM with the
greatest effect on gene expression regulation in LUAD. Therefore,
we first calculated the distribution patterns of 11 HMs shared by
LUAD tumor and normal cells and quantitatively assessed the
influences of HM signal changes on LUAD-related gene expression.
On this basis, the genes with differential H3K79me2 levels during
tumorigenesis were screened. An open-source computational
framework was presented to extract potential LUAD driver genes
(PLDGs) from the genes with differential H3K79me2 levels during
tumorigenesis. Then, the relative expression levels of PLDGs in
LUAD tumor and normal cells were detected by RT–qPCR. To accel-
erate clinical applications, the expression values of PLDGs in the
TCGA cohort were transformed into a risk score model. The relia-
bility of the model was assessed via the proportional hazards
(PH) assumption and outlier test and validated in a GEO cohort.
Moreover, the infiltration levels of immune cells and responses
to therapeutic agents for LUAD patients in the high- and low-risk
groups were evaluated. Finally, by refocusing on the signal distri-
butions of H3K79me2 on the 12 PLDGs, we accurately located
the regions where H3K79me2 signals were significantly altered.
2. Materials and methods

2.1. Data

Human reference genome annotation data (GRCH38) are avail-
able in the UCSC Genome Browser (https://genome.ucsc.edu/).
Protein-coding genes were extracted. For genes with multiple tran-
scripts, only one transcript was randomly retained.

The genome-wide profiles of 11 HMs and polyA+ RNA-seq data
for A549 cells (LUAD cells, tumor) and IMR90 cells (lung fibroblasts
cells, normal) were indexed from the ENCODE database (https://
www.encodeproject.org/). Their corresponding accession numbers
are provided in Supplementary file Table S1. Gene expression
levels were normalized using transcripts per million [20].

Raw clinical profiles and RNA-seq data for patients with LUAD
were retrieved from the TCGA dataset (https://portal.gdc.can-
cer.gov/). 475 cancer samples and 27 normal samples with survival
and clinical information were included. Gene expression levels
were standardized by transcripts per million. The neoantigen data
of LUAD patients in the TCGA dataset were separated from The
Cancer Immunome Atlas (https://tcia.at/). In addition, an indepen-
dent GEO dataset (GSE30219) containing clinical and microarray
data of 307 LUAD patients was indexed at https://www.ncbi.nlm.
nih.gov/geo/. The microarray data were background-corrected
and quantile-normalized using the robust multiarray average
algorithm.
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2.2. Formulation of histone modification signals

To analyze the distributions of HMs and evaluate their roles, we
extracted the +/- 5 kb region around the transcription start site
(TSS) and divided the region into 100 bins with a size of 100 bp.
The signals of HMs within normal and tumor samples were nor-
malized by Eq. (1), as described in our previous studies [21].

Hij
lm ¼ ðhij

lm � 109Þ=ðhlm � 100Þ ð1Þ

where Hij
lm denotes the l-th HM signal in the i-bin of the j-th gene

within the m-th sample, hij
lm describes the read counts of the l-th

HM mapped into the i-bin of the j-th gene in the m-th sample,
and hlm is the total read counts of the l-th HM in the m-th sample.
100 bp is the length of the j-th bin.

Meanwhile, we quantified the l-th HM signal level in the -5�+5
kb DNA region flanking the TSS by Eq. (2) to explore the impacts of
HM combinations on LUAD-related gene expression.

Hj
lm ¼ ðhj

lm � 109Þ=ðhlm � 10000Þ ð2Þ

where Hj
lm represents the signal of the l-th HM in the j-th gene of the

m-th sample, and hj
lm denotes the l-th HM read counts mapped into

the -5�+5 kb DNA region in the j-th gene within the m-th sample.
Then, 10,000 bp describes the length of the DNA region.

2.3. Selection and prediction of differentially expressed genes (DEGs)

The DEGs between LUAD tumor and normal cells were identi-
fied by the ‘DESeq2’ R package. As a result, 3404 up-regulated DEGs
(up-DEGs) and 3477 down-regulated DEGs (down-DEGs) were
obtained with an adjusted p < 0.01 and |log2(FC)|>1.

