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Abstract: Over the last six decades, the representation of error exponent functions for data transmis-
sion through noisy channels at rates below capacity has seen three distinct approaches: (1) Through
Gallager’s E0 functions (with and without cost constraints); (2) large deviations form, in terms of
conditional relative entropy and mutual information; (3) through the α-mutual information and the
Augustin–Csiszár mutual information of order α derived from the Rényi divergence. While a fairly
complete picture has emerged in the absence of cost constraints, there have remained gaps in the
interrelationships between the three approaches in the general case of cost-constrained encoding.
Furthermore, no systematic approach has been proposed to solve the attendant optimization prob-
lems by exploiting the specific structure of the information functions. This paper closes those gaps
and proposes a simple method to maximize Augustin–Csiszár mutual information of order α under
cost constraints by means of the maximization of the α-mutual information subject to an exponential
average constraint.

Keywords: information measures; relative entropy; Rényi divergence; mutual information;
α-mutual information; Augustin–Csiszár mutual information; data transmission; error exponents;
large deviations

1. Introduction
1.1. Phase 1: The MIT School

The capacity C of a stationary memoryless channel is equal to the maximal symbol-
wise input–output mutual information. Not long after Shannon [1] established this result,
Rice [2] observed that, when operating at any encoding rate R ă C, there exist codes
whose error probability vanishes exponentially with blocklength, with a speed of decay
that decreases as R approaches C. This early observation moved the center of gravity of
information theory research towards the quest for the reliability function, a term coined by
Shannon [3] to refer to the maximal achievable exponential decay as a function of R. The
MIT information theory school, and most notably, Elias [4], Feinstein [5], Shannon [3,6],
Fano [7], Gallager [8,9], and Shannon, Gallager and Berlekamp [10,11], succeeded in up-
per/lower bounding the reliability function by the sphere-packing error exponent function
and the random coding error exponent function, respectively. Fortunately, these functions
coincide for rates between C and a certain value, called the critical rate, thereby determin-
ing the reliability function in that region. The influential 1968 textbook by Gallager [9]
set down the major error exponent results obtained during Phase 1 of research on this
topic, including the expurgation technique to improve upon the random coding error expo-
nent lower bound. Two aspects of those early works (and of Dobrushin’s contemporary
papers [12,13] on the topic) stand out:

(a) The error exponent functions were expressed as the result of the Karush-Kuhn-
Tucker optimization of ad-hoc functions which, unlike mutual information, carried
little insight. In particular, during the first phase, center stage is occupied by the
parametrized function of the input distribution PX and the random transformation
(or “channel”) PY|X ,
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E0pρ, PXq “ ´ log
ÿ

yPB

˜

ÿ

xPA
PXpxqP

1
1`ρ

Y|X py|xq

¸1`ρ

, (1)

introduced by Gallager in [8].
(b) Despite the large-deviations nature of the setup, none of the tools from that then-

nascent field (other than the Chernoff bound) found their way to the first phase of the
work on error exponents; in particular, relative entropy, introduced by Kullback and
Leibler [14], failed to put in an appearance.

To this date, the reliability function remains open for low rates even for the bi-
nary symmetric channel, despite a number of refined converse and achievability results
(e.g., [15–21]) obtained since [9]. Our focus in this paper is not on converse/achievability
techniques but on the role played by various information measures in the formulation of
error exponent results.

1.2. Phase 2: Relative Entropy

The second phase of the error exponent research was pioneered by Haroutunian [22]
and Blahut [23], who infused the expressions for the error exponent functions with meaning
by incorporating relative entropy. The sphere-packing error exponent function correspond-
ing to a random transformation PY|X is given as

EsppRq “ sup
PX

min
QY|X : AÑ B

IpPX , QY|Xq ď R

DpQY|X}PY|X|PXq. (2)

Roughly speaking, optimal codes of rate R ă C incur in errors due to atypical chan-
nel behavior, and large deviations establishes that the overwhelmingly most likely such
behavior can be explained as if the channel would be supplanted by the one with mutual
information bounded by R which is closest to the true channel in conditional relative
entropy DpQY|X}PY|X|PXq. Within the confines of finite-alphabet memoryless channels,
this direction opened the possibility of using the combinatorial method of types to obtain
refined results robustifying the choice of the optimal code against incomplete knowledge
of the channel. The 1981 textbook by Csiszár and Körner [24] summarizes the main results
obtained during Phase 2.

1.3. Phase 3: Rényi Information Measures

Entropy and relative entropy were generalized by Rényi [25], who introduced the
notions of Rényi entropy and Rényi divergence of order α. He arrived at Rényi entropy by
relaxing the axioms Shannon proposed in [1], and showed to be satisfied by no measure but
entropy. Shortly after [25], Campbell [26] realized the operational role of Rényi entropy in
variable-length data compression if the usual average encoding length criterion Er`pcpXqqs
is replaced by an exponential average α´1 logErexppα `pcpXqqs. Arimoto [27] put forward
a generalized conditional entropy inspired by Rényi’s measures (now known as Arimoto-
Rényi conditional entropy) and proposed a generalized mutual information by taking
the difference between Rényi entropy and the Arimoto-Rényi conditional entropy. The
role of the Arimoto-Rényi conditional entropy in the analysis of the error probability of
Bayesian M-ary hypothesis testing problems has been recently shown in [28], tightening
and generalizing a number of results dating back to Fano’s inequality [29].
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Phase 3 of the error exponent research was pioneered by Csiszár [30] where he es-
tablished a connection between Gallager’s E0 function and Rényi divergence by means
of a Bayesian measure of the discrepancy among a finite collection of distributions intro-
duced by Sibson [31]. Although [31] failed to realize its connection to mutual information,
Csiszár [30,32] noticed that it could be viewed as a natural generalization of mutual infor-
mation. Arimoto [27] also observed that the unconstrained maximization of his generalized
mutual information measure with respect to the input distribution coincides with a scaled
version of the maximal E0 function. This resulted in an extension of the Arimoto-Blahut
algorithm useful for the computation of error exponent functions [33] (see also [34]) for
finite-alphabet memoryless channels.

Within Haroutunian’s framework [22] applied in the context of the method of types,
Poltyrev [35] proposed an alternative to Gallager’s E0 function, defined by means of a
cumbersome maximization over a reverse random transformation. This measure turned
out to coincide (modulo different parametrizations) with another generalized mutual
information introduced four years earlier by Augustin in his unpublished thesis [36], by
means of a minimization with respect to an output probability measure.

The key contribution in the development of this third phase is Csiszár’s paper [32]
where he makes a compelling case for the adoption of Rényi’s information measures in the
large deviations analysis of lossless data compression, hypothesis testing and data trans-
mission. Recall that more than two decades earlier, Csiszár [30] had already established
the connection of Gallager’s E0 function and the generalized mutual information inspired
by Sibson [31], which, henceforth, we refer to as the α-mutual information. Therefore,
its relevance to the error exponent analysis of error correcting codes had already been
established. Incidentally, more recently, another operational role was found for α-mutual
information in the context of the large deviations analysis of composite hypothesis test-
ing [37]. In addition to α-mutual information, and always working with discrete alphabets,
Csiszár [32] considers the generalized mutual informations due to Arimoto [27], and to
Augustin [36], which we refer to as the Augustin–Csiszár mutual information of order α.
Csiszár shows that all those three generalizations of mutual information coincide upon their
unconstrained maximization with respect to the input distribution. Further relationships
among those Rényi-based generalized mutual informations have been obtained in recent years
in [38–45]. In [32] the maximal α-mutual information or generalized capacity of order α
finds an operational characterization as a generalized cutoff rate–an equivalent way to
express the reliability function. This would have been the final word on the topic if it
weren’t for its limitation to discrete-alphabet channels, and more importantly, encoding
without cost constraints.

1.4. Cost Constraints

If the transmitted codebook is cost-constrained, i.e., every codeword pc1, . . . , cnq is
forced to satisfy

řn
i“1 bpciq ď n θ for some nonnegative cost function bp¨q, then the channel

capacity is equal to the input–output mutual information maximized over input probability
measures restricted to satisfy ErbpXqs ď θ. Gallager [9] incorporated cost constraints in his
treatment of error exponents by generalizing (1) to the function

E0pρ, PX , r, θq “ ´ log
ÿ

yPB

˜

ÿ

xPA
PXpxq exppr bpxq ´ r θqP

1
1`ρ

Y|X py|xq

¸1`ρ

, (3)

with which he was able to prove an achievability result invoking Shannon’s random coding
technique [1]. Gallager also suggested in the footnote of page 329 of [9] that the converse
technique of [10] is amenable to extension to prove a sphere-packing converse based on
(3). However, an important limitation is that that technique only applies to constant-
composition codes (all codewords have the same empirical distribution). A more powerful
converse circumventing that limitation (at least for symmetric channels) was given by [46]
also expressing the upper bound on the reliability function by optimizing (3) with respect
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to ρ, r and PX . A notable success of the approach based on the optimization of (3) was the
determination of the reliability function (for all rates below capacity) of the direct detection
photon channel [47].

In contrast, the Phase Two expression (2) for the sphere-packing error exponent for
cost-constrained channels is much more natural and similar to the way the expression
for channel capacity is impacted by cost constraints, namely we simply constrain the
maximization in (2) to satisfy ErbpXqs ď θ. Unfortunately, no general methods to solve the
ensuing optimization have been reported.

Once cost constraints are incorporated, the equivalence among the maximal α-mutual
information, maximal order-α Augustin–Csiszár mutual information, and maximal Ari-
moto mutual information of order α breaks down. Of those three alternatives, it is the
maximal Augustin–Csiszár mutual information under cost constraints that appears in the
error exponent functions. The challenge is that Augustin–Csiszár mutual information is
much harder to evaluate, let alone maximize, than α-mutual information. The Phase 3
effort to encompass cost constraints started by Augustin [36] and was continued recently by
Nakiboglu [43]. Their focus was to find a way to express (3) in terms of Rényi information
measures. Although, as we explain in Item 62, they did not quite succeed, their efforts were
instrumental in developing key properties of the Augustin–Csiszár mutual information.

1.5. Organization

To enhance readability and ease of reference, the rest of this work is organized in
81 items, grouped into Section 13 and an appendix.

Basic notions and notation (including the key concept of α-response) are collected in
Section 2. Unlike much of the literature on the topic, we do not restrict attention to discrete
input/output alphabets, nor do we impose any topological structures on them.

The paper is essentially self-contained. Section 3 covers the required background
material on relative entropy, Rényi divergence of order α, and their conditional versions,
including a key representation of Rényi divergence in terms of relative entropies and a
tilted probability measure, and additive decompositions of Rényi divergence involving the
α-response.

Section 4 studies the basic properties of α-mutual information and order-α Augustin–
Csiszár mutual information. This includes their variational representations in terms of
conventional (non-Rényi) information measures such as conditional relative entropy and
mutual information, which are particularly simple to show in the main range of interest in
applications to error exponents, namely, α P p0, 1q.

The interrelationships between α-mutual information and order-α Augustin–Csiszár
mutual information are covered in Section 5, which introduces the dual notions of α-adjunct
and xαy-adjunct of an input probability measure.

The maximizations with respect to the input distribution of α-mutual information and
order-α Augustin–Csiszár mutual information account for their role in the fundamental
limits in data transmission through noisy channels. Section 6 gives a brief review of the
results in [45] for the maximization of α-mutual information. For Augustin–Csiszár mutual
information, Section 7 covers its unconstrained maximization, which coincides with its α-
mutual information counterpart. Section 8 proposes an approach to find Cc

αpθq, the maximal
Augustin–Csiszár mutual information of order α P p0, 1q subject to ErbpXqs ď θ. Instead of
trying to identify directly the input distribution that maximizes Augustin–Csiszár mutual
information, the method seeks its xαy-adjunct. This is tantamount to maximizing α-mutual
information over a larger set of distributions.

Section 9 shows

ρCc
1

1`ρ
pθq “ min

rě0
max

PX
E0pρ, PX , r, θq, (4)

where the maximization on the right side is unconstrained. In other words, the minimax
of Gallager’s E0 function (3) with cost constraints is shown to be equal to the maximal
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Augustin–Csiszár mutual information, thereby bridging the existing gap between the Phase
1 and Phase 3 representations alluded to earlier in this introduction.

As in [48], Section 10 defines the sphere-packing and random-coding error exponent
functions in the natural canonical form of Phase 2 (e.g., (2)), and gives a very simple proof
of the nexus between the Phase 2 and Phase 3 representations, namely,

EsppRq “ sup
ρě0

"

ρCc
1

1`ρ
pθq ´ ρ R

*

, (5)

with or without cost constraints. In this regard, we note that, although all the ingredients
required were already present at the time the revised version of [24] was published three
decades after the original, [48] does not cover the role of Rényi’s information measures in
channel error exponents.

Examples illustrating the proposed method are given in Sections 11 and 12 for the
additive Gaussian noise channel under a quadratic cost function, and the additive exponen-
tial noise channel under a linear cost function, respectively. Simple parametric expressions
are given for the error exponent functions, and the least favorable channels that account
for the most likely error mechanism (Section 1.2) are identified in both cases.

2. Relative Information and Information Density

We begin with basic terminology and notation required for the subsequent development.

1. If pA, F , Pq is a probability space, X „ P indicates PrX P F s “ PpFq for all F P F .
2. If probability measures P and Q defined on the same measurable space pA, F q satisfy

PpAq “ 0 for all A P F such that QpAq “ 0, we say that P is dominated by Q, denoted
as P ! Q. If P and Q dominate each other, we write P !" Q. If there is an event
such that PpAq “ 0 and QpAq “ 1, we say that P and Q are mutually singular, and
we write P K Q.

3. If P ! Q, then dP
dQ is the Radon-Nikodym derivative of the dominated measure P with

respect to the reference measure Q. Its logarithm is known as the relative information,
namely, the random variable

ıP}Qpaq “ log
dP
dQ
paq P r´8,`8q, a P A. (6)

As with the Radon-Nikodym derivative, any identity involving relative informations
can be changed on a set of measure zero under the reference measure without in-
curring in any contradiction. If P ! Q ! R, then the chain rule of Radon-Nikodym
derivatives yields

ıP}Qpaq ` ıQ}Rpaq “ ıP}Rpaq, a P A. (7)

Throughout the paper, the base of exp and log is the same and chosen by the reader
unless explicitly indicated otherwise. We frequently define a probability measure P
from the specification of ıP}Q and Q " P since

PpAq “
ż

A
exp

´

ıP}Qpaq
¯

dQpaq, A P F . (8)

If X „ P and Y „ Q, it is often convenient to write ıX}Ypxq instead of ıP}Qpxq. Note that

E
”

exp
´

ıX}YpYq
¯ı

“ 1. (9)
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Example 1. If X „ N
`

µX , σ2
X
˘

(Gaussian with mean µX and variance σ2
X) and Y „

N
`

µY, σ2
Y
˘

, then,

ıX}Ypaq “
1
2

log
σ2

Y
σ2

X
`

1
2

˜

pa´ µYq
2

σ2
Y

´
pa´ µXq

2

σ2
X

¸

log e. (10)

4. Let pA, F q and pB, G q be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : AÑ B denotes a random transformation
from pA, F q to pB, G q, i.e. for any x P A, PY|X“xp¨q is a probability measure on pB, G q,
and for any B P G , PY|X“¨pBq is an F -measurable function.

5. We abbreviate by PA the set of probability measures on pA, F q, and by PAˆB the
set of probability measures on pA ˆ B, F b G q. If P P PA and PY|X : A Ñ B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X P PAˆB (or, interchangeably, PY|XP). The notation P Ñ PY|X Ñ Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q P PB , namely,

QpBq “
ż

PY|XpB|xqdPXpxq “ E
”

PY|XpB|Xq
ı

, B P G . (11)

6. If PX Ñ PY|X Ñ PY and PY|X“a ! PY, the information density ıX;Y : AˆB Ñ r´8,8q
is defined as

ıX;Ypa; bq “ ıPY|X“a}PY
pbq, pa, bq P Aˆ B. (12)

Following Rényi’s terminology [49], if PXPY|X ! PX ˆ PY, the dependence between
X and Y is said to be regular, and the information density can be defined on px, yq P
Aˆ B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X “ Y P R, then PY|X“apAq “ 1ta P Au, and their dependence is not regular, since

for any PX with non-discrete components PXY
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Example 1. If X ∼ N
(
µX , σ2

X
)

(Gaussian with mean µX and variance σ2
X) and Y ∼

N
(
µY, σ2

Y
)
, then,

ıX‖Y(a) =
1
2

log
σ2

Y
σ2

X
+

1
2

(
(a− µY)

2

σ2
Y

− (a− µX)
2

σ2
X

)
log e. (10)

4. Let (A, F ) and (B, G ) be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : A → B denotes a random transformation
from (A, F ) to (B, G ), i.e. for any x ∈ A, PY|X=x(·) is a probability measure on
(B, G ), and for any B ∈ G , PY|X=·(B) is an F -measurable function.

5. We abbreviate by PA the set of probability measures on (A, F ), and by PA×B the
set of probability measures on (A× B, F ⊗ G ). If P ∈ PA and PY|X : A → B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X ∈ PA×B (or, interchangeably, PY|XP). The notation P → PY|X → Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q ∈ PB , namely,

Q(B) =
∫

PY|X(B|x)dPX(x) = E
[

PY|X(B|X)
]
, B ∈ G . (11)

6. If PX → PY|X → PY and PY|X=a � PY, the information density ıX;Y : A × B →
[−∞, ∞) is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (12)

Following Rényi’s terminology [49], if PXPY|X � PX × PY, the dependence between
X and Y is said to be regular, and the information density can be defined on (x, y) ∈
A × B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X = Y ∈ R, then PY|X=a(A) = 1{a ∈ A}, and their dependence is not regular, since
for any PX with non-discrete components PXY 6� PX × PY.

7. Let α > 0, and PX → PY|X → PY. The α-response to PX ∈ PA is the output probability
measure PY[α] � PY with relative information given by

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (13)

where κα is a scalar that guarantees that PY[α] is a probability measure. Invoking (9),
we obtain

κα = α logE
[
E

1
α [exp(α ıX;Y(X; Ȳ))|Ȳ]

]
, (X, Ȳ) ∼ PX × PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to (·)α results in κα ≤ 0 for α ∈ (0, 1) and κα ≥ 0 for α > 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 = 0 and the 1-response to PX is PY. If pY[α] and pY|X denote the densities of PY[α]
and PY|X with respect to some common dominating measure, then (13) becomes

pY[α](y) = exp
(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]
, X ∼ PX . (15)

For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

PX ˆ PY.
7. Let α ą 0, and PX Ñ PY|X Ñ PY. The α-response to PX P PA is the output probability

measure PYrαs ! PY with relative information given by

ıYrαs}Ypyq “
1
α

logErexppα ıX;YpX; yq ´ καqs, X „ PX , (13)

where κα is a scalar that guarantees that PYrαs is a probability measure. Invoking (9),
we obtain

κα “ α logE
”

E
1
α rexppα ıX;YpX; Ȳqq|Ȳs

ı

, pX, Ȳq „ PX ˆ PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to p¨qα results in κα ď 0 for α P p0, 1q and κα ě 0 for α ą 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 “ 0 and the 1-response to PX is PY. If pYrαs and pY|X denote the densities of PYrαs
and PY|X with respect to some common dominating measure, then (13) becomes

pYrαspyq “ exp
´

´
κα

α

¯

E
1
α

”

pα
Y|Xpy|Xq

ı

, X „ PX . (15)

For α ą 1 (resp. α ă 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) “noise” than pY|X .
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8. We will have opportunity to apply the following examples.

Example 2. If Y “ X` N, where X „ N
`

µX , σ2
X
˘

independent of N „ N
`

µN , σ2
N
˘

, then
the α-response to PX is

Yrαs „ N
´

µX ` µN , α σ2
X ` σ2

N

¯

. (16)

Example 3. Suppose that Y “ X` N, where N is exponential with mean ζ, independent of
X, which is a mixed random variable with density

fXptq “
ζ

α µ
δptq `

ˆ

1´
ζ

α µ

˙

1
µ

e´t{µ 1tt ą 0u, (17)

with α µ ě ζ. Then, Yrαs, the α-response to PX , is exponential with mean α µ.

3. Relative Entropy and Rényi Divergence

Given a pair of probability measures pP, Qq P P2
A, relative entropy and Rényi diver-

gence gauge the distinctness between P and Q.

9. Provided P ! Q, the relative entropy is the expectation of the relative information
with respect to the dominated measure

DpP}Qq “ E
”

ıP}QpXq
ı

, X „ P (18)

“ E
”

exp
´

ıP}QpYq
¯

ıP}QpYq
ı

, Y „ Q (19)

ě 0, (20)

with equality if and only if P “ Q. If P ! Q, then DpP}Qq “ 8. As in Item 3, if
X „ P and Y „ Q, we may write DpX}Yq instead of DpP}Qq, in the same spirit that
the expectation and entropy of P are written as ErXs and HpXq, respectively.

10. Arising in the sequel, a common optimization in information theory finds, among the
probability measures satisfying an average cost constraint, that which is closest to a
given reference measure Q in the sense of Dp¨}Qq. For that purpose, the following
result proves sufficient. Incidentally, we often refer to unconstrained maximizations
over probability distributions. It should be understood that those optimizations are
still constrained to the sets PA or PB . As customary in information theory, we will
abbreviate maxPXPPA by maxX or maxPX .

Theorem 1. Let PZ P PA and suppose that g : A Ñ r0,8q is a Borel measurable
mapping. Then,

min
X
tDpX }Zq `ErgpXqsu “ ´ logErexpp´gpZqqs, (21)

achieved uniquely by P˚X !" PZ defined by

ıX˚}Zpaq “ ´gpaq ´ logErexpp´gpZqqs, a P A. (22)

Proof. Note that since g is nonnegative, η “ Erexpp´gpZqqs P p0, 1s. Furthermore,

ErgpX˚qs “
ş

gptq expp´gptqqdPZptq
Erexpp´gpZqqs

P

„

0,
1

e η



. (23)
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Therefore, the subset of PA for which the term in t¨u in (21) is finite is nonempty: Fix
any PX from that subset, (which therefore satisfies PX ! PZ ! P˚X) and invoke the
chain rule (7) to write

DpX }Zq `ErgpXqs “ E
”

ıX}X˚pXq ` ıX˚}ZpXq ` gpXq
ı

(24)

“ DpX }X˚q ´ logErexpp´gpZqqs, X „ PX , (25)

which is uniquely minimized by letting PX “ P˚X . Note that for typographical conve-
nience we have denoted X˚ „ P˚X .

11. Let p and q denote the Radon-Nikodym derivatives of probability measures P and
Q, respectively, with respect to a common dominating σ-finite measure µ. The Rényi
divergence of order α P p0, 1q Y p1,8q between P and Q is defined as [25,50]

DαpP}Qq “
1

α´ 1
log

ż

A
pαq1´αdµ (26)

“
1

α´ 1
logE

”

exp
´

α ıP}RpZq ` p1´ αqıQ}RpZq
¯ı

, Z „ R (27)

“
1

α´ 1
logE

”

exp
´

α ıP}QpYq
¯ı

, Y „ Q (28)

“
1

α´ 1
logE

”

exp
´

pα´ 1q ıP}QpXq
¯ı

, X „ P, (29)

where (28) and (29) hold if P
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Example 1. If X ∼ N
(
µX , σ2

X
)

(Gaussian with mean µX and variance σ2
X) and Y ∼

N
(
µY, σ2

Y
)
, then,

ıX‖Y(a) =
1
2

log
σ2

Y
σ2

X
+

1
2

(
(a− µY)

2

σ2
Y

− (a− µX)
2

σ2
X

)
log e. (10)

4. Let (A, F ) and (B, G ) be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : A → B denotes a random transformation
from (A, F ) to (B, G ), i.e. for any x ∈ A, PY|X=x(·) is a probability measure on
(B, G ), and for any B ∈ G , PY|X=·(B) is an F -measurable function.

5. We abbreviate by PA the set of probability measures on (A, F ), and by PA×B the
set of probability measures on (A× B, F ⊗ G ). If P ∈ PA and PY|X : A → B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X ∈ PA×B (or, interchangeably, PY|XP). The notation P → PY|X → Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q ∈ PB , namely,

Q(B) =
∫

PY|X(B|x)dPX(x) = E
[

PY|X(B|X)
]
, B ∈ G . (11)

6. If PX → PY|X → PY and PY|X=a � PY, the information density ıX;Y : A × B →
[−∞, ∞) is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (12)

Following Rényi’s terminology [49], if PXPY|X � PX × PY, the dependence between
X and Y is said to be regular, and the information density can be defined on (x, y) ∈
A × B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X = Y ∈ R, then PY|X=a(A) = 1{a ∈ A}, and their dependence is not regular, since
for any PX with non-discrete components PXY 6� PX × PY.

7. Let α > 0, and PX → PY|X → PY. The α-response to PX ∈ PA is the output probability
measure PY[α] � PY with relative information given by

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (13)

where κα is a scalar that guarantees that PY[α] is a probability measure. Invoking (9),
we obtain

κα = α logE
[
E

1
α [exp(α ıX;Y(X; Ȳ))|Ȳ]

]
, (X, Ȳ) ∼ PX × PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to (·)α results in κα ≤ 0 for α ∈ (0, 1) and κα ≥ 0 for α > 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 = 0 and the 1-response to PX is PY. If pY[α] and pY|X denote the densities of PY[α]
and PY|X with respect to some common dominating measure, then (13) becomes

pY[α](y) = exp
(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]
, X ∼ PX . (15)

For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

Q, and in (27), R is a probability measure that
dominates both P and Q. Note that (28) and (29) state that pt ´ 1qDtpX}Yq and
t D1`tpX}Yq are the cumulant generating functions of the random variables ıX}YpYq
and ıX}YpXq, respectively. The relative entropy is the limit of DαpP}Qq as α Ò 1, so it
is customary to let D1pP}Qq “ DpP}Qq. For any α ą 0, DαpP}Qq ě 0 with equality
if and only if P “ Q. Furthermore, DαpP}Qq is non-decreasing in α, satisfies the
skew-symmetric property

p1´ αqDαpP}Qq “ α D1´αpQ}Pq, α P r0, 1s, (30)

and

inf
αPp0,1q

DαpP}Qq “ 8 ðñ P K Q ùñ inf
αą1

DαpP}Qq “ 8. (31)

12. The expressions in the following pair of examples will come in handy in
Sections 11 and 12.

Example 4. Suppose that σ2
α “ α σ2

1 ` p1´ αqσ2
0 ą 0 and α P p0, 1q Y p1,8q. Then,

Dα

´

N
´

µ0, σ2
0

¯

›

›N
´

µ1, σ2
1

¯¯

“
1
2

log
σ2

1
σ2

0
`

1
2pα´ 1q

log
σ2

1
σ2

α
`

αpµ1 ´ µ0q
2

2 σ2
α

log e, (32)

D
´

N
´

µ0, σ2
0

¯

›

›N
´

µ1, σ2
1

¯¯

“
1
2

log
σ2

1
σ2

0
`

1
2

˜

σ2
0

σ2
1
´ 1

¸

log e`
pµ1 ´ µ0q

2

2 σ2
1

log e (33)

“ lim
αÑ1

Dα

´

N
´

µ0, σ2
0

¯

›

›N
´

µ1, σ2
1

¯¯

. (34)
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Example 5. Suppose Z is exponentially distributed with unit mean, i.e., its probability
density function is e´t1tt ě 0u. For d0 ě d1 and α such that p1 ´ αq µ0 ` α µ1 ą 0
we obtain

Dαpµ0 Z` d0 } µ1 Z` d1q “
d0 ´ d1

µ1
log e` log

µ1

µ0
`

1
1´ α

log
ˆ

α` p1´ αq
µ0

µ1

˙

,

Dpµ0 Z` d0 } µ1 Z` d1q “

ˆ

µ0

µ1
´ 1`

d0 ´ d1

µ1

˙

log e` log
µ1

µ0
(35)

“ lim
αÑ1

Dαpµ0 Z` d0 } µ1 Z` d1q. (36)

13. Intimately connected with the notion of Rényi divergence is the tilted probability
measure Pα defined, if DαpP1}P0q ă 8, by

ıPα}Qpaq “ α ıP1}Qpaq ` p1´ αq ıP0}Qpaq ` p1´ αqDαpP1 } P0q, (37)

where Q is any probability measure that dominates both P0 and P1. Although (37) is
defined in general, our main emphasis is on the range α P p0, 1q, in which, as long as
P0 M P1, the tilted probability measure is defined and satisfies Pα ! P0 and Pα ! P1,
with corresponding relative informations

ıPα}P0paq “ ıPα}Qpaq ´ ıP0}Qpaq (38)

“ p1´ αqDαpP1 } P0q ` α
´

ıP1}Qpaq ´ ıP0}Qpaq
¯

, (39)

ıPα}P1paq “ ıPα}Qpaq ´ ıP1}Qpaq (40)

“ p1´ αqDαpP1 } P0q ´ p1´ αq
´

ıP1}Qpaq ´ ıP0}Qpaq
¯

, (41)

where we have used the chain rule for Pα ! P0 ! Q and Pα ! P1 ! Q. Taking a linear
combination of (38)–(41) we conclude that, for all a P A,

p1´ αqDαpP1}P0q “ p1´ αq ıPα}P0paq ` α ıPα}P1paq. (42)

Henceforth, we focus particular attention on the case α P p0, 1q since that is the region
of interest in the application of Rényi information measures to the evaluation of error
exponents in channel coding for codes whose rate is below capacity. In addition, often
proofs simplify considerably for α P p0, 1q.

14. Much of the interplay between relative entropy and Rényi divergence hinges on the
following identity, which appears, without proof, in (3) of [51].

Theorem 2. Let α P p0, 1q and assume that P0 M P1 are defined on the same measurable
space. Then, for any P ! P1 and P ! P0,

α DpP }P1q ` p1´ αqDpP }P0q “ DpP }Pαq ` p1´ αqDαpP1 }P0q, (43)

where Pα is the tilted probability measure in (37) and (43) holds regardless of whether the
relative entropies are finite. In particular,

DpP } Pαq ă 8 ðñ maxtDpP } P0q, DpP } P1qu ă 8. (44)

Proof. We distinguish three overlapping cases:
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(1) DpP } Pαq ă 8: Taking expectation of (42) with respect to a Ð X „ P, yields
(43) because

E
”

ıPα}P0pXq
ı

“ DpP}P0q ´DpP}Pαq, (45)

E
”

ıPα}P1pXq
ı

“ DpP}P1q ´DpP}Pαq, (46)

where, thanks to the assumption that DpP } Pαq ă 8, we have invoked
Corollary A1 in the Appendix twice with pP, Q, Rq Ð pP, Pα, P0q and pP, Q, Rq Ð
pP, Pα, P1q, respectively;

(2) maxtDpP } P0q, DpP } P1qu ă 8: The proof is identical since we are entitled to
invoke Corollary A1 to show (45) (resp., (46)) because DpP } P0q ă 8 (resp.,
DpP } P1q ă 8).

(3) DpP } Pαq “ 8 and maxtDpP } P0q, DpP } P1qu “ 8: both sides of (43) are equal
to8.

Finally, to show that (44) follows from (43), simply recall from (31) that
DαpP1 }P0q ă 8.

15. Relative entropy and Rényi divergence are related by the following fundamental
variational representation.

Theorem 3. Fix α P p0, 1q and pP1, P0q P P2
A. Then, the Rényi divergence between P1 and

P0 satisfies

p1´ αqDαpP1}P0q “ min
P
tα DpP}P1q ` p1´ αqDpP}P0qu, (47)

where the minimum is over PA. If P0 M P1, then the right side of (47) is attained by the
tilted measure Pα, and the minimization can be restricted to the subset of probability measures
which are dominated by both P1 and P0.

Proof. If P0 K P1, then both sides of (47) are `8 since there is no probability
measure that is dominated by both P0 and P1. If P0 M P1, then minimizing both sides
of (43) with respect to P yields (47) and the fact that the tilted probability measure
attains the minimum therein.

The variational representation in (47) was observed in [39] in the finite-alphabet
case, and, contemporaneously, in full generality in [50]. Unlike Theorem 3, both of
those references also deal with α ą 1. The function dpαq “ p1´ αqDαpP1}P0q, with
dp1q “ limαÒ1 dpαq, is concave in α because the right side of (47) is a minimum of affine
functions of α.

16. Given random transformations PY|X : A Ñ B, QY|X : A Ñ B, and a probability
measure PX P PA on the input space, the conditional relative entropy is

DpPY|X }QY|X | PXq “ DpPY|XPX }QY|XPXq (48)

“ E
”

D
´

PY|Xp¨|Xq }QY|Xp¨|Xq
¯ı

, X „ PX . (49)

Analogously, the conditional Rényi divergence is defined as

DαpPY|X }QY|X | PXq “ DαpPY|XPX }QY|XPXq. (50)
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A word of caution: the notation in (50) conforms to that in [38,45] but it is not univer-
sally adopted, e.g., [43] uses the left side of (50) to denote the Rényi generalization of
the right side of (49). We can express the conditional Rényi divergence as

DαpPY|X }QY|X|PXq

“
1

α´ 1
logE

”

exp
´

pα´ 1qDα

´

PY|Xp¨|Xq }QY|Xp¨|Xq
¯¯ı

, X „ PX , (51)

“
1

α´ 1
logE

»

–

˜

dPY|X

dQY|X
pY|Xq

¸α´1
fi

fl, pX, Yq „ PXPY|X , (52)

where (52) holds if PXPY|X ! PXQY|X . Jensen’s inequality applied to (51) results in

DαpPY|X }QY|X|PXq ď E
”

DαpPY|Xp¨|Xq }QY|Xp¨|Xqq
ı

, α P p0, 1q; (53)

DαpPY|X }QY|X|PXq ě E
”

DαpPY|Xp¨|Xq }QY|Xp¨|Xqq
ı

, α ą 1. (54)

Nevertheless, an immediate and crucial observation we can draw from (51) is that the
unconstrained maximizations of the sides of (53) and of (54) over PX do coincide: for
all α ą 0,

sup
X

DαpPY|X }QY|X|PXq “ sup
X

E
”

DαpPY|Xp¨|Xq }QY|Xp¨|Xqq
ı

(55)

“ sup
aPA

DαpPY|X“a }QY|X“aq. (56)

17. Conditional Rényi divergence satisfies the following additive decomposition, origi-
nally pointed out, without proof, by Sibson [31] in the setting of finite A.

Theorem 4. Given PX P PA, QY P PB , PY|X : AÑ B, and α P p0, 1q Y p1,8q, we have

DαpPY|X }QY|PXq “ DαpPY|X } PYrαs|PXq `DαpPYrαs}QYq. (57)

Furthermore, with κα as in (14),

Dα

´

PY|X } PYrαs
ˇ

ˇPX

¯

“
κα

α´ 1
. (58)

Proof. Select an arbitrary probability measure RY P PB that dominates both QY
and PY, and, therefore, PYrαs too. Letting pX, Zq „ PX ˆ RY, we have

DαpPY|X }QY|PXq “
1

α´ 1
logE

«

ˆ

dPXY
dPX ˆ RY

pX, Zq
˙αˆdQY

dRY
pZq

˙1´α
ff

(59)

“
1

α´ 1
logE

«

E
“

exp
`

α ıX;YpX; Zq
˘

|Z
‰

ˆ

dPY
dRY

pZq
˙αˆdQY

dRY
pZq

˙1´α
ff

(60)

“
κα

α´ 1
`

1
α´ 1

logE
«

ˆdPYrαs

dPY
pZq

˙αˆ dPY
dRY

pZq
˙αˆdQY

dRY
pZq

˙1´α
ff

(61)

“
κα

α´ 1
`

1
α´ 1

logE
«

ˆdPYrαs

dRY
pZq

˙αˆdQY
dRY

pZq
˙1´α

ff

(62)

“
κα

α´ 1
`DαpPYrαs}QYq, (63)
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where (61) follows from (13), and (62) follows from the chain rule of Radon-Nikodym
derivatives applied to PYrαs ! PY ! RY. Then, (58) follows by specializing QY “ PYrαs,
and the proof of (57) is complete, upon plugging (58) into the right side of (63).

A proof of (57) in the discrete case can be found in Appendix A of [37].

18. For all α ą 0, given two inputs pPX, QXq P P2
A and one random transformation

PY|X : AÑ B, Rényi divergence (and, in particular, relative entropy) satisfies the data
processing inequality,

DαpPX }QXq ě DαpPY }QYq, (64)

where PX Ñ PY|X Ñ PY, and QX Ñ PY|X Ñ QY. The data processing inequality
for Rényi divergence was observed by Csiszár [52] in the more general context of
f -divergences. More recently it was stated in [39,50]. Furthermore, given one input
PX P PA and two transformations PY|X : A Ñ B and QY|X : A Ñ B, conditioning
cannot decrease Rényi divergence,

DαpPY|X }QY|X|PXq ě DαpPY }QYq. (65)

Since DαpPY|X }QY|X|PXq “ DαpPXPY|X } PXQY|Xq, (65) follows by applying (64) to
a deterministic transformation which takes an input pair and outputs the second
component. Inequalities (53) and (65) imply the convexity of DαpP}Qq in pP, Qq for
α P p0, 1s.

4. Dependence Measures

In this paper we are interested in three information measures that quantify the de-
pendence between random variables X and Y, such that PX Ñ PY|X Ñ PY, namely, mutual
information, and two of its generalizations, α- mutual information and Augustin–Csiszár
mutual information of order α.

19. The mutual information is

IpX; Yq “ IpPX , PY|Xq “ DpPY|X } PY | PXq (66)

“ min
QY

DpPY|X }QY | PXq (67)

“ min
QY

DpPXY } PX ˆQYq. (68)

20. Given α P p0, 1q Y p1,8q, the α-mutual information is defined as (see [30–32,40,42,45])

IαpX; Yq “ IαpPX , PY|Xq (69)

“ min
QY

DαpPY|X }QY | PXq (70)

“ min
QY

DαpPXY } PX ˆQYq (71)

“ Dα

´

PY|X } PYrαs | PX

¯

(72)

“
1

α´ 1
logE

”

exp
´

pα´ 1qDα

´

PY|Xp¨|Xq } PYrαs

¯¯ı

, X „ PX (73)

“ Dα

´

PY|X } PY|PX

¯

´Dα

´

PYrαs } PY

¯

(74)

“
κα

α´ 1
(75)

“
α

α´ 1
logErE

1
α rexppα ıX;YpX; Ȳqq | Ȳss, pX, Ȳq „ PX ˆ PY, (76)

where (72) and (74) follow from (57); (73) is a special case of (51); (75) follows from
Theorem 4; and, (76) is (14). In view of (67) and (69), we let I1pX; Yq “ IpX; Yq. The
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notation we use for α-mutual information conforms to that used in [40,42,45,53]. Other
notations include Kα in [32,38,39] and Ig

α in [43]. I0pX; Yq and I8pX; Yq are defined by
taking the corresponding limits.

21. Theorem 4 and (72) result in the additive decomposition

IαpX; Yq “ DαpPY|X }QY|PXq ´DαpPYrαs }QYq, (77)

for any QY with DαpPYrαs }QYq ă 8, thereby generalizing the well-known decompo-
sition for mutual information,

IpX; Yq “ DpPY|X }QY|PXq ´DpPY }QYq, (78)

which, in contrast to (77), is a simple consequence of the chain rule whenever the
dependence between X and Y is regular, and of Lemma A1 in general.

22.
Example 6. Additive independent Gaussian noise. If Y “ X ` N, where X „ N

`

0, σ2
X
˘

independent of N „ N
`

0, σ2
N
˘

, then, for α ą 0,

Yrαs „ N
´

0, α σ2
X ` σ2

N

¯

, (79)

IαpX; X` Nq “ IαpX` N; Xq “
1
2

log

˜

1` α
σ2

X
σ2

N

¸

. (80)

23. If α P p0, 1q, (47) and (69) result in

p1´ αqIαpPX , PY|Xq

“ min
QX QY|X

!

DpQX } PXq ` α DpQY|X } PY|X |QXq ` p1´ αq IpQX , QY|Xq
)

. (81)

For α ą 1 a proof of (81) is given in [39] for finite alphabets.
24. Unlike IpPX, PY|Xq, we can express IαpPX, PY|Xq directly in terms of its arguments

without involving the corresponding output distribution or the α-response to PX . This
is most evident in the case of discrete alphabets, in which (76) becomes

IαpX; Yq “
α

α´ 1
log

ÿ

yPB

˜

ÿ

xPA
PXpxqPα

Y|X“xpyq

¸
1
α

, (82)

I0pX; Yq “ ´ log max
yPB

ÿ

xPA
PXpxq1tPY|Xpy|xq ą 0u, (83)

I8pX; Yq “ log

˜

ÿ

bPY
sup

a : PXpaqą0
PY|Xpb|aq

¸

. (84)

For example, if X is discrete and HαpXq denotes the Rényi entropy of order α, then for
all α ą 0,

HαpXq “ I 1
α
pX; Xq. (85)

If X and Y are equiprobable with PrX ‰ Ys “ δ, then, in bits, IαpX; Yq “ 1´ hαpδq,
where hαpδq denotes the binary Rényi entropy.

25. In the main region of interest, namely, α P p0, 1q, frequently we use a different
parametrization in terms of ρ ą 0, with α “ 1

1`ρ .
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Theorem 5. For any ρ ą 0, we have the upper bound

ρ I 1
1`ρ
pX; Yq ď min

QY|X : AÑB

!

DpQY|X}PY|X | PXq ` ρ IpPX , QY|Xq
)

. (86)

Proof. Fix QY|X : AÑ B, and let PX Ñ QY|X Ñ QY. Then,

I 1
1`ρ
pX; Yq ď D 1

1`ρ
pPXY}PX ˆQYq (87)

“
1` ρ

ρ
min
RXY

"

1
1` ρ

DpRXY}PXYq `
ρ

1` ρ
DpRXY}PX ˆQYq

*

(88)

ď
1
ρ

DpQY|XPX}PXYq `DpQY|XPX}PX ˆQYq (89)

“
1
ρ

DpQY|X}PY|X|PXq ` IpPX , QY|Xq, (90)

where (87), (88) and (90) follow from (69), (47) and (66) respectively.

Just like (53), we will show in Section 7 that (86) becomes an equality upon the
unconstrained maximization of both sides.

26. Before introducing the last dependence measure in this section, recall from Definition 7
and (58) that PYrαs ! PY, the α-response (of PY|X) to PX defined by

ıYrαs}Ypyq “
1
α

logErexp
´

α ıX;YpX; yq ` p1´ αqDα

´

PY|X } PYrαs
ˇ

ˇPX

¯¯

s, (91)

attains minQY DαpPY|X}QY|PXq, where the expectation is with respect to X „ PX . We
proceed to define PYxαy ! PY, the xαy-response (of PY|X) to PX by means of

ıYxαy}Ypyq “
1
α

logE
”

exppα ıX;YpX; yq ` p1´ αqDα

´

PY|Xp¨|Xq } PYxαy

¯ı

, (92)

with X „ PX . Note that PYx1y “ PYr1s “ PY.
27. In the case of discrete alphabets, (92) becomes the implicit equation

Pα
Yxαypyq “

ÿ

aPA
PXpaq

Pα
Y|Xpy|aq

ř

bPB Pα
Y|Xpb|aq P1´α

Yxαypbq
, y P B, (93)

which coincides with (9.24) in Fano’s 1961 textbook [7], with s Ð 1´ α, and is also
given by Haroutunian in (19) of [22]. For example, if A “ B is discrete and Y “ X,
then PYxαy “ PX , while Pα

Yrαspyq “ c PXpyq, y P A.

28. The xαy-response satisfies the following identity, which can be regarded as the coun-
terpart of (57) satisfied by the α-response.

Theorem 6. Fix PX P PA, PY|X : AÑ B and QY P PB . Then,

DαpPYxαy }QYq

“
1

α´ 1
logE

”

exp
´

p1´ αq
´

DαpPY|Xp¨|Xq}PYxαyq ´DαpPY|Xp¨|Xq}QYq
¯¯ı

. (94)

Proof. For brevity we assume QY ! PY. Otherwise, the proof is similar adopting a
reference measure that dominates both QY and PY. The definition of unconditional
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Rényi divergence in Item 11 implies that we can write pα´ 1q times the exponential
of the left side of (94) as

exp
´

pα´ 1qDαpPYxαy}QYq
¯

“ E
«

ˆdPYxαy

dPY
pYq

˙αˆdQY
dPY

pYq
˙1´α

ff

(95)

“ E
«

exp
´

α ıX;YpX; Yq ` p1´ αqDα

´

PY|Xp¨|Xq } PYxαy

¯¯

ˆ

dQY
dPY

pYq
˙1´α

ff

(96)

“ E
„

E
„

exp
´

α ıX;YpX; Yq ` p1´ αq
´

ıQY}PY
pYq `Dα

´

PY|Xp¨|Xq } PYxαy

¯¯¯

ˇ

ˇ

ˇ

ˇ

X


“ E
”

exp
´

p1´ αq
´

Dα

´

PY|Xp¨|Xq } PYxαy

¯

´Dα

´

PY|Xp¨|Xq }QY

¯¯¯ı

, (97)

where pX, Yq „ PX ˆ PY, (96) follows from (92), and (97) follows from the definition
of unconditional Rényi divergence in (27).

Theorem 7. If α P p0, 1s, then

DαpPYxαy }QYq ď E
”

DαpPY|Xp¨|Xq }QYq
ı

´E
”

DαpPY|Xp¨|Xq } PYxαyq
ı

(98)

ď DpPYxαy }QYq. (99)

If α ě 1, inequalities (98) and (99) are reversed.

Proof. Assume α P p0, 1s. Jensen’s inequality applied to the right side of (94) results
in (98). To show (99), again we assume for brevity QY ! PY, and define the positive
functions V : Aˆ B Ñ p0,8q and W : Aˆ B Ñ p0,8q,

Vpx, yq “ exp
´

αıX;Ypx; yq ` p1´ αqıYxαy}Ypyq
¯

, (100)

Wpx, yq “ exp
´

αıX;Ypx; yq ` p1´ αqıQY}PY
pyq

¯

. (101)

Note that, with pX, Yq „ PX ˆ PY, and px, yq P Aˆ B,

ErVpx, Yqs “ exp
´

pα´ 1qDαpPY|X“x}PYxαyq
¯

, (102)

ErWpx, Yqs “ exp
´

pα´ 1qDαpPY|X“x}QYq
¯

, (103)

E
„

VpX, yq
ErVpX, Yq|Xs



“ exp
´

p1´ αqıYxαy}Ypyq
¯

¨

¨E
”

exp
´

α ıX;YpX; yq ` p1´ αqDαpPY|Xp¨|Xq}PYxαyq
¯ı

(104)

“
dPYxαy

dPY
pyq. (105)

where (104) uses (100) and (102) and (105) follows from (92). Then,

DαpPY|X“x }QYq ´DαpPY|X“x } PYxαyq

“
1

1´ α
log

ErVpx, Yqs
ErWpx, Yqs

(106)

ď
1

1´ α
E
„

Vpx, Yq
ErVpx, Yqs

log
Vpx, Yq
Wpx, Yq



(107)

“ E
„

Vpx, Yq
ErVpx, Yqs

´

ıYxαy}YpYq ´ ıQY}PY
pYq

¯



, (108)

where the expectations are with respect to Y „ PY, and
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• (107) follows from the log-sum inequality for integrable non-negative random
variables,

ErVs log
ErVs
ErWs ď E

„

V log
V
W



; (109)

• (108)ð (100) and (101).

Taking expectation with respect to X „ PX of (106)–(108) yields (99) because of
Lemma A1 and (105). If α ě 1, then Jensen’s inequality applied to the right side of
(94) results in (98) but with the opposite inequality. Moreover, (107) is reversed and
the remainder of the proof holds verbatim.

In the case of finite input-alphabets, a different proof of (99) is given in Appendix B
of [54].

29. Introduced in the unpublished dissertation [36] and rescued from oblivion in [32], the
Augustin–Csiszár mutual information of order α is defined for α ą 0 as

Icα pX; Yq “ Icα pPX , PY|Xq “ min
QY

E
”

DαpPY|Xp¨|Xq }QYq
ı

(110)

“ E
”

DαpPY|Xp¨|Xq } PYxαyq
ı

, (111)

where (111) follows from (98) if α P p0, 1s, and from the reverse of (99) if α ě 1. We
conform to the notation in [40], where Iaα was used to denote the difference between
entropy and Arimoto-Rényi conditional entropy. In [32,39,43] the Augustin–Csiszár
mutual information of order α is denoted by Iα. In Augustin’s original notation [36],
IρpPXq means Ic1´ρpPX, PY|Xq, ρ P p0, 1q. Independently of [36], Poltyrev [35] intro-
duced a functional (expressed as a maximization over a reverse random transforma-
tion) which turns out to be ρIc1

1`ρ

pX; Yq and which he denoted by E0pρ, PXq, although

in Gallager’s notation that corresponds to ρI 1
1`ρ
pX; Yq, as we will see in (233). Ic0 pX; Yq

and Ic8pX; Yq are defined by taking the corresponding limits.
30. In the discrete case, (110) boils down to

Icα pX; Yq “ min
QY

1
α´ 1

ÿ

xPA
PXpxq log

ÿ

yPB
Pα

Y|Xpy|xqQ1´α
Y pyq, (112)

which can be juxtaposed with the much easier expression in (82) for IαpX; Yq involving
no further optimization. Minimizing the Lagrangian, we can verify that the minimizer
in (112) satisfies (93). With pX, sYq „ PX ˆQY, we have

Ic0 pX; Yq “ min
QY

E
«

log
1

PrPY|Xp
sY|Xq ą 0 | Xs

ff

, (113)

Ic8pX; Yq “ min
QY

E
«

log

›

›

›

›

›

PY|Xp
sY|Xq

QYpsYq

›

›

›

›

›

8

ff

, (114)

where the expectations are with respect to X.
31. The respective minimizers of (72) and (110), namely, the α-response and the xαy-

response, are quite different. Most notably, in contrast to Item 7, an explicit expression
for PYxαy is unknown. Instead of defining PYxαy through (92), [36] defines it, equiva-
lently, as the fixed point of the operator (dubbed the Augustin operator in [43]) which
maps the set of probability measures on the output space to itself,

dTαpQq
dQ

pyq “ E
«

ˆdPY|X

dQ
py|Xq

˙α

exp
´

p1´ αqDαpPY|Xp¨|Xq}Qq
¯

ff

, (115)
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where X „ PX. Although we do not rely on them, Lemma 34.2 of (α P p0, 1q) and
Lemma 13 of [43] (α ą 1) claim that the minimizer in (110), referred to in [43] as the
Augustin mean of order α, is unique and is a fixed point of the operator Tα regardless
of PX. Moreover, Lemma 13(c) of [43] establishes that for α P p0, 1q and finite input
alphabets, repeated iterations of the operator Tα with initial argument PYrαs converge
to PYxαy.

32. It is interesting to contrast the next example with the formulas in Examples 2 and 6.

Example 7. Additive independent Gaussian noise. If Y “ X ` N, where X „ N
`

0, σ2
X
˘

independent of N „ N
`

0, σ2
N
˘

, then

Yxαy „ N
˜

0,
σ2

N
2

ˆ

2´
1
α
` ∆` snr

˙

¸

, (116)

snr “
σ2

X
σ2

N
, (117)

∆ “

d

4 snr`
ˆ

1
α
´ snr

˙2
. (118)

This result can be obtained by postulating a zero-mean Gaussian distribution with variance
v2

α as PYxαy and verifying that (92) is indeed satisfied if v2
α is chosen as in (116). The first step

is to invoke (32), which yields

Dα

´

PY|X“x } PYxαy

¯

“
λα

2
`

α x2

2 s2
α

log e, (119)

λα “ log
v2

α

σ2
N
`

1
α´ 1

log
v2

α

s2
α

, (120)

where we have denoted s2
α “ α v2

α ` p1´ αqσ2
N . Since Y „ N

`

0, σ2
X ` σ2

N
˘

,

ıX;Ypