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Abstract

One way to understand a system is to explore how its behaviour degrades when it is overloaded. This approach can be applied to
understanding conscious perception by presenting stimuli in rapid succession in the ‘same’ perceptual event/moment. In previous
work, we have identified a striking dissociation during the perceptual moment, between what is encoded into working memory [Lag-1
sparing in the attentional blink (AB)] and what is consciously perceived (Lag-1 impairing in the experiential blink). This paper links
this dissociation to what, taking inspiration from the metacognition literature, could be called meta-experience; i.e. how the ability
to track and comment on one’s visual experience with subjectivity ratings reflects objective performance. Specifically, we provide
evidence that the information (in bits) associated with an encoding into working memory decouples from the experiential reflection
upon that perceptual/encoding event and that this decoupling is largest when there is the greatest perceptual overload. This is the
meta-experiential blink. Meta-experiential self-observation is common to many computational models, including connectionist inter-
pretations of consciousness, Bayesian observers and the readout-enhanced simultaneous type/serial token (reSTST) model. We assess
how our meta-experiential blink data could be modelled using the concept of self-observation, providing model fits to behavioural and
electroencephalogram responses in the reSTST model. We discuss the implications of our computational modelling of parallel encod-
ing but serial experience for theories of conscious perception. Specifically, we (i) inform theories of Lag-1 sparing during the AB and
(ii) consider the implications for the global workspace theory of conscious perception and higher-order theories of consciousness.

Keywords: meta-cognition; perceptual moment; meta-experience; simultaneous encoding/ serial experience; attentional blink; blink
of bits; experiential blink; meta-experiential blink

Introduction
Themodellingwe present here takes inspiration fromhigher-order
thought (HOT) theories of consciousness (Rosenthal 2005; Lau and
Rosenthal 2011), according to which a mental state (whether per-
ceptual or cognitive) is conscious if one is aware of being in that
mental state. While this might sound circular, it merely suggests

that first-order mental states become conscious mental states
when there is a ‘higher-order thought’—a meta-representation—

indicating the existence of the target first-order state to the agent.

Crucially, the higher-order state does not itself need to be con-

scious. Thus, unconscious higher-order mental states render their

target first-order states conscious. This suggests that conscious
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experience depends on the operation of a meta level that mini-
mally takes the form of an internal observer. Beyond HOT the-
ory itself (Rosenthal 2005), five extant theories of consciousness
broadly espouse such a view: (i) Higher-Order Representation Of
a Representation theory (Brown 2015; Brown et al. 2019), (ii) Per-
ceptual Reality Monitoring theory (Lau 2019), (iii) the Higher-Order
State Space model (HOSS, Fleming 2020), (iv) the Self-Organizing
Metarepresentational Account (Cleeremans et al. 2020) and (v) the
readout-enhanced simultaneous type/serial token (reSTST)model
(Jones et al. 2020). We elaborate on the latter of these in this paper.

The key to constraining and validating these theories is to
understand the subtle interplay between objective performance
and subjective experience. In this paper, this becomes the inter-
play between working memory encoding and conscious visual
experience, when multiple (target) stimuli are presented in rapid
succession in the ‘same’ perceptual event/moment. Examples of
such rapid presentation of stimuli include Lag-1 (second target,
T2, immediately following first target, T1) in the attentional blink
(AB) (Hommel and Akyürek 2005; Wyble et al. 2009), temporal
conjunction errors (features of one target reported with another)
(Botella et al. 2001; Chennu et al. 2011), the perceptual moment
itself (the time period within which two stimuli can be experi-
enced as a single combined percept) (Di Lollo and Wilson 1978)
and postdictive effects in general (Sergent 2018; Herzog et al.
2020).

Here, we focus particularly on Lag 1 during the AB. Figure 1a
depicts a classic AB experiment (Raymond et al. 1992; Chun and
Potter 1995), in which a second target (T2) presented after a first
target (T1) in an RSVP stream exhibits a deficit with a characteris-
tic temporal profile (see Fig. 1c, green curve). That is, when there
are between one and three distractors between the targets, T2 per-
formance is impaired. Critically however, T2 performance at Lag
1 (no intervening distractors) is higher than that during the blink,
i.e. performance is spared at Lag 1 (left-most point of green curve).
In the AB experiment considered here, participants report the
identity of the targets at the end of the RSVP stream. This identifi-
cation report for T2 gives us the objective (Type-1) measure in this
paper.

In this experiment, participants also reflected and reported
on their visual experience of the T2 on a rating scale from 1
(‘Not seen’) to 6 (‘Maximal visibility’); see Fig. 1b, giving us our
subjective (Type-2)measure. The resulting temporal profile of sub-
jective visibility report (see Fig. 1c, blue curve) corresponds to the
experiential blink (Pincham et al. 2016).

Comparing attentional and experiential blinks reveals a strik-
ing dissociation between what participants report consciously
perceiving (quantified using subjective visibility) and what is
encoded into working memory (quantified using identification
report). This has been demonstrated experimentally by a strong
interaction between subjective visibility and report accuracy
carried by short lags of the AB curve (Jones et al. 2020); see Fig. 1c,
blue (visibility) and green (accuracy) curves.

This dissociation suggests that working memory encoding is
not impaired as the perceptual demands increase (i.e. the two tar-
gets are closer in time). Indeed, the data suggest that working
memory of the second target is facilitated if it immediately fol-
lows the first target, i.e. there is Lag-1 sparing (left-most green
data point in Fig. 1c). However, experience of the second target
is increasingly impaired (Fig. 1c, blue curve) as the two targets
are closer in time. This suggests a fundamental decoupling of
encoding and experience that theories of meta-observers need to
accommodate.

One objective of this paper is to link this phenomenon
to what, taking inspiration from the metacognition literature
(Fleming and Lau 2014), could be called ‘meta-experience’, i.e.
how accurately one’s introspection and report upon a visual
experience matches objective performance. Indeed, the meta-
experience concept can be seen to respond to a long running
critique of the relevance of classic metacognitive measures such
as confidence: that they reflect the reliability of first-order judge-
ments rather than phenomenology (Seth 2008). In contrast, the
(Type-2) meta-measure associated with the meta-experience con-
cept we consider here is subjective visibility, tying more directly to
phenomenology.

This concept of meta-experience will enable us to provide
evidence that the information (measured in bits) associated
with an encoding into working memory (objective performance)
‘decouples’ from the experiential reflection upon that percep-
tual/encoding event (subjective performance) and that this decou-
pling is largest when there is the greatest perceptual overload
(i.e. at Lag 1). That is, we will be able to show that at Lag 1
there is little difference in objective performance between trials
when participants report high and low visibility, suggesting low
meta-experience. Taking inspiration from the AB and our previous
identification of an experiential blink (Pincham et al. 2016; Jones
et al. 2020), we call this the ‘meta-experiential blink’.

Amechanistic interpretation of this finding is that, during such
perceptually overloaded events, a meta-experiential self-observer
is only able to observe single coherent items at a time, whilemulti-
ple items can be encoding into workingmemory. This is the core of
the ‘Simultaneous Encoding/Serial Experience’ (SESE) hypothesis.

We assess how our meta-experiential blink data could be mod-
elled using self-observation theories. We do this by (i) providing
model fits in the simultaneous type/serial token (STST) model of
temporal attention and working memory encoding (Bowman and
Wyble 2007; Bowman et al. 2008; Wyble et al. 2009), since it is com-
putationally instantiated and a prominentmodel of the AB, as well
as simulating electroencephalogram (EEG) data and (ii) adding a
meta level to STST, giving us the ‘readout-enhanced Simultane-
ous Type/Serial Token (reSTST)’ model, we are able to model the
meta-experiential blink and associated P3 EEG responses. Then,
(iii) we present predictions (including counter-intuitive ones) that
the model makes, which can be the focus of future empirical
investigation.

Background
The experiential blink
The AB (Raymond et al. 1992; Chun and Potter 1995) is typically
observed when two target stimuli (T1 and T2) are placed within an
RSVP stream of stimuli (see Fig. 1a). Here, objective performance
is quantified with end-of-stream report of the identity of the T1
and T2 letters; this is what we describe as the ‘report-accuracy’
measure. The green curve in Fig. 1c shows a typical AB: the proba-
bility of reporting the identity of T2 correctly, given correct report
of T1 [i.e. P(T2|T1)] is reduced when there are between one and
three distractors between the two targets. Thus, the processing of
T2 is impaired while T1 is being processed.

The ‘experiential blink’ (Pincham et al. 2016) quantifies how the
visibility of T2 (given correct report of T1) changes with lag; see the
visibility scale in Fig. 1b and the blue curve in Fig. 1c, and also
Sergent and Dehaene (2004). Thus, the attentional and experi-
ential blinks involve the same stimulus presentations, but they
concern different end of each stream reports.
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Figure 1. Blink experiment and behavioural findings for humans and model: (a) Rapid serial visual presentation (RSVP) stream, in which T1 and T2
were letters presented between white digit distractors. T1 was always a red letter and T2 was a white letter. In this figure, T2 appears at Lag 3, i.e. with
two intervening distractors. Items appeared for 90 ms duration. (b) Phrasing and screen layout of subjective visibility question, which asked about the
white letter and therefore referred to T2 and not T1. (c) Serial-position curves of T1 Accuracy, T2|T1 Accuracy and T2 subjective visibility from human
data, and (d) simulated results for the noisy reSTST model. T2 accuracy and visibility are strongly coupled from lags 4 upwards (i.e. there would be no
interaction between measure and lag) but uncoupled as lag reduces from 3 downwards (i.e. a measure by lag interaction would be present). Note: the
model fits shown in (d) are slightly different to those in Jones et al. (2020). This is because we are using a noisy version of the reSTST model here, i.e.
which models noise—see section ‘Materials and Methods’, subsection ‘Readout-enhanced STST model’ for details. Panels a and b are reproduced from
Pincham et al. (2016), with permission, copyright Elsevier.

Previously, we have highlighted the possibility of dissociation
between working memory encoding and subjective experience of
T2 (given correct report of T1) during the AB (Pincham et al. 2016;
Jones et al. 2020). Specifically, as shown in Fig. 1c, at long lags
(4 onwards) subjective report and report accuracy track each other
with a fixed offset, but as lag reduces from 3 downwards, sub-
jective report decreases, while report accuracy increases, with
the largest difference at Lag 1.1 This kick up in report accu-
racy performance is the familiar Lag-1 sparing phenomenon
(Hommel and Akyürek 2005; Bowman andWyble 2007; Wyble et al.
2009).

Supported by state-trace analyses (Jones et al. 2020), we have
taken this finding to imply that the coupling between report accu-
racy and subjective visibility is lost at early lags. This raises the
possibility that a phenomenon that might be called ‘sight-blind

1 Some dual-target paradigms do generate Lag-1 sparing for subjective
visibility. However, the dissociation between report accuracy and subjective
visibility is still observed, i.e. the interaction between measure (report accu-
racy vs subjective visibility) and lag is still present. Behavioural findings of this
kind are extensively discussed in Jones et al. (2020).

recall’ exists. That is, it may be possible in some perceptually
very demanding situations, for items to be recalled without hav-
ing been consciously seen, which would be consistent with the
now large literature on working memory without conscious expe-
rience (Soto et al. 2011; Soto and Silvanto 2014; Trübutschek
et al. 2017, 2019). In a sense, the dissociation we have identi-
fied may suggest a mechanism by which unconscious working
memory representations are formed. We discuss the support for
and implications of the sight-blind recall concept in Pincham
et al. (2016) and Jones et al. (2020); particularly see the discussion
sections. However, more empirical work needs to be performed
before the sight-blind recall interpretation can definitively be
affirmed.

Simultaneous encoding/serial experience
Our proposal is that the decoupling of measures during the blink
is the result of the working memory encoding of stimuli occur-
ring simultaneously but their experiences occurring in serial. This
would result in working memory encoding proceeding simultane-
ously as the two targets approach one another in time, i.e. as lag
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decreases (c.f. Lag-1 sparing during the classic AB, left-most data
point in green curve in Fig. 1c), while subjective report worsens
(blue curve in Fig. 1c) because of the temporal proximity of the
second target to the first.

This could work as follows. Suppose there is a ‘readout’ from
some late stage of visual processing that indexes subjective expe-
rience, i.e. how visible a stimulus was, yielding an activation
response that we call the ‘intermediate-trace’. We say that when
the readout registers a response above some (visibility) thresh-
old, a stimulus is being consciously experienced, and in all other
cases it is not. We then, as per our hypothesis, assume a seri-
ality of this readout: a second stimulus cannot begin to be con-
sciously experienced until the previous stimulus falls back below
threshold.

When two targets are presented close together—say at Lag 1—
there is typically a poor experience of the second target because,
despite a potentially strong representation at the late stage of
visual processing, most of its readout is subsumed by its tem-
poral overlap to the first target. This is the situation depicted in
Fig. 2a. Conversely, if the two targets are far apart—say at Lag 5—a
second target with the same representation strength will be expe-
rienced much more strongly because its experience is no longer
dominated by the temporal overlap to the first target. This is the
situation depicted in Fig. 2b. Additionally, as shown in Fig. 2c, even
in the case in which the two targets are closely presented, a suffi-
ciently elongated activation trace of the second target allows the
visibilities of both targets to be similar.

Under such a system, average visibility will increase as the
temporal distance between the two targets increases, up to an
upper limit at which the two targets are sufficiently far apart that
the second is not materially affected by its temporal proximity to
the first. This is the kind of situation we see in Fig. 1b.

Meta-measures
Importantly, previous experiential blink work has been based
upon relating ‘mean’ report accuracy to ‘mean’ subjective vis-
ibility and considering how that relationship changes with lag
(Pincham et al. 2016; Jones et al. 2020). What has not been done is
to decompose the accuracy and visibility measures to understand
the coupling between them. If the SESE theory holds, then the
probability of responding correctly for low-visibility trials should
increase as lag decreases (i.e. we move from Panel b to a in
Fig. 2), and certainly that probability should increase faster for
low-visibility (Fig. 2a) than high-visibility (Fig. 2c) trials as lag
decreases.

In response, we propose our ‘meta-experience’ measure,
whereby, taking inspiration from measures of metacognition
(Fleming and Lau 2014), we have both Type-1 and Type-2 mea-
sures. However, for meta-experience, the Type-2 measure is sub-
jective visibility, rather than confidence, taken as ameasure of the
vividness with which a stimulus is consciously perceived (cf. Lau
and Passingham 2006; Rounis et al. 2010, for related approaches).

Metacognition approaches are typically framed within signal
detection theory (Maniscalco and Lau 2012; Fleming and Lau
2014), requiring the Type-1 task to be either a detection task, or
decomposable into a binary choice. This is not the case in our
AB task, which entails target identification involving 21 different
stimuli and outcomes.

We therefore develop two new approaches to quantifying
metacognitive sensitivity, the first based upon the ‘informa-
tion’ carried by a pattern of responding and the second based
upon the ‘correctness’ of responses. (Although similar, these two

approaches are not actually the same.) As it is new in this domain,
we elaborate on ‘Discrete Mutual Information’ [hereafter mutual
information (MI)].

Mutual information
MI calculates sensitivity (i.e. discriminability), without being con-
cerned with the criteria that participants use to distinguish stim-
uli or, even strictly, how well responses correctly correspond to
stimuli. Rather, MI assesses how ‘systematically’ participants’
responses discriminate between the stimuli presented, i.e. how
much information responses carry about stimuli. In other words,
if one knows a response, how effectively can one know the elicit-
ing stimulus? It measures this in units of bits of information. More
precisely, MI quantifies the amount of information that one (dis-
crete) probability distribution X tells us about another (discrete)
probability distribution Y. That is, with joint distribution (X, Y),
the MI of X and Y is defined as:

I(X; Y) = H(X) + H(Y) − H(X, Y)

where H is the entropy. Thus, MI is high when the two marginal
distributions have high entropy (i.e. there is a good deal of uncer-
tainty to resolve), but the joint entropy is small (i.e. there is a
systematic relationship between the values of the two marginal
distributions). Further details of MI are given in Supplementary
Material 1.

We apply MI to stimulus/response correspondence; i.e. in
the above definition, X would be presented T2 stimuli and Y
would be T2 identification responses, in both cases letters of
the alphabet. In this way, MI serves as a measure of objec-
tive (i.e. Type 1) performance, i.e. the amount of informa-
tion that end-of-stream identification report carries about the
presented T2.

Meta-experience
We can divide visibility report into high/low-visibility bins: giv-
ing us a 2-point scale for visibility: High and Low (Note: there
are other good reasons for wanting to collapse visibility bins, see
Supplementary Material 2). This gives us our Type-2 measure:
whether the participant reported seeing the presented T2 well
(high visibility) or poorly (low visibility).

We define ‘Meta-experience’ as the relationship between these
twomeasures. Furthermore, sincewe have collapsed visibility into

two bins, we can formulate meta-experience as the difference of

MI between trials that yield a high-visibility response and trials
that yield a low-visibility response.

Thus, as the information extracted for high visibility increases
relative to the information extracted for low visibility, the Type-2

measure (subjective visibility) is increasingly strongly coupled to

the Type-1 (objective) measure (here MI). In other words, when

the participant reports high visibility, their brain has objec-

tively extracted more information about the presented stimu-
lus than when they report low visibility. In contrast, if there is
little difference between the MI observed for high-visibility ver-
sus low-visibility trials, the Type-2 measure is decoupled from
the Type-1 measure, and subjective visibility report is telling
us very little about the objective information extracted by the
brain.

We can also replace MI with report accuracy in our formu-
lation of meta-experience, giving us a measure which we call
meta-experienceA. However, the resulting meta-experience scales
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Figure 2. SESE theory. Horizontal bars above activation traces illustrate assumed time periods of encoding or experience for T1 and T2. Thick vertical
red line indicates termination of T1 experience and onset of T2 experience, i.e. experience handover. (a) Short T1–T2 lag: although the amplitude and
form of the response of both stimuli are the same, the duration of the experience of the second stimulus is greatly reduced because it cannot start
being experienced until the first stimulus falls below the visibility threshold. By that time, T2 activation has decayed to the point that it only very
briefly drives experience (short blue bar). In contrast, in (b) long T1–T2 lag, the amplitude and form of the response to both stimuli remain the same,
but the time delay between first and second targets is increased, and consequently they are both experienced for similar durations. In (c) extended T2
trace, T2’s response is longer; consequently T1 and T2 are again both experienced for similar durations

are different, since high MI does not necessarily imply correct
responding, an issue we discuss later.

Materials and methods
Readout-enhanced STST model
The SESE hypothesis has been realized in the ‘readout-enhanced
STST’ model (Jones et al. 2020). This takes the STST model, as
defined in Bowman and Wyble (2007), and adds a subjective vis-
ibility readout mechanism and an associated revised means to
generate virtual/synthetic event-related potentials (ERPs). How-
ever, importantly, the functionality and parameter settings of the
previously published model, which we call the ‘core’ model, are
not changed. We do, however, select a slightly different stimulus
range to our previous virtual ERP work, e.g. Craston et al. (2009).
Specifically, we sample (uniformly) a range of stimulus strengths
with greater variability (−0.078 to +0.078 becomes −0.1625 to
+0.1625), at a slightly higher average distractor and T2 strength
(0.520 becomes 0.570). Additionally, T1 and T2 have different

strengths in our simulation. This is because the Pincham et al.
(2016) experiments used a colour-marked T1, which will create
a strong onset. Accordingly, the T1 is modelled with an average
strength of 0.670.

This approach of using new stimulus strengths is consistent
with previous STST simulations, where input strength ranges have
been allowed to vary, reflecting the fact that different experiments
being modelled might have quite different stimulus types and

sensitivities. (See Jones (2020), especially Appendix C for further

discussion of changes made, and Supplementary Material 3 for
further details of the visibility calculation we add here).

This ensures that the results presented here are consistent
with previously reported STST fits to data, of which there are now

many (Bowman andWyble 2007; Bowman et al. 2008; Chennu et al.
2009; Craston et al. 2009; Wyble et al. 2009, 2011). Additionally,

the capacity to exhibit further effects without refitting parameters

suggests that those originally identified parameter settings were

not ‘over-fit’ in a particularly obscure and unrepresentative region
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Figure 3. Readout enhancement of the STST model (Bowman and Wyble 2007). For full details of the STST model, please refer to Bowman and Wyble
(2007). For the purposes of this paper, the first stage can be viewed as the brain’s visual processing pathway (specifically, the ventral stream). The
second stage implements working memory encoding, by associating a Stage-1 representation with an episodic tag (called a token). This association is
constructed through a binding pool, which could be viewed as a potential implementation of the global workspace (Dehaene et al. 2003). The readout
additions to the basic STST model are presented in blue. Excitatory units in the region demarcated by dashed blue project to a meta-level layer. This
meta level receives intermediate traces, which are linear sums of activation from readout layers of the STST model, subject to enforcement of
exclusivity to ensure serial experience

of parameter space (Roberts and Pashler 2000), i.e. the parameter
fits ‘generalise’ to a new set of phenomena.

This readout-enhancement mechanism is fully described in
Jones et al. (2020) and depicted in Fig. 3. It is summarized in the
following points.

1) The source of the subjective visibility measure is the average
of post-synaptic potentials across late layers of the core STST
model; see the blue dashed annotations in Fig. 3. We call the
resulting activation traces ‘intermediate-traces’, since they
sit between sensory pathways and readout.

2) When the intermediate trace for a stimulus is above a given
amplitude (the threshold of subjectivity), it could be being
‘subjectively experienced’ and when it is below, it is certainly
not. Additionally, this experience is serial. If the individ-
ual intermediate traces for two stimuli are both above the
threshold, then the second in time cannot be experienced
until the intermediate trace for the first has fallen below
threshold. In this sense, exclusivity is enforced; see read-
out additions and meta level in Fig. 3 [Note that this is
quite like the ‘mutual exclusion’ enforced in concurrent and
distributed computer systems (Dijkstra 2001)].

3) The strength of an item’s subjective experience is deter-
mined by the maximum amplitude of its (above threshold)
intermediate trace, subject to no other stimulus already
being above the subjective visibility threshold. Thus, this
maximum amplitude determines its subjective visibility, i.e.
its visual vividness. This represents a particularly simple

quantity to base visibility upon, which should be preferred
under Occam’s Razor.

4) To reflect neurophysiological noise, we add two sources
of Gaussian distributed noise, one additive and the other
multiplicative. The second of these is the most important,
reflecting the presence of multiplicative noise in neuroimag-
ing data; see, e.g. the Fano factor (Eden and Kramer 2010).
This source of variability also avoids the somewhat counter-
intuitive property of additive noise that it can (in admittedly
rare cases) turn a zero-amplitude activation trace into a
high-amplitude, high-visibility percept, i.e. induce an illu-
sory percept. Since zero multiplied by anything is zero, such
illusory percepts cannot be generated by a multiplicative
source of noise. Note that the addition of noise to the read-
out process, which enables us to fit themeta-experience data
better, is new to this paper. Accordingly, the behavioural and
ERP fits presented here, for what we call the ‘noisy readout-
enhanced STST model’, are somewhat different to those in
Jones et al. (2020).

Further details of the readout mechanism and particular
parameter settings are presented in Supplementary Material 3.

In addition to being compared to behaviour, the model pre-
sented here is compared to human ERPs, through what we call vir-
tual ERPs. The virtual ERPs generated in Craston et al. (2009) were
calculated by summing the post-synaptic activation of all relevant
excitatory units together. In the model we present here, when a
first target’s activation trace crosses the threshold of subjectivity,
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it starts contributing to the P3; however, the activation traces of
other targets do not contribute to the P3. This reflects our posi-
tion that the P3 corresponds to conscious experience rather than
working memory (WM) encoding (Pincham et al. 2016) and is the
same as the approach employed in Jones et al. (2020), where a full
description is given in Supplementary Material Section D of that
paper.

Additionally, we smooth the virtual ERPs generated from the
model with a Gaussian kernel. This is justified by the scalp act-
ing as a low-pass filter between brain sources and electrodes in
human scalp EEG.

Since the reSTSTmodel does not have a concept of target iden-
tity, creating a stimulus–response matrix, in order to calculate MI,
as described in previous sections is not possible. Consequently, we
are only able to compare the model to accuracy for high and low
visibility rather than to MI.

Experimental paradigm
We analyse and model two data sets from experiments first pub-
lished in Pincham et al. (2016), in which both working memory
encoding and subjective experience are measured during the
AB. The first experiment examined behavioural responses and
assessed a larger number of lags (Lags 1, 2, 3, 4, 6 or 8) in order
to sample the full AB curve. The second collected both EEG and
behavioural data, with only Lags 1 and 3 sampled for 80% of trials
in order to enhance the EEG signal-to-noise ratio.

Targets were uppercase letters and distractors were single dig-
its; the first target (T1) was always presented in red and the second
(T2) in white (see Fig. 1a). Stimulus Onset Asynchrony (SOA) was
90ms. At the end of each RSVP stream, participants rated the sub-
jective visibility of T2 using a 6-point self-report scale (see Fig. 1b).
Participants then reported the identity of the T1 and T2 (there-
fore, d and a would be the correct responses for the stream in
Fig. 1a). Participants were required to guess if they were unsure
of the target identities. Full details can be found in Pincham et al.
(2016).

Statistical considerations
Since entropy is a biased measure with small samples, we use
the NSB (Nemenman, Shafee, Bialek) estimator (Nemenman et al.
2002), which is justified in Supplementary Material 2. Despite this,
some biasmay still remain, particularly at the sample sizes we are
using. However, from the investigations in Jones (2020), with s the
number of bins (21 for us: the number of stimuli and of responses)
and a sample size of n, in theworst case, the bias isO(s/n)=O(21/n)
(Paninski 2003). Thus, we can estimate the error for each of our
samples and add these as covariates of no interest to our statisti-
cal model. Additionally, for a sample size of 0, MI is not defined.
Accordingly, we employ mixed effects models, which are robust
to missing data (Krueger and Tian 2004).

Inferential statistics
In order to determine the effects of our factors onMI, we fitted lin-
ear regressionmixedmodels [using the R lme4 package (Bates et al.
2007)]. The dependent measure in all of these models was MI, cal-
culated as MI(X; Y) = HNSB (X) + HNSB (Y) − HNSB (X,Y), with
HNSB the NSB estimator of entropy. Independent measures were
lag (Lag), visibility bin (Vis), lag/visibility interaction (Lag×Vis),
count (the reciprocal of the sample size, our estimator of entropy
bias—a covariate of no interest) and subject (Subject). Lag and
visibility were both categorical variables and were dummy coded
with respect to Lag 1 and low visibility, respectively. Lag, visi-
bility bin, lag/visibility interaction and count were fixed effects;

Subject was a random effect on the intercept. We consider five
models, which we denote using the notation from the lme4
package:

Null: MI = 1 + Count + (1|Subject)

Lag: MI = 1 + Lag + Count + (1|Subject)

Vis: MI = 1 + Vis + Count + (1|Subject)

allMain: MI = 1 + Lag + Vis + Count + (1|Subject)

Full: MI = 1 + Lag + Vis + Lag × Vis + Count + (1|Subject)

Models were compared using a chi-square test. For the main
effect of lag, which determines if an AB is present, we compared
the Lagmodel with the Nullmodel. For themain effect of visibility,
which determines if an overall meta-experiential effect is present,
we compared the Vis model with the Null model. For the Lag-by-
Vis interaction, which assesses whethermeta-experience changes
with lag, we compared the Full model with the allMain model and
the Null model separately.

In order to provide a more highly powered test of the presence
of an AB, we also compared Lags 2, 3 and 4 collapsed (during the
blink) to Lags 6 and 8 collapsed (recovery from the blink). Since
we have a very strong precedent for the direction of this binary
effect—inside the blink lower than outside—we also ran this one-
tailed. Since the lme4 package is not set up to perform such a one-
tailed test, we ran this as a simple one-tailed two-sample paired
t-test.

Results
Experiential blink (new fits)
Behaviour
Figure 1 compares report accuracies and subjective visibilities pre-
dicted by the (noisy) reSTST model (reSTST), see Panel d, to those
from the human data (Panel c). Although there are differences
between human and model findings, the qualitative pattern of
results is similar. The STST model demonstrates a somewhat
more marked downturn in subjective report at earlier lags than
the human data (compare blue curves). This may suggest that the
decay rate of T2s, which have to wait until the T1 has completed,
is relatively fast in the model [however, see Avilés et al. (2020), for
evidence of fast decay in humans].

Event-related potentials
We compare the human (Lag-1) ERPs (recorded at Pz) to the model
(Lag-1) ERPs in Fig. 4. There are two seeming differences between
the two: (i) early transients (100ms to 250ms approx.) and (ii)
late dynamics (from 650ms approx.). We discuss these in turn
shortly.

In general, however, there is again a good ‘qualitative’ fit
between the (noisy) reSTST data and the human data, which aswe
argue elsewhere in this article is the appropriate criterion for com-
paring model and human, given that core model parameters fixed
in Bowman andWyble (2007) have not been changed. Most impor-
tantly, our simulation results provide a proof of principle that the
explanation presented in Fig. 2 (regarding why report accuracy
and subjective visibility diverge at Lag 1) is tenable. This expla-
nation rests on the proposal that encoding into working memory
can proceed in parallel, but subjective experience cannot.
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Figure 4. A comparison of human ERPs (pink and red) and virtual ERPs (blues) generated from the noisy readout model for high- and low-visibility T2s,
at Lag 1. Note that in all these ERPs, the T1 was correctly reported, and in a it is reflected in Response Phase 1. [a] Comparison of P3s at Lag 1: The
virtual ERPs presented here are new fits and somewhat different to those presented in Jones et al. (2020), since we are using the noisy reSTST model.
Zero on x-axis is the point of T1 onset. Human ERPs are recorded from the Pz electrode. [b] SSVEP generated by model (activation from Masking layer,
which is the model’s analogue of Iconic memory). Since we are depicting the whole period of the stream, the time axis here is different to that in a.
The extra strength of the T1 stimulus, which is simulating a colour-marked T1 in Pincham et al. (2016), evokes a transient in the SSVEP, which could be
related to the early transients indicated in the human data in Panel a. It is only during this transient that the low-visibility condition does not
perfectly follow the high-visibility condition and as a result is obscured by it

Early transients

There are differences between human and model ERPs before
250ms; see early transients marked in Fig. 4a. These are likely
to be due to the stronger onset arising from the colour-marked T1
in the human data. As previously discussed, this stronger onset is
modelled by giving the T1 higher strength than the T2 or distrac-
tors. This creates a distinct (phasic) transient in the steady-state
visually evoked potential (SSVEP) generated by STST; see Fig. 4b.
We believe that it is these transients, probably due to volume

conduction, bleeding into the Pz electrode that generate the early
transients observed in the human ERPs.

Late dynamics

The most important feature in the human ERPs is the extended
P3 when a T2 is seen vividly (High Vis condition), c.f. pink filled
line substantially higher than red dashed line in Response Phase
2. Thus, a clear conscious percept of T2 coincides with a ‘longer’
P3, rather than a dramatically higher amplitude in Response Phase
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Figure 5. Main effects for T2, given T1 is correctly reported. (a) The effect of lag, reflecting how the information extracted (MI) from the RSVP stream
about the T2 changes with lag. This can be interpreted as how systematically participants respond at each lag. This is the blink of bits, i.e. the number
of bits of information extracted at different lags. Note that the dip in Lag 8 is a common feature of RSVP experiments that sample longer lags more
sparsely than shorter lags, i.e. participants get used to seeing early lags and thus allocate their temporal attention less to late lags. (b) The effect of
visibility, i.e. how MI changes with visibility. MI depicted in (a) and (b) is calculated from a single stimulus–response matrix that is constructed from
responses across all subjects, i.e. with subject collapsed out. This generates a denser stimulus–response matrix from which MI can be calculated with
more accuracy. This is done just for visual clarity; all statistics were run with subject as the unit of inference

1. This is the serial experience property of SESE, i.e. the T2 has to
wait until the T1 has completed being experienced (in Response
Phase 1), before it can be experienced. This implies that the P3 is
a correlate of conscious perception rather than working memory
encoding; c.f. Pincham et al. (2016) for a discussion of the debate
on this issue.

Additionally, the important property that a clear conscious

percept of T2 (i.e. the high-visibility condition) coincides with a
longer P3 is qualitatively present in the virtual ERP in Fig. 4a,
filled light blue higher than dashed dark blue in Response
Phase 2. There are however some differences between the late
dynamics of the noisy reSTST model and the human data, with
the noisy reSTST ERPs showing differences to the human data
from approximately 650ms onward. Specifically, in this sec-
ond phase, the model tends to generate an extended P3 in the
T2 high-visibility condition (filled light blue line) rather than
the (at least partially) distinct P3 that looks to be present in
the human data (filled pink line). This may suggest a less effi-
cient transition from experiencing T1 to experiencing T2 than is
presently implemented in the model, thereby generating a tem-
poral gap between the two. However, we await further ERP data
before concluding that the model needs to be adjusted in this
respect.

Meta-experience
Human behaviour
We measure meta-experience as the difference between MI for
high and low visibility, which we plot by lag. We also plot a sim-
ilar difference in accuracy rates by lag for high and low visibility
(which we refer to as meta-experienceA).

Our Lag model explained 15% of the variance in MI and
approached being significantly different from the null model,
x2(5)=10.851, P=0.05441; see Fig. 5a. For our higher powered test
of the presence of a blink of information, which compared inside
and outside the blink, the classic paired t-test we ran was signif-
icant [t(17)=−2.52, P=0.011]. The Visibility model explained 49%
of the variance and was significantly better than the null model
x2(5)=105.59, P<0.001; see Fig. 5b.

The Fullmodel explained 63%of theMI variance andwas better
than both the null model x2(5)=167.62, P<0.001, and the allMain
model x2(5)=36.128, P=8.9 × 10−7. The latter of these implies the
presence of the Lag-by-Vis interaction, i.e. that the difference in

MI between high- and low-visibility changes with lag. This is the
meta-experiential blink, i.e. the link between visibility levels and
information changes with lag. We depict this in two corresponding
forms in Fig. 6. Importantly, meta-experience at Lag 1 is strikingly
low relative to other lags.

Figure 6c and d shows that calculating meta-experience from
accuracy (our meta-experienceA measure), rather than informa-
tion (Fig. 6a and b), leads to a similar overall trend. In particular,
meta-experience at Lag 1 is again dramatically smaller than that
at Lag 2. There are, however, some interesting differences in the
relationship with lag, which we return to in Discussion. We also
compare the serial-position curves for all the relevant measures
in Fig. 7.

As can be seen in Fig. 7, the meta-experiential blink (green
curves) is strongly concave, when compared with the (convex)
experiential blink (purple curve showing visibility). That is, as
lags get smaller from 4 to 3 to 2 to 1, for the experiential blink,
the amount performance reduces themselves reduce, but for the
meta-experiential blink, the amount performance reduces get
larger (especially from Lag 2 to Lag 1). This suggests that rel-
atively speaking, Lag 1 is even more dramatically impaired for
meta-experience than for experience. This could be summarized
as saying that the closest proximity of T2 to T1 leaves, (i) encoding
into working memory unimpaired (indeed facilitated relative to
blink recovery; see No Blank condition in Fig. 4 of Chun and Potter
1995); (ii) conscious experience impaired and (iii) the capacity to
reflect on what enters working memory on the basis of conscious
experience even more impaired.

Model
We compare the behavioural predictions that the (noisy) reSTST
model makes concerning meta-experience to those from human
data, see Fig. 8, with human data on the left and model out-
put on the right. Importantly, we have not refit the (core) STST
model to these data, rather, as we have done in all our work
with the model, we have maintained the parameter settings asso-
ciated with its first publication (Bowman and Wyble 2007). As a
result, it is only reasonable to expect the model to be qualitatively
accurate.

In this qualitative sense, the match of model to human data
is good. We can identify the following patterns in the data in
Fig. 8,
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Figure 6. The meta-experiential blink, depicting T2, given T1 is correctly reported. The effect of lag on meta-experience is shown. (a) Decomposition
into high- and low-visibility blinks, where the difference in MI between these at any lag, illustrated for Lag 3, is meta-experience. (b) Summarization of
Panel (a): meta-experience is plotted directly, with meta-experience strikingly low at Lag 1, relative to other lags. MI depicted here is calculated from a
single stimulus–response matrix that is constructed from responses across all subjects, i.e. with subject collapsed out. This generates a denser
stimulus–response matrix from which MI can be calculated with more accuracy. This is done just for visual clarity; in particular, all statistics were run
with subject as the unit of inference. (c and d) The corresponding plots to a and b but for (percent correct) accuracy. This gives us the
meta-experiential blink for accuracy

1) Top row (Panels a and b): both humans and model exhibit
a largely constant visibility for incorrect responses but a
decreasing visibility for correct responses as lag decreases
(Lags 5 to 1).

2) Middle row (Panels c and d): for both humans and model,
the largest change is in the low-visibility trials, with accu-
racy climbing substantially as lag decreases at small serial
positions (3 to 2 to 1).

3) Bottom row (e, g and f): both humans and model exhibit
decreases in meta-experience as lag reduces at small serial
positions (3 to 2 to 1).

Discussion
One way to attempt to understand a system is to explore how
its behaviour degrades when it is overloaded. This approach
can be applied to understanding conscious perception by e.g.
presenting stimuli in rapid succession in the ‘same’ perceptual
event/moment, e.g. Lag-1 in the AB (Hommel and Akyürek 2005;
Wyble et al. 2009), temporal conjunction errors (Botella et al. 2001;
Chennu et al. 2011) and the perceptual moment (Di Lollo and
Wilson 1978). This paper has focussed on the Lag-1 case. This is
because of our previous work, which has noted that the capac-
ity to extract and encode identities of targets seems to increase,
while the visual percept of those targets experienced seems to
decrease, as they are presented closer together in time. In order to
formally assess the coupling between memory encoding and per-
ceptual vividness, we have introduced a newmeasure that we call
meta-experience.

A meta-experiential blink
Meta-experience quantifies the extent to which the (subjec-
tive) vividness of a percept reflects the (objective) information
extracted by the brain. In a similar way to Rounis et al. (2010),
meta-experience is a metacognitive measure focussed specifi-
cally on perceptual experience rather than decision confidence.
Importantly, decision confidence could be affected by factors
unrelated to perceptual experience, whereas meta-experience
focusses on the dissociation between objective (i.e. information)
and subjective experience, where the latter specifically refers to
the perceptual experience of a stimulus.

We find that meta-experience decreases monotonically with
decreasing lag all the way down to Lag 1, at which point it shows a
particularly sharp downturn, generating a concave pattern (see
Fig. 7, green curves). This suggests a general meta-experiential
failure: although (objective) report accuracy on the second tar-
get increases at Lag 1 (Fig. 7, red and pink curves), there is a
generalized and increasing failure to introspectively assess this
performance as the two targets come closer together.

The sight-blind recall hypothesis gives a specific reason for this
loss of introspective ability as lag decreases towards 1, viz that
it results from participants systematically reporting poor (Type-
2) visibility despite high (Type-1) identification performance. This
would manifest as MI for high visibility increasing at a lower rate
than MI for low visibility as lag decreases towards 1. This is what
we observe in Fig. 6a. We would expect a similar pattern for report
accuracy, with report accuracy for high visibility increasing at a
slower rate than report accuracy for low visibility as lag decreases
towards 1. Figure 6c shows this pattern, in fact, with report accu-
racy not increasing at all for high visibility, perhaps due to ceiling.
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Figure 7. Serial-position curves for accuracy, MI, visibility,
meta-experience and meta-experienceA for T2, given T1 is correctly
reported. All measures are z-scored relative to the distribution set-up by
the six lags to enable a direct comparison of these different measures.
Accuracy and MI track each other relatively closely, mapping out classic
AB patterns, with prominent Lag-1 sparing. As reported in Pincham et al.
(2016) and Jones et al. (2020), subjective visibility exhibits a
monotonically decreasing pattern as lag decreases, with no Lag-1
sparing (i.e. Lag-1 impairing). The meta-experience curves are also
essentially monotonically decreasing as lag decreases and exhibit strong
Lag-1 impairing

Effectively, another phrasing of this is that we would expect the
average visibility for correct trials to decrease as lag decreases,
while the average visibility for incorrect trials would decrease at a
slower rate or not at all. This is what we see in Fig. 8a.

Blindsight
The dissociation between the (objective) AB and the (subjec-
tive) experiential blink that we observe is relevant to the blind-
sight literature, especially the search for blindsight in healthy
observers, which has proved notoriously difficult to obtain (Peters
and Lau 2015). Importantly, the objective performance we are
focussed on here is free recall from working memory rather than
forced choice performance, hence the term sight-blind ‘recall’.
One might expect free recall to be especially closely tied to con-
scious processing. In addition, while our measure of visibility is
subjective report and therefore affected by where subjects place
their criterion for deciding between the different visibility levels,
the key result here is a dissociation between performance and vis-
ibility as a function of lag. This would suggest that the decoupling
would need to be explained by a shift in a (strategic) response
bias applied only to the early subset of lags during a block; we
discuss this possibility in the next subsection. The result how-
ever is also consistent with both a decrease in overall visibility,
togetherwith a decrease inmeta-experience (thewithin-condition
coupling between visibility ratings and performance) at earlier
lags.

As previously indicated, our findings have some similarity
to those presented in Rounis et al. (2010). Rounis et al. consid-
ered the coupling between visibility and accuracy to arrive at
a similar quantification to our meta-experience measure. They
demonstrated that theta-burst transcranial magnetic stimula-
tion (TMS) to the dorsolateral prefrontal cortex impairs meta-
experience in a fashion similar to blindsight. That is, TMS specif-
ically reduces visibility for correct responses while not impacting
incorrect responses. This is similar to our findings in Fig. 8a, where
reducing lag (moving from right to left on x-axis) only has a very

small impact on visibility report for incorrect responses but pro-
gressively and strongly reduces visibility for correct responses.
This observation bolsters our claim that we have observed a
phenomenon we call sight-blind recall.

Rounis et al. also argue that this pattern stands against a
response-bias explanation of their findings since that would also
impact the visibility judgement of incorrect responses. The anal-
ogous observation can be made for our findings. In particular, a
tendency to bemore conservative in visibility ratings at short lags,
i.e. giving lower ratings, might be expected to be observed simi-
larly strongly for incorrect responses. This said, more empirical
work is required to definitively justify the sight-blind recall claim.

Response bias: odd perception not poor
perception
A potential criticism of the sight-blind-recall interpretation of our
findings that certainly cannot be completely ruled out is that
participants may be reporting low subjective visibility of the sec-
ond target at short lags not because they perceived it poorly but
because their percept was odd or unusual in some way. In this
case, the peculiarity of the experience may cause participants to
simply report low visibility. This would be the analogue for sight-
blind recall of a central debate in blindsight research: whether
patients’ high objective performance in the absence of reported
awarenesswhen stimuli are presented in their lesioned visual field
could just amount to weak residual perception and a conservative
response threshold on detection (i.e. on awareness report) (Michel
and Lau 2021; Phillips 2021).

In our context, thiswould correspond to reduced subjective vis-
ibility ratings (i.e. more conservative responding) because the T2
percept is ‘odd’ at Lag 1. We extensively considered this poten-
tial confound and argue that it is unlikely to explain our findings
in Pincham et al. (2016) and Jones et al. (2020). However, we re-
iterate and elaborate on some of these points here, in the light of
themeta-experiencemeasure that we have brought to bear in this
article.

The obvious analogue for sight-blind recall of the standard
response-bias argument in blindsight is the possibility of expe-
riencing integrated percepts at Lag 1. In particular, many have
argued that Lag 1 is a special case, in which T1 and T2 are some-
times processed/perceived together, even as a single integrated
percept (Hommel and Akyürek 2005; Bowman and Wyble 2007;
Wyble et al. 2009; Akyürek et al. 2012). As just discussed, this raises
the possibility that the reduction in subjective visibility ratings at
Lag 1 is not specifically a reduction in conscious experience but
more confusion about the conscious experience, leading, if you
like, to a ‘loss of confidence’ in their experience.

Additionally, in and of themselves, our meta-experience find-
ings do not alleviate this concern. For example, in Fig. 8a, visibility
ratings reduce linearly from Lag 6 to Lag 1 for correct responses.
This could arise from what might be considered a bias towards
conservative responding to the subjective visibility question, i.e.
lower visibility responses when actually a discriminable (in terms
of enabling accurate objective responding) percept was experi-
enced. [Although this particular pattern was not observed in a
related study by Recht et al. (2019) (see ‘Experience at Lag 1’ sub-
section of this Discussion), on correct trials, they saw increased
confidence at Lag 1, see their Fig. 3a.]

However, there are a number of reasons to believe that this con-
fusion due to integration explanation cannot account for our find-
ings. First, colour marking was incorporated in the experiment to
ensure that T1 was coloured distinctly from the rest of the stream
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Figure 8. Comparison of human and (noisy) reSTST model: left side shows human data, right side shows model fits. First row: mean visibility
serial-position curves for correct and for incorrect response trials in humans (a) and model (b). Both humans and model exhibit a largely constant
visibility for incorrect responses but a decreasing visibility for correct responses as lag decreases (from 5 down to 1). Second row: mean accuracy
serial-position curves for high- and low-visibility trials in humans (c) and model (d). Both exhibit the largest change in the low-visibility trials, with
accuracy climbing substantially as lag decreases at small serial positions (3 to 2 to 1) for both and somewhat for later lags in the model. Bottom three
panels: meta-experience serial-position curves in humans (e and g) and model (f, difference of accuracies). All essentially exhibit decreases in
meta-experience as lag reduces at small serial positions (3 to 2 to 1), while the model (and to some extent information, Panel e) exhibits decreases at
longer lags as well; Panel f

and particularly from T2. One reason for doing this was to miti-
gate against the possibility of obtaining integrated percepts at Lag
1, and there is evidence that this worked. Specifically, in letters-
in-digits tasks, of which the experiment here is an example, the
cardinal indicator of integrated percepts is order errors. That is, if
T1 and T2 are encoded as a single undifferentiated whole, infor-
mation about the order in which they occurred would be lost,
and in fact, conjunction information between the T1, the T2 and
which of them was colour-marked would be lost. Importantly
however, order errors were very rare in our experiments: they
were around 10% compared to 30% in classic, non-colour-marked
letters-in-digits tasks (e.g. Chun and Potter 1995).

This stands against the suggestion that T1–T2 integrations are
prevalent at Lag 1 and underlie the drop in relative subjective vis-
ibility at early lags in our experiment. Second, it is important to
note that the reduction in relative subjective visibility can also be
observed at Lag 2 and perhaps also the beginning of the effect at
Lag 3, see Fig. 1c. The integration argument is however classically
ascribed specifically to Lag 1 and not later lags, in which there are
intervening distractors.

Third, we have endeavoured to perform an analysis uncontam-
inated by integration trials. This is presented as the fourth anal-
ysis in Supplementary Material C of Pincham et al. (2016). Under
this analysis, the interaction effect between measure type (report
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accuracy and subjective visibility) and lag remained significant.
This is strong evidence that our findings are not explainable by
integrated percepts at Lag 1.

Fourth, the ERP findings do not obviously fit with the inte-
grated percept explanation. In this context, the critical condition
is T2 correct/low visibility, since this is the disparity case (T2
was correctly reported but was poorly perceived consciously). The
prevalence of these trials at Lag 1 is what causes the relative
reduction in subjective visibility at that serial position. If percep-
tual integration were characteristic of this phenomenon at Lag 1,
wewould expect to see an ERP reflecting this integration. The obvi-
ous candidate pattern for this situation is a relatively short but
relatively high-amplitude P3, and indeed, this is the pattern nor-
mally observed for T1 and T2 correct versus T1 and not T2 correct
at Lag 1 (see, e.g. Craston et al. 2009, Fig. 7). The slightly higher
amplitude arises because T1 and T2 are being encoded at the same
time, and the relatively short positive deflection (not much longer
than for T1 and not T2) arises from the simultaneity of encod-
ing, i.e. T2 does not have to wait for T1 to be encoded, which
would generate a very long positive deflection. Importantly, the
ERP we observe for T2 correct/low visibility, see Fig. 6, Panel A
of Pincham et al. (2016), does not follow this classic integration
pattern. In particular, the initial positive (P3) deflection for T2
correct/low visibility is very low amplitude, and indeed, smaller
than that for the other conditions in Fig. 6, Panel A of Pincham
et al. (2016). This does not look like a characteristic integration
pattern.

Fifthly, a reason for believing that perceptual integration is
unlikely to explain our findings is that it seems T1 is immune to
the decoupling of report accuracy and subjective visibility. Specif-
ically, a second study was reported in Jones et al. (2020), in which
we collected subjective visibility ratings for both T1 and T2. As a
result, we were able to provide evidence that there is not a disso-
ciation of report accuracy and subjective visibility for T1, i.e. Jones
et al. (2020) failed to find an interaction between Report Measure
(report accuracy vs subjective visibility) and Lag (and also identi-
fied a monotonic state-trace pattern for T1, which also suggests
that report accuracy and subjective visibility were coupled for T1
at Lag 1).

This T1 immunity to the report accuracy–visibility dissocia-
tion stands against a perceptual/event integration interpretation.
This is because, at its very heart, event integration suggests that
a composite of T1 and T2 is experienced. However, if that were
the case, one would surely expect any impairment in T2 visibil-
ity associated with that composite to also impact T1. In other
words, ‘if one is going to argue that T2 subjective visibility being
low at Lag 1 is due to a confused “joint” binding, why would that
decoupling of subjective visibility and report accuracy not also
impact T1’?

Additionally, of course, the immunity of T1 to the report
accuracy–subjective visibility dissociation suggests that the rela-
tionship between working memory encoding and conscious per-
ception is unchanged across lags and, notably, that co-activation
of T1 with T2 (as it occurs at very short lags) does not impair the
conscious experience of T1, in the way it does T2. This finding is
wholly consistent with the serial experience interpretation we are
arguing for in this paper. That is, at very short lags, particularly
Lag 1, T1 typically starts being perceived before T2 does, confer-
ring it occupancy of the exclusive ‘focus of conscious experience’,
and the, late coming, T2 is excluded. This manifests in a, relative
(to report accuracy), loss of visibility for T2 but not for T1, which
is what we observe. In other words, the T1 claims ‘the brain’s
experiencer’ before T2 arrives and holds it until T2 has decayed,

but there is no such exclusivity to the encoding into working
memory.

Overall, this set of arguments would seem to counter the pos-
sibility that an integrated percept at Lag 1 explains our findings
and also stand against the obvious analogue of the response-bias
explanation of blindsight.

Experience at Lag 1
Another study that informs the nature of experience at Lag 1
is Recht et al. (2019). They assessed both report accuracy and
confidence across lags of an AB paradigm. They found that confi-
dence tracked report accuracy at all lags apart from Lag 1 (and
perhaps also at Lag 2), with confidence as low at Lag 1 as at
Lag 2, despite substantial Lag-1 sparing for accuracy (see Fig. 3a
of Recht et al.). If one puts the difference in Type-2 measures
(confidence vs subjective visibility) aside, these findings are fully
consistent with the difference between the attentional and expe-
riential blink highlighted in Pincham et al. (2016) and Jones et al.
(2020). However, interestingly, Recht et al. did not fully replicate
the meta-experiential blink reported here, with meta-experience
larger at Lag 1 than Lag 2 (see Fig. 3c of Recht et al.). These dif-
ferences may arise because Recht et al. (2019) used confidence as
a type-2 measure rather than subjective visibility. Additionally,
they employed a different AB paradigm: a conjunction paradigm
(Botella et al. 2001; Chennu et al. 2011) in which all items pre-
sented in the stream could be reported, with targets marked by
an annulus (Vul et al. 2008).

Illusory percepts
A potentially interesting phenomenon associated with the meta-
experiential blink can be observed by comparing the high-visibility
curves in Panels a and c of Fig. 6. In particular, for high visi-
bility, we observe, at least visually, a blink of bits (Panel a) but
apparently not of accuracy (Panel c). Importantly, while in per-
ceptually undemanding contexts high accuracy would typically
co-occur with high information, the two measures can diverge.
A canonical example would be illusory percepts; these are incor-
rect responses, suggesting low accuracy, but as long as the illusory
percept consistently generates the same response (even if wrong),
this could lead to high MI. That is, MI is just a measure of the sys-
tematicity of responding, not of whether that responding is, per
se, correct. Thus, it is possible that the increase in information
extracted at Lag 1 compared to Lag 3 for high visibility reflects
an increase in illusory perception, which would be quite plau-
sible, since Lag-1 percepts are perhaps uniquely unusual, since
two targets are being presented at almost exactly the same time
(Hommel and Akyürek 2005; Simione et al. 2017). In further work
on this issue, it would be important to rule out the possibility
that this effect results from a ceiling effect for accuracy in high
visibility.

Theories of the attentional blink
A central observation made in Wyble et al. (2009) is that while
(report accuracy) performance is high at Lag 1 (i.e. there is Lag-
1 sparing), it comes at a cost. The cost discussed in that paper was
a loss of episodic distinctiveness (e.g. an increase in order errors
and feature misbindings). This observation of a cost at Lag 1 is
pivotal to the line of argument that the AB is a functionally use-
ful mechanism, which (at Lags 2, 3 and 4) prevents episodic errors
(Wyble et al. 2009, 2011). Indeed, this argument underlies the STST
explanation of the AB.

The demonstration of an experiential blink (Pincham et al.
2016) suggests that there is a further cost at Lag 1, but it is
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experiential—the T2 has low visibility. The identification of a
meta-experiential blink takes this even further, by suggesting
that there is an even further cost, but this is meta-experiential—
visibility is decoupled from objective report. Furthermore, the
meta-experiential cost at Lag 1 seems to be evenmore severe than
the experiential cost—compare the decline from Lag 2 to Lag 1 in
the green curves and purple curve in Fig. 7.

This all provides support for the basic position that there is
a substantial cost at Lag 1, not only episodic but also subjective
and, indeed, meta-subjective. This provides further support for
the principles underlying the STST theory of the AB (Bowman and
Wyble 2007).

Readout-enhanced STST
Despite no changes having been made to the core STST model, its
readout enhancement generates a pattern of data that matches
well to the human visibility data (see Fig. 8).

Another way to consider the readout mechanism added to
STST and its implementation of the SESE idea is that what we
are observing reflects the unity of conscious experience (Bayne
2010). That is, we can encode into working memory in parallel,
since it is not subject to the same unity constraint. However, con-
scious percepts are in some sense serial—we have to complete
one before we start the next. This is exactly the exclusivity mech-
anism associated with the meta-level additions of reSTST; c.f.
Fig. 3.

New findings reported in Alilović et al. (2021) give further cre-
dence to the SESE hypothesis. Alilovic et al. report an AB study,
which through decoding is able to isolate the T1 and T2 (as well
as distractor) responses at Lag 1 (in typical ERP work, the Lag-1
T1 and T2 present as a conjoint ERP response). The key compar-
ison shown in Fig. 9a is between the decoded representation for
T1 (blue trace) and T2 (green trace). If one interprets these decod-
ing traces as indexing subjective experience, as we have argued is
the case for the P3 (Pincham et al. 2016), then what is observed
in Fig. 9a is exactly what we would expect to observe. That is,
the decoded representation for T2 is much smaller than for T1,
consistent with the low visibility observed for T2 at Lag 1 but not
report accuracy (see Fig. 9b). Perhaps most strikingly, there is a
sharp transition between the decoded representation for T1 and
T2 at Lag 1, suggesting serial experience, i.e. the T2 can only start
being experienced when the T1 has finished. However, further
work needs to understand the relationship between decoded rep-
resentations of the kind reported in Alilović et al. (2021) and P3s,
which typically have a longer latency and also changes in ampli-
tudes of decoding responses that seem to obtain as one progresses
along an RSVP stream.

The identification of a serial experience pattern resonates with
a number of previous findings. For example, Marti et al. (2010)
provided evidence that participants’ introspections during the
psychological refractory period are blind to the T2 presentation,
while the T1 is being centrally processed. In other words, the T2
cannot start to be experienced until the T1 has finished.

Postdictive effects and retro-perception
The work presented in this paper is relevant to the current debate
concerning the nature of postdictive effects (Herzog et al. 2020);
i.e. effects of later-presented stimuli on the conscious perception
of earlier-presented stimuli. Sergent et al. (2013) and Sergent (2018)
are especially interesting examples of such effects.

In respect of postdictive effects, our use of the term percep-
tual moment is not intended to imply a fixed-length window of

integration. Indeed, the central idea of the reSTST model is that
the length of integration windows is determined by the length of
trains of salient stimuli in the environment. This is how themodel
is able to simulate the findings on ‘spreading the sparing’ in the
AB (Wyble et al. 2009, 2011), whereby the sparing window can be
extended out from Lag 1 to longer sequences of unbroken targets.

In fact, in many respects, the two-stage model of STST is sim-
ilar to the informal two-stage theory of postdiction proposed by
Herzog et al. (2020). In particular, STST incorporates an extended
(across a number of 100s of milliseconds) integration period in
stage one, followed by conscious perceptual episodes in stage two,
which are (when episodes are sufficiently separated) associated
with discrete tokens.

An important further aspect that STST emphasizes is the
distinction between integrable and non-integrable stimuli pre-
sented during the perceptual moment. In RSVP, perception in the
Lag-1 window seems to be dramatically different when the tar-
gets can and cannot be meaningfully integrated. In the former
case, Akyurek and co-workers have run a range of experiments,
with two targets presented at Lag 1 that can be combined into
another potential target, e.g. Hommel and Akyürek (2005). In this
case, the brain tends to experience the integrated percept and
does so vividly (Simione et al. 2017). In contrast, in the latter
case, which would correspond to a standard Lag-1 presentation,
as we have shown here, the T2 is strongly encoded but poorly
experienced.

Amongst postdictive effects, it is especially interesting to con-
sider how the STST framework would explain retro-cueing of per-
ception (Sergent et al. 2013), i.e. the capacity to induce perception
of a previously presented target by presenting a (retro-) cue STST
exhibits visual persistence in its first stage, with the Masking layer
implementing an analogue of Iconic memory and the Item layer
a more persistent higher-level memory, which might be related
to Fragile memory (Sligte et al. 2008). Thus, although not cur-
rently implemented, one could envisage a cueingmechanism that
caused an enhancement of an existing (target) activation trace,
propelling the corresponding representation into stage two and
awareness.

Also, Sergent et al. failed to find any evidence for blindsight,
which may seem to stand against our highlighting of the pos-
sibility of sight-blind recall. However, a difference between our
experiential and meta-experiential Lag-1 effects and the retro-
perception effects identified in Sergent et al. (2013) is that the two
stimuli presented in the same ‘moment’ are both targets at Lag 1,
while being a target and a (retro-) cue in retro-perception. Thus,
the task being performed by the brain is somewhat different; in
particular, Lag 1 requires two discriminating encodings, sufficient
for identification report.

In Sergent (2018), a proposal is made for the brain’s sensory
processing and conscious perception streams. This is proposed at
least in part to explain postdictive and particularly Sergent’s retro-
perception findings. There are many aspects of this proposal that
are consistent with the STST framework. Supplementary Material
4 directly explains how each point in Sergent’s (2018) proposal is
realized by the STST framework.

Relationship to other models of self-observation
Meta-experiential self-observation is common to many mod-
els, including connectionist interpretations of consciousness
(Cleeremans 2014), Bayesian observers (Fleming 2020) and the
reSTST model (Jones 2020). In the case of the Bayesian HOSS
(Fleming 2020), a higher-order node encodes a low-dimensional,
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Figure 9. AB decoding results from Alilović et al. (2021), providing independent evidence for the SESE hypothesis. (a) Decoding of the T2 response
(in green) is substantially weaker than the decoding of the T1 (in blue), with periods of significance indicated with coloured horizontal lines. There is a
sharp transition, with no overlap of significance between T1 and T2, suggesting serial experience. (b) In striking contrast, consistent with Lag-1
sparing, T2 report accuracy is substantially higher than T1 report accuracy, suggesting simultaneous encoding. Panel a is reproduced with permission
from Alilović et al. (2021), copyright Academic Press.

abstract signal of the presence or absence of perceptual content
in lower layers of the network. Awareness reports are then gov-
erned by second-order (metacognitive) inference about the state of
a first-order (perceptual) network. Such an architecture is closely
aligned with the current extension of reSTST, in which a meta
level encodes a low-dimensional visibility signal ‘extracted from’
first-order content. However, as currently formulated, reSTST is
not Bayesian and, as a result, does not implement a generative
model of perception, as is central to HOSS.

Relationship to global workspace
The global workspace is a key theory of conscious perception. The
original neuronal global workspace (NGW) model was presented
as a theoretical explanation of the AB (Dehaene et al. 2003), which
was based upon a direct competition between T1 and T2. This can
be seen in Fig. 10a (see Areas c and d). The STSTmodel of Bowman
and Wyble (2007) and Wyble et al. (2009) stands in contrast to the
NGW. This is the ‘simultaneous’ in Simultaneous Type. That is, the
original STST model does not assume a fundamental representa-
tional constraint meaning that only one target can be represented
at a time, with competition between T1 and T2 employed to
enforce such an exclusivity constraint. Rather, STST interprets
the AB as a functionally ‘deliberate’ mechanism, whereby the
T2 is ‘held-out’ (by withholding attentional enhancement), while
the T1 is encoded into working memory (Bowman and Wyble
2007; Bowman et al. 2008), and this is done specifically to pre-
vent a confused agglomerated encoding of T1 and T2 together.
Thus, as discussed earlier, the AB is viewed as an adaptive
mechanism that ensures the ‘episodic distinctiveness’ of encod-
ing into working memory, in particular that T1 is encoded as a
distinct item.

The difference between these two interpretations—
competition (capacity-limited) vs preserving episodic distinctive-
ness—really bites at Lag 1. This is because report accuracy at Lag
1 suggests that T1 and T2 can in fact be successfully encoded
together, i.e. simultaneously. STST interprets this as an episodic

‘failure’ of the system, with the cost of a loss of episodic distinc-
tiveness (e.g. high-order or conjunction errors), c.f. Sparing at a
Cost (Wyble et al. 2009), although we can now see that there is
also an experiential and meta-experiential cost.

Competitive interpretations, however, struggle with the Lag-
1 data point, since it should be the point at which T1 and T2
compete the most, but why then is performance typically high on
both T1 and T2? [Note that Dehaene et al. (2003) exhibit sparing
at Lag 0 (T1 and T2 presented simultaneously)—a presentation
of stimuli that is not performed in typical RSVP—and a deepest
point of the blink at an SOA where sparing is normally observed;
c.f. Fig. 10b].

A possible resolution of this difference between models would
be that at very short lags (around a T1–T2 onset asynchrony
of 100ms) working memory encoding is simultaneous and non-
competitive, in the sense of the classic STSTmodel, but subjective
visibility is more consistent with a competitive pattern of data.
This is the simultaneous encoding but serial experience idea.
Thus, while the STST framework models both these cases, it may
be that the original NGW is conceptually a better model of expe-
rience (which is actually more consistent with its original focus)
and, even, meta-experience than the classic (objective) encoding
blink.

There is a further sense to which our findings may have impli-
cations for the global workspace theory of conscious perception.
The dissociation we have identified here [and in Pincham et al.
(2016) and Jones et al. (2020)] between report accuracy and sub-
jective visibility at Lag 1 suggests that access and conscious expe-
rience are not synonymous and, specifically, that there can be
access (recall from working memory) without conscious experi-
ence [note that phenomenological awareness would amount to
conscious experience without access (Block 2007), i.e. the other
direction of implication]. Indeed, access without awareness is
implicit in the non-conscious working memory theory in gen-
eral (Soto et al. 2011; Soto and Silvanto 2014; Trübutschek et al.
2017). Consistent with the P3 findings in Pincham et al. (2016),
this then suggests that the brain-scale state that corresponds



16 Bowman et al.

Figure 10. The original NGW model and simulated data. (a) Feedforward connectivity of model shown as extrinsic connectivity between cortical
columns. The mechanism that generates the AB is the lateral inhibition (connections with filled black circles) between T1 and T2 cortical columns in
Areas c and d. (b) Blink curve generated by original NGW model. Y-axis is T2 correct. Reprinted from Dehaene et al. (2003), with permission, copyright
(2003) National Academy of Sciences, U.S.A.

to the global workspace is engaged by conscious experience
but is not necessary for working memory encoding and thus
access.

Indeed, our findings could be seen to inform the debate
between global workspace and HOT theories of conscious per-
ception. In particular, some may argue that the SESE idea,
which at short lags implies encoding of T2s without their experi-
ence, suggests that first-order representations in working mem-
ory are not enough to generate experience. Something else is
required for experience, and that other thing would naturally
be viewed as meta-level self-observation, as suggested by HOT
theories.

Activation-silent working memory maintenance
A decision made very early in the development of the STST the-
ory and discussed in Bowman and Wyble (2007) was to develop
an activation-based rather than synaptic change-based theory of
working memory. This was because of the rapid presentation of
stimuli in RSVP and the resulting requirement that encoding is
rapid. We felt that such rapid encoding was unlikely to be car-
ried by synaptic change. In particular, in RSVP, stimuli are only
very briefly presented and are masked by early and later stream
items. It seemed to us unlikely that such fleeting representations
could induce synaptic change under e.g. Hebbian learning. This
may seem to place us at odds with the ‘activity-silent’ proposals
(Mongillo et al. 2008; Stokes 2015) that are currently prominent in
WM research.

Notably, the ‘activity-silent’ theories are typically justified by
experimental evidence that does not involve the fleeting (fringe
of awareness) presentation of stimuli that is inherent to RSVP
[however, masked stimuli were explored in Trübutschek et al.
(2017)].

This said, it is possible that the STST perspective on WM could
be reconciled with the observations underlying the activation-
silent theory.

1)‘Sparse maintenance representation’: a central aspect of
STST emphasized in Bowman and Wyble (2007) is that the model
‘does not employ full active maintenance’. That is, the recogni-
tion circuitry for an item is freed up once it is encoded. This is
required in order for the brain to see repetitions. Indeed, STST pro-
poses that the representationmaintained is substantially reduced
compared to that required for recognition; indeed, one might
describe it as a sparse representation (Stokes 2015). This reduced

representation is sufficient to enable the full representation to
be reactivated, but it is not the full representation itself. Specif-
ically, based upon the gate-trace circuits introduced in Bowman
and Wyble (2007), the model assumes sustained activation just in
a small number of inhibitory interneurons, which commit a token
and a set of binding pool units. Furthermore, it may be that the
contribution of inhibitory neurons to recorded activity is small,
especially if these are limited in number, giving the impression of
activation-silent maintenance.

2)‘Hebbian Enhancement’: it would be possible to augment
the activation-based binding pool in STST with a plastic synap-
tic association, whichmight increase synaptic connections among
tokens, binding pool units and types using Hebbian learning.
These synaptic connections may progressively take over the rep-
resentation of WM bindings as the maintenance period extends.
This, however, would have consequences for the explanation of
WM capacity inherent to the STST approach, which focusses on
the binding pool as a capacity-limited binding resource that is
‘used up’ by items held in memory (Swan and Wyble 2014). Quite
how such a capacity limit could arise from synaptic change is
less apparent, where it is not completely clear what the lim-
ited resource would be. For example, long-term memory, which
is classically viewed as synapse-based, is not limited to a small
capacity.

More broadly, the reSTST theory presented here is largely
consistent with the findings in Trübutschek et al. (2017), which
presents an impressive magnetoencephalography (MEG) charac-
terization of the neural correlates of non-consciousworkingmem-
ory. In particular, Trübutschek et al. (2017) provide evidence
that WM (encoding and maintenance) with conscious perception
exhibits similar (high-amplitude) MEG signatures to conscious
perception, while WM without conscious perception exhibited
very little if any MEG response. In our work, it is difficult to isolate
the T2 evoked response, since a combined P3 is observed at Lag
1, but we have argued that presence–absence of the T2 P3 seems
to be driven by conscious perception rather than working mem-
ory encoding (Pincham et al. 2016). This is exactly what one would
expect from Trübutschek et al.’s (2017) findings.

Additionally, if we assume that the meta-level trace gener-
ated in the reSTST model is the main driver of the observed MEG
response, then ourmodel is also consistent with Trübutschek et al.
(2017). That is, encoding without conscious perception will, as
discussed in the previous paragraphs, generate sparse, potentially
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very difficult to image, representations, while conscious experi-
ence with associated WM encoding will generate a substantial
evoked signature.

Modelling in consciousness studies
Critical to arriving at a more theoretically informed phase of
consciousness studies is providing computationally explicit the-
ories that can be directly related to empirical findings in a
detailed fashion. This requires theories to be realized in a
computationally and/or mathematically precise manner, ver-
ifying those models against existing empirical evidence and
providing testable predictions to ‘close the loop’ of empirical
science.

One particular objective of this paper was to provide a case
study in computational modelling in consciousness studies. In
this respect, we have taken an existing neural network model that
was originally formulated as a model of attention and working
memory encoding and added a readout mechanism that enables
it to model conscious experience and indeed meta-experience.
Importantly, we did not adapt the parameters of the original
model. We then showed that the model can, with a good deal
of qualitative accuracy, fit behavioural and EEG data showing an
interesting dissociation between objective performance and sub-
jective experience. Such direct matching to observed findings is
critical to the well-grounded forward progress of a field such as
consciousness studies.

Additionally, in order to distinguish between different poten-
tial theories and computational models of a set of experimental
findings, it is critical that predictions from computational models
are fed-back to experimentalists. Furthermore, counter-intuitive
predictions are especially important in this respect, since they
are likely to only be true if the model making them is true—
consider e.g. the empirical effort to verify general relativity by
observing the position of stars during an eclipse (Coles 2001). In
this spirit, we finishwith the following predictions arising from the
reSTSTmodel, versions of which were also presented in Jones et al.
(2020).

As a reflection of serial experience, the first prediction is that
the P3 at Lag 1 does not have the form of a double-‘amplitude’
single-target P3. Note that the vanilla STST, without readout
enhancement, does generate a double-amplitude P3 at Lag 1, see
Fig. 7 of Craston et al. (2009). Critically, it is important to rule
out the possibility that the observed Lag-1 P3 is reduced in ampli-
tude because it is at ceiling. That is, the specific prediction is that
the Lag-1 P3 is a similar amplitude to a single-target P3, and the
distribution of P3s observed is not skewed according to a ceiling
effect. The second prediction that the SESE P3 readout mech-
anism proposes is that the SSVEP weakens or even completely
de-synchronizes during the P3. This is because if one asserts that
an ongoing P3 for a target excludes the activation trace for another
target, it should also exclude or dampen the activation traces of
distractors (which drive the steady-state response). Clearly, the
SSVEP is at least partially from generators substantially earlier in
the processing pathway than those that might directly drive the
P3. Nonetheless, some sort of reduction in the power of the SSVEP
may be observable.

Supplementary data
Supplementary data are available at NCONSC online.

Data availability
Data are available on request.
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