To assess the effects of HMs on LUAD-related gene expression
changes, the DEGs were randomly split into two sets: two-thirds
were used as the training set, and the rest were selected as the val-
idation set. The random forest (RF) algorithm was applied in the
training dataset and testing dataset to discriminate up-DEGs from
down-DEGs. The signal changes of each HM in the 100 bins, the
signal changes of 11 HMs in the DNA regions flanking the TSS (-5
to 5 kb), or the signal changes of 11 HMs in the same bin during
tumorigenesis were selected as the information parameters. In this
process, the number of decision trees was set to 800, and the num-
ber of information parameters for the best split at each node was
sqrt(p), where p was the number of information parameters. 10-
fold cross validation method was adopted to test the prediction
quality. The averaged receiver operating characteristic curve
(AUC) was used to measure the impacts of HM signals on LUAD-
related gene expression changes. To avoid any potential bias, the
general linear model (GLM) and support vector machine (SVM)
algorithms with default settings as described in ref. [22] were
adopted to validate the analytical results.

2.4. Identification of genes with differential H3K79me2 levels during
tumorigenesis

To recognize genes with differential H3K79me2 levels during
tumorigenesis, the following strategies were adopted (as shown
in Supplementary file Fig. S1A):

(i) In the m-th sample, the mean (lm) and standard deviation

(rm) of Hj
lm were calculated for all genes, and the Hj

lm that was
greater than three standard deviations from the mean was
replaced by lm þ 3rm;

(ii) The minimum (MINm) and maximum (MAXm) values of Hj
lm

were used to standardize H3K79me2 levels as SjHlm
, which ranged

from 0 to 1;
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Fig. 1. Correlation analysis of HM signals and gene expression. (A, C) Up-DEGs, (B, D) Down-DEGs. (A, B) HM signal changes (purple bars) and significant differences (pink
bars) during LUAD tumorigenesis. The red lines in the 1st and 2nd circles correspond to the change ratio of HM signal = 1 and –log10(P value) = 2. (C, D) Spearman correlation
coefficients between gene expression changes and HM signal changes in each of the 100 bins. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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SjHlm
¼ ðHj

lm�MINmÞ=MAXm ð3Þ
(iii) For the j-th gene, the standardized H3K79me2 levels across

the n samples of LUAD tumor and normal cells were quantified as

SjHl
¼ ðSjHl;1

; SjHl;2
; � � � ; SjHl;n

Þ, and the Shannon entropy (Ej) was mea-

sured through Eq.(4);

Pj
m¼ SjHlm

=
Xn

m¼1
SjHlm

; Ej ¼ �
Xn

m¼1
Pj
mlog2P

j
m ð4Þ
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(iv) Genes withEj < 2.239 were dubbed as the genes with differ-
ential H3K79me2 levels in tumorigenesis [23,24].
2.5. Extraction of potential LUAD driver genes (PLDGs)

By combining the genes with differential H3K79me2 levels in
tumorigenesis, RNA-Seq data and clinical profiles from the TCGA
cohort, an integrated tool for identifying PLDGs was presented.
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First, univariate Cox analysis was employed to estimate the rela-
tionship between each gene with differential H3K79me2 levels in
tumorigenesis and survival time, and the genes with P values < 0.05
were retained as survival-related seed genes (Supplementary file
Fig. S1B). Second, the stepwise regression analysis indexed the
seed gene that had the strongest prediction power for survival
time. Then, all seed genes were added or removed one by one to
achieve better prediction accuracy and statistical significance.
Finally, the optimal genes were identified based on the lowest
Akaike information criteria (AIC) (Supplementary file Fig. S1C).
Third, the least absolute shrinkage and selection operator (LASSO)
model of the correlation between the expression of optimal genes
and survival time was fitted to obtain the weighted coefficient for
each gene. Here, the model was achieved by the ‘glmnet’ function
with the parameters alpha = 1, nlamda = 100 and lambda.min.rat
io = 0.2. Then, leave-10%-out cross-validation was used to test
the fitting results. This fitting process was repeated 1000 times,
and genes with non-zero coefficients in > 950 iterations were
retained as PLDGs (Supplementary file Fig. S1D). The available R
scripts and sample data have been deposited in https://github.-
com/zlq-imu/Identification-of-potential-LUND-driver-genes.

2.6. Cell culture

The A549 and IMR90 cell lines were purchased from the BeNa
Culture Collection (Henan, China). These cells were maintained in
DMEM medium (GIBCO BRL, USA) supplemented with 10% fetal
bovine serum (GIBCO BRL, USA) at 37 �C and 5% CO2. The medium
was changed every 2 days. Once cell confluence reached 80%, these
cells were digested with 0.25% trypsin and then passaged. Third-
generation cells were incubated in 6-well plates and prepared into
cell suspensions with a cell density of 2 � 106, which were then
cultured for 24 h to form monolayer cells.

2.7. RNA extraction

In each well, the culture solution was discarded, and 1 ml of
TRIzol reagent (Invitrogen, USA) was added and shaken three times
within 15 min. Next, 0.2 ml of chloroform was supplemented and
mixed. This mixture was incubated for 3 min at room temperature,
followed by centrifugation at 12,000�g for 15 min at 4 �C. The
upper phase was subsequently collected in a new tube, and
0.5 ml of isopropyl alcohol was added and incubated for 10 min.
After centrifugation at 12,000�g for 10 min at 4 �C, the pellet
was washed with 1 ml of 75% ethanol, vortexed and centrifuged
at 7,500�g for 5 min at 4 �C. The resultant pellet was dried and dis-
solved in 50 ll of DEPC-treated H2O at 55 �C for 10 min.

2.8. cDNA synthesis

For A549/IMR90 cell lines, 13.5 ll of the RNA mixtures (1.0 ll
RNA, 1.0 ll OligodT primer (100 pmol/ll) and DEPC-treated H2O)
were subjected to the following conditions: primer extension
(5 min, 25 �C), denaturation (10 min, 65 �C), and ice bath
(2 min). Then, 4.0 ll of 5� buffer, 1.0 ll of dNTPs (10 mmol/l;
Takara, Japan), 0.5 ll of RNasin (40 U/ll; Takara, Japan) and
1.0 ll of M�MLV (200 U/ll; Takara, Japan) were added to the mix-
tures and incubated for 30 min at 42 �C to synthesize cDNA. Finally,
the mixtures were heat-inactivated (70 �C, 10 min) and stored at
�20 �C.

2.9. RT–qPCR validation

The expression of PLDGs in LUAD tumor and normal cell lines
was tested via RT–qPCR. The reaction conditions were as follows:
initial denaturation (94 �C, 4 min), followed by 40 cycles of denat-
5538
uration (94 �C, 30 s), annealing (60 �C, 30 s) and extension (72 �C,
30 s). GAPDHwas used as the internal reference. 2�DDCt was used to
calculate the relative expression levels [25]. Three biological repli-
cates were performed for all qPCRs using SYBR Premix Ex Taq
(Takara, Japan). The RT–qPCR primer sequences for the PLDGs
and GAPDH are listed in Supplementary file Table S2.
2.10. Gene set enrichment analysis

Pathway enrichment analysis of the genes with differential
H3K79me2 levels during tumorigenesis was performed by the
‘Metascape’ [26]. Terms with P values < 0.01, containing at least
3 genes, and enrichment of observed/expected gene counts > 1.5
were collected and grouped according to their membership simi-
larities. The top 20 terms with similarities > 0.3 were connected
and visualized using the Cytoscape [27]. Common human diseases
associated with the genes with differential H3K79me2 levels were
retrieved via the DisGeNET database [28]. Trans-regulatory ele-
ments targeting these genes with differential H3K79me2 levels
were uncovered through the TRRUST database [29].
2.11. Statistical analysis

Patients were divided into either the high- or the low-risk group
according to the optimal cut-off of risk score and ascertained by
the ‘surv_cutpoint’ function. Kaplan–Meier survival curves were
plotted to show the survival distribution differences between the
high- and low-risk patient groups via the ‘survfit’ and ‘survdiff’
functions, and P values were computed by the log-rank test. Uni-
variate and multivariate Cox analyses for the clinical characteris-
tics, PLDGs and the risk score model were performed through the
‘coxph’ function. RF, GLM and SVM algorithms were selected to
train models and implemented via the ‘randomForest’, ‘mlr’ and
‘e1071’ R packages. Stepwise regression analysis was conducted
through the ‘step’ function. Time-dependent receiver-operating
characteristic (ROC) curves were drawn by the ‘timeROC’ function.
The PH assumption for each PLDG was checked by scaled Schoen-
feld residuals and achieved by the ‘cox.zph’ function. The outlier
test for each PLDG was assessed by DFbeta residuals statistics
and implemented by the ‘ggcoxdiagnostics’ function. The 50%
inhibiting concentration (IC50) values for 251 chemotherapy
agents were inferred using the pRRophetic algorithm. Patient
responses to immunotherapy agents were quantified by immuno-
phenoscore. Correlations were calculated by the Spearman
method, and P values were evaluated via the t-test. All statistical
analyses were conducted in R version 4.0.1.
3. Results

3.1. Histone modification signals are strongly correlated with gene
expression

Recent pathological studies have shown that changes in HMs
can affect LUAD progression [30–32]. Hence, to explore the rela-
tionship between HMs and gene expression, we first screened
the DEGs and defined HM signal changes as the ratios of average
HM signals in tumor cells to those in normal cells (purple parts
in Fig. 1A and 1B). The significant differences of HM signals in
LUAD tumor and normal cells were examined and -log10-
transformed (pink parts in Fig. 1A and 1B). For the up-DEGs
(Fig. 1A), some HMs, such as H3K79me2 and H3K9ac, were mark-
edly enhanced in tumor cells, with P values < 0.01 in all bins.
H3K27me3was significantly reduced in tumor cells (P values < 0.01
in all bins). For the down-DEGs (Fig. 1B), almost all HMs including
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H3K79me2 decreased remarkably in tumor cells with P val-
ues < 0.01 in nearly all bins.

Furthermore, we calculated the correlation between the HM
signal and gene expression in each of the 100 bins using the Spear-
man method. For the up-DEGs, the effects of HM signal changes on
gene expression changes were stronger in the proximal regions of
TSS than those in the distal regions (Fig. 1C). Regarding the down-
DEGs, HM signal changes in the distal regions of TSS contributed
more to gene expression changes than those in the proximal
regions (Fig. 1D).
3.2. H3K79me2 may contribute more to gene expression regulation

Although HMs cooperatively regulate gene expression, their
physiological importance is not the same [33,34]. To reveal the
influences of HMs on LUAD-related gene expression, we performed
three experiments based on the ratios of averaged HM signals in
tumor cells to those in normal cells. First, to determine which
HM plays the most important role in LUAD-related gene expres-
sion, we used the signal ratios of each HM in the 100 bins as the
features to discriminate up- from down-DEGs. We found that,
among the 11 HMs, H3K79me2 produced the best outcome
(AUCRF = 0.891, AUCGLM = 0.897 and AUCSVM = 0.798) (Fig. 2A
and 2B). The ROCs of the top five HMs obtained by the RF algorithm
are shown in Fig. 2A. Meanwhile, the impact of each HM signal in
each bin on LUAD-related gene expression was inferred by the per-
cent increase in the mean squared error (IncMSE) function in the
RF algorithm [35] and converted to a rank value (top-ranked
HMs indicated higher IncMSE values and greater effects on gene
expression). The top five vital bins for each HM are shown in
Fig. 2B. The results showed that HM signals in the downstream
regions of TSS contributed more to LUAD-related gene expression
compared to the signals in the upstream regions.

Subsequently, we investigated the capabilities of HM combina-
tions to distinguish between up-DEGs and down-DEGs. For the 11
HMs, there were 2047 HM combinations. Thus, a total of 2047
(C1

11 þ C2
11 þ � � � þ C11

11) HM-based models were constructed. The
results for all combinations and their AUCs are displayed in Sup-
plementary Table 1, Fig. 2C, Supplementary file Fig. S2A and S2D.
The comparison showed that the predictive abilities will reach
the peak when the models are trained on 5 types of HMs. And
H3K79me2 was included in the best five-HM-based model (RF:
H3K79me2, H3K4me2, H3K36me3, H3K27me3 and H2AFZ
(AUCRF = 0.871); GLM: H3K79me2, H3K36me3, H3K27me3,
H3K4me1, and H3K27ac (AUCGLM = 0.848); SVM: H3K79me2,
H3K27me3, H3K27ac, H3K4me2 and H2AFZ (AUCSVM = 0.864)).
Furthermore, we focused on the five- and six-HM-based models
whose AUCs reached at least 95% of the AUC of the 11-HM-based
model. By counting the number of HM occurrences, we found that
H3K79me2 appeared most frequently (RF: H3K79me2 appeared in
178 of 215 five-HM-based models (Fig. 2D) and 228 of 300 six-HM-
based models (Fig. 2E); GLM: H3K79me2 existed in 199 of 262
five-HM-based models (Supplementary file Fig. S2B) and 245 of
324 six-HM-based models (Supplementary file Fig. S2C); SVM:
H3K79me2 presented in 118 of 134 five-HM-based models (Sup-
plementary file Fig. S2E) and 178 of 207 six-HM-based models
(Supplementary file Fig. S2F)). These analyses once again showed
the important regulatory role of H3K79me2 in LUAD-related gene
expression.

Finally, we conducted verification by choosing the signals of 11
HMs in the same bin as the inputs of the RF algorithm to predict
the up- and down-DEGs. The results are displayed in Fig. 2F. In
the 5 kb regions downstream of TSS, the AUCs altered slightly. In
the 5 kb regions upstream of TSS, the AUCs altered appreciably,
and the further away from the TSS, the worse the prediction. The
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best predictive result appeared in the +13th bin (AUC = 0.844).
We also calculated the ‘IncMSE’ values for the 11 HMs in the same
bin. As shown in Figure 2G, H3K79me2 signal almost played the
most important role in the bins from -37th to +50th. These find-
ings, together with previous reports in MLL-rearranged leukemia
[17] and pediatric AML [36], lead us to believe that H3K79me2 sig-
nal changes can affect gene expression in LUAD.

3.3. Genes with differential H3K79me2 levels during tumorigenesis
participate in LUAD progression

In view of these findings, we preprocessed the H3K79me2 sig-
nals, calculated the relative probabilities of H3K79me2 signals
and performed the Shannon entropy strategy to extract the genes
with differential H3K79me2 levels in tumorigenesis (for details,
see Materials and methods). In total, 867 genes (Supplementary
Table 2) were recognized using a threshold (2.239) [23,24] and
submitted to execute pathway enrichment analyses. Fig. 3A depicts
the top 20 significant pathways involving these genes. Fig. 3B
shows the interconnections of these pathways. As shown in
Fig. 3A, 16 of the 20 pathways were demonstrated to drive oncoge-
nesis (drawn in orange font). We then explored the diseases in
which these genes are involved through the DisGeNET database.
Of the top 20 diseases, 11 were cancers. The number of genes par-
ticipating in each disease is shown in Fig. 3C. Besides, we used the
TRRUST database to mine the trans-regulatory elements targeting
these genes. Analyses have shown that oncogenic trans-
regulatory elements, such as Tp53 [37], HDAC2 [38] and WT1
[39], are participated in the regulation of these genes. Fig. 3D
shows the corresponding number of genes regulated by these
trans-regulatory elements. In summary, these studies collectively
suggest that the genes with differential H3K79me2 levels during
tumorigenesis can act as LUAD driver genes.

3.4. Computational identification of LUAD driver genes

To screen the PLDGs, we retrieved the raw clinical profiles and
RNA-seq data of LUAD patients from the TCGA dataset and
removed the genes with zero expression in > 10% patient samples.
By intersecting these genes and the 867 genes with differential
H3K79me2 levels, 824 genes with differential H3K79me2 levels
in tumorigenesis were identified and analyzed by univariate Cox
regression. Forty-eight survival-related seed genes with P val-
ues < 0.05 were identified (Supplementary Table 3). Subsequently,
stepwise regression analysis was performed on these seed genes,
and 14 genes with the lowest AIC were retained as the optimal
gene set (Supplementary Table 3). Then, the LASSO Cox regression
model was fitted to simulate the relationship between the expres-
sion levels of the 14 optimal genes and survival time. In 1000 inter-
actions, 12 genes with nonzero coefficients in at least 950
iterations were determined as the final PLDGs (Supplementary
Table 4). For these 12 PLDGs, RT–qPCR assays were performed to
determine whether the expression of PLDGs changed significantly
in LUAD tumorigenesis (Fig. 4A). The RT–qPCR analysis showed
that the expression levels of GPRIN2, HMMR, GPI, HNRNPA2B1,
MAP3K8, SMOX, LGR4, SLIRP and MTHFS were enhanced, while
the expression levels of METRNL, RNF217 and F2RL1 were sup-
pressed in LUAD tumor cells.

3.5. A risk score model constructed by the potential LUAD driver genes
can serve as an independent prognostic factor

To accelerate the clinical application, the expression levels of
the 12 PLDGs in the TCGA set were weighted by the average coef-
ficients obtained from 1000 iterations and transformed into a risk
score model. The risk score was calculated as follows:



Fig. 2. H3K79me2 signals are strongly correlated with gene expression levels in LUAD tested via random forest algorithm. (A) ROC curves for the top five HMs. (B) The
prediction results tested by the RF, GLM and SVM algorithms and the top five vital bins for each HM obtained by the RF algorithm. (C) AUC distributions for HM combinations
with the same number of HMs. (D) and (E) HM occurrence times in the studied 5-HM-based models and 6-HM-based models, respectively. (F) AUC distributions for 11 HMs in
the same bin across the 100 bins around the TSS. (G) The ranks of 11 HMs in the same bin. Top-ranked HMs indicate higher ‘IncMSE’ values and greater effects on gene
expression.
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Risk score = -0.094 � GPRIN2 + 0.257 � HNRNPA2B1-0.190 �
MAP3K8 + 0.214 � GPI + 0.183 � HMMR + 0.174 � METRNL + 0.
125 � RNF217 + 0.122 � SMOX + 0.180 � MTHFS + 0.106 � F2R
L1 + 0.118 � LGR4 + 0.235 � SLIRP.

Then, the 475 patients were divided into low-risk or high-risk
groups based on the optimal cut-off of the risk score. As displayed
in Fig. 4B, patients with low-risk scores had longer overall survival
than patients with high-risk scores (P value = 5.662 � 10-15). The 5-
year survival rate for the low-risk group was 54.4%, which was
higher than the 17.9% in the high-risk group. For 3-year and 5-
year overall survival, the AUCs of the model were 0.707 and
0.721, respectively (Fig. 4C).
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The prognostic efficacy of the risk score model was first
assessed via the PH test and outlier test. Under the PH test, the P
values for these PLDGs (except SMOX) ranged from 0.039 to
0.852, indicating that these genes may be robust information
parameters (Supplementary file Fig. S3). The outlier test demon-
strated that there were no genes with undue influence (Supple-
mentary file Fig. S4). Subsequently, the model was assessed on
an independent LUAD dataset (GSE30219) covering 10 PLDGs
except for LGR4 and MTHFS. Similar results were obtained. The
overall survival rates of patients in the low- and high-risk groups
were 60.6% and 31.1%, respectively, with a P value=3.022 � 10-9

(Fig. 4D). The AUCs for 3-year and 5-year overall survival were



Fig. 3. Enrichment analyses of the genes with differential H3K79me2 levels during oncogenesis. (A) The top 20 significant pathways in which the genes with differential
H3K79me2 levels participated. (B) The interconnections of the 20 pathways described in A. (C) The top 20 diseases related to the genes with differential H3K79me2 levels and
the corresponding number of genes in each disease. (D) The top 20 trans-regulatory elements and the number of genes regulated by these trans-regulatory elements.
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0.702 and 0.729, respectively (Fig. 4E). Finally, we randomly picked
one HM (H3K36me3), identified the genes with differential
H3K36me3 levels in tumorigenesis and refitted a risk score model.
Comparing to the model built by the genes with differential
H3K79me2 levels in tumorigenesis, this model presented lower
prognostic power. For 3-year and 5-year overall survival, the AUCs
of this model were 0.704 and 0.715, respectively (Supplementary
file Fig. S5). These analyses suggested that the risk score model
constructed by the genes with differential H3K79me2 levels is sig-
nificantly correlated with the overall survival of LUAD patients.

To examine whether the model can serve as an independent
prognostic factor, the risk score distributions of patients with dif-
ferent tumor (T), node (N), metastasis (M) categories and tumor
stages were investigated. As shown in Fig. 4F � 4I, patients with
poorer LUAD pathologic stages had higher risk scores, suggesting
that this model may be used as a clinical prognostic factor. To ver-
ify this hypothesis, we performed univariate and multivariate Cox
analyses. The results revealed that the risk score model could serve
as an independent prognostic factor to predict the progression of
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LUAD patients (univariate analysis: HR = 2.330, 95% CI 1.887–
2.876, P value = 3.502 � 10�15; multivariate analysis: HR = 2.273,
95% CI 1.750–2.952, P value = 7.378 � 10�10) (Fig. 4J and 4 K).

3.6. Risk score model predicts therapeutic benefit

To assess the value of the risk score model as a biomarker, the
infiltrating levels of immune cells between the high- and low-
risk groups were first inferred by the xCell tool (Fig. 5A). We noted
that most immune cells displayed significant differences between
the high- and low-risk groups. Among them, T helper 2 (TH2) cells
infiltrated more and showed the strongest positive correlation
with the risk scores in the high-risk group accompanied by fewer
TH1 cells (Spearman coefficient = 0.493, P value = 5.792 � 10�18)
(Fig. 5B). M1 and M2 macrophages presented higher densities in
the low-risk group, which were associated with a better prognosis.
Patients in the low-risk group tended to have higher immune, stro-
mal and microenvironment scores than those in the high-risk
group.



Fig. 4. Construction, evaluation and validation of the risk score model. (A) RT–qPCR analyses for the 12 PLDGs. The relative expression levels were calculated via2�DDCt . (B and
D) Kaplan–Meier survival curves for all-, high- and low-risk groups in the TCGA and GEO cohorts. (C and E) ROC curves for the risk score model in the TCGA and GEO
databases. The distributions of the risk scores in LUAD patients with different (F) T-categories, (G) N-categories, (H) M-categories and (I) tumor stages. (J) Univariate and (K)
multivariate Cox analyses for the risk score model and clinical characteristics.
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Besides, the immunophenoscores of LUAD patients receiving
PD1, CTLA4, and CTLA4 + PD1 inhibitors were applied to estimate
the potential clinical application of immune checkpoint inhibitors.
As shown in Fig. 5C-F, the immunophenoscores were increased in
the low-risk group treated with anti-PD-1/anti-CTLA4 monother-
apy or a combination of anti-PD-1 and anti-CTLA4. The significant
result in the group treated with anti-CTLA4 (P value = 1.4 � 10�5)
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indicated that patients in the low-risk group may benefit more
from anti-CTLA4 agents.

Subsequently, based on TCGA expression data, the IC50 values
of 251 agents were quantified, and 112 drugs showed significance
for patients in the high- and low-risk groups. Fig. 5G suggests that
patients in the high-risk group may be more sensitive to MLN4924,
AR-42, QL-VIII-58, etc., while patients in the low-risk group may be



Fig. 5. The risk score model predicts the sensitivities of drug therapies. (A) Landscape of immune cell infiltrations in the high- and low-risk groups. Red and blue represent
cells with higher and lower infiltration levels, respectively. *P < 0.05; **P < 0.01; ***P < 0.001; ns not significant. (B) Association between risk scores and immune cell
infiltration (all P < 0.001). Immunophenoscores comparison between the high- and low-risk groups for LUAD patients treated with (C) CTLA4_neg_PD1_neg, (D)
CTLA4_neg_PD-1_pos, (E) CTLA4_ pos_PD-1_neg, and (F) CTLA4_ pos_PD-1_pos. PD-1_pos or CTLA4_pos indicates anti-PD-1 or anti-CTLA4 therapy, respectively. (G) The
ratios of normalized IC50 values of the 112 drugs between the high- and low-risk groups. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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more sensitive to MG-132, midostaurin, WZ3105, etc. In brief,
these findings suggest that this model may be helpful for guiding
clinical treatment.
3.7. Identification of regions with significant H3K79me2 signal changes
on the potential LUAD driver genes

For the 12 PLDGs closely associated with H3K79me2, we rean-
alyzed the distribution levels of H3K79me2 on the 12 PLDGs in
LUAD tumor and normal cells. As shown in Fig. 6 and Supplemen-
tary Table 5, H3K79me2 exhibited obvious changes in tumorigen-
esis, and even partial changes exceeded hundreds of times. Among
these changes, although some H3K79me2 signal alterations
occurred in the upstream regions of the TSS, the apparent increases
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in H3K79me2 signals tended to concentrate in the downstream
regions of the TSS. Some examples were summarized as follows.
H3K79me2 signals improved 1,292- and 1,000-fold in the +29th
and +11th bins of HNRNPA2B1 during tumorigenesis, respectively.
Compared with normal cells, the signals in the +49th, +29th
and +50th bins of MAP3K8 within the tumor cells were increased
799-, 786- and 764-fold, respectively. The gains of H3K79me2 sig-
nals in > 50% bins of HMMR in cancer cells were at least 10-fold
greater than those in normal cells.
4. Discussion

Lung cancer is the leading cause of cancer-related deaths world-
wide, and LUAD represents the most common lung cancer subtype.



Fig. 6. The distributions of H3K79me2 signals on the 12 potential LUAD driver genes. The green and yellow histograms represent the average distributions of H3K79me2 in
LUAD tumor cells and normal cells, respectively. The grey lines show the ratios of H3K79me2 signal changes. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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In the last two decades, epigenetic studies related to LUAD have
focused on DNA methylation, especially on how promoter hyper-
methylation inhibits tumor suppressor gene expression and how
hypomethylation promotes the up-regulation of oncogenes
[31,32]. However, the low 5-year overall survival rate and pes-
simistic prognosis [4,40] indicate that other strategies for treating
LUAD need to be studied. As an important research topic in epige-
netics, aberrations in HM levels and distributions may also lead to
tumorigenesis [5]. Therefore, the first question we raised is which
HM signal changes contribute more to LUAD-related gene expres-
sion changes. To address this question, we used different algo-
rithms to predict the up- and down-DEGs by the HM signals
across the 100 bins. Among the 11 HMs, H3K79me2 exhibited
the strongest predictive ability. Subsequent supplementary verifi-
cations suggested that H3K79me2 appeared the most frequently
in the studied five-/six-HM-based models and ranked at the
anterior-most position in almost all bins. One possible reason
behind this phenomenon may be that H3K79me2 induces varia-
tions in chromatin accessibility and provides greater flexibility
for gene expression regulation [41].

Based on these findings and the extensive roles of H3K79me2,
we immediately explored whether genes with differential
H3K79me2 levels during tumorigenesis can function as LUAD dri-
ver genes. As a result, 867 genes with differential H3K79me2 levels
were recognized and the enrichment analyses revealed that they
were involved in the regulation of LUAD tumorigenesis. Further-
more, an open-source computational framework was presented,
and the expression levels of the 12 identified PLDGs were markedly
increased/decreased in tumor cells as detected by RT–qPCR.
Indeed, three-quarters of the PLDGs have been verified to be
related to LUAD. F2RL1 is a G protein-coupled receptor that can
promote the proliferation of LUAD A549 cells by regulating
EGFR-related signaling pathways [42] and enhance cell migratory
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ability by suppressing miR-125b [43]. GPI and SMOX are negatively
correlated with the overall survival of LUAD patients [44,45].
Knockdown of GPI induces cell proliferation inhibition and G2/M
cell cycle arrest in A549 cells [46]. SMOX dysregulation alters the
homeostasis of ROS. This imbalance builds a link between inflam-
mation and DNA damage, which leads to the mutagenic changes
necessary for the progression of epithelial cancers, including stom-
ach, lung, and prostate cancers [47,48]. High HMMR expression
combined with high lncRNA HCG18 levels and low miR-34a-5p
levels can accelerate LUAD occurrence and distant metastasis
[49,50]. HNRNPA2B1, a m6A regulatory factor, can interact with
miR-122-5p [51], miRNA-17, -198 and -93 [52] to promote LUAD
progression. MAP3K8 is highly expressed in the lung, and its ubiq-
uitous deficiency is reported to exacerbate eosinophilic inflamma-
tion when challenged with OVA [53] and to promote urethane-
induced lung carcinogenesis [54]. Besides, MAP3K8 has been
shown to be involved in the regulation of pulmonary fibrosis
[55], which is a major risk factor for the development of lung can-
cer [56]. LGR4, together with its family members LGR5 and LGR6,
accelerates LUAD cell proliferation by binding to R-spondins-1-4
and activating the Wnt signaling pathway [57,58]. SLIRP is a novel
putative bcl-2-interacting protein that participates in LUAD devel-
opment by regulating mitochondrial-encoded mRNA [59]. The
copy number variation deletion of RNF217 has been described as
a hereditary marker of LUAD [60]. Although there are few reports
on the roles of the remaining three genes (METRNL, GPRIN2 and
MTHFS) in LUAD, they are related to bladder squamous cell carci-
noma [61], neuroblastoma [62] and cervical cancer [63]. In sum-
mary, these findings suggest that the 12 recognized genes may
be driver genes of LUAD.

To facilitate the clinical application of the PLDGs, a risk score
model was constructed. And Kaplan–Meier survival curves, time-
dependent ROC curves and comparation with other model showed
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the superiority of the model. The PH test and outlier test confirmed
that the genes in the prognostic model were robust information
parameters. Moreover, the distributions of risk scores for patients
with distinct clinicopathologic factors, as well as univariate and
multivariate Cox analyses, suggested that the model can serve as
an independent prognostic factor. Additionally, immune analysis
and responses to immunotherapeutic and chemotherapeutic
agents showed that patients in the high and low-risk groups may
have distinct tendencies for clinical selection [3,64]. Finally, we
switched back to the distribution levels of H3K79me2 on the
PLDGs. By comparing H3K79me2 signals in tumor cells with those
in normal cells, we located the regions where H3K79me2 signals
were significantly altered. Taken together, these results indicate
that the model developed using H3K79me2-related driver genes
can serve as a supplement to existing signatures.

In this study, although the significance of H3K79me2 and the
potential prognostic values of the risk score model were explored,
and an open-source computational framework for extracting
PLDGs was constructed, there are still some drawbacks. First, the
underlying mechanisms of the PLDGs remain unclear in LUAD. Sec-
ond, although literature validation and RT–qPCR assays were per-
formed, additional analyses using in vitro and in vivo animal
models are still required. Perhaps we can design some animal
models to verify the results of this study in the future.

5. Conclusions

We demonstrated the significance and efficacy of H3K79me2 in
regulating LUAD-related gene expression and presented an open-
source computational framework to extract PLDGs from the genes
with differential H3K79me2 levels in tumorigenesis. RT–qPCR
experiments demonstrated that the expression levels of the recog-
nized PLDGs were significantly increased/decreased within LUAD
tumor cells. A risk score model comprising the 12 H3K79me2-
targeted PLDGs was developed for the first time, and its prognostic
efficacy was evaluated by multiple datasets, statistical tests and
benefits to therapeutic agents. Finally, the regions with obvious
H3K79me2 signal changes on the 12 PLDGs were accurately
located. In conclusion, our research may offer potential molecular
biomarkers for LUAD treatment.
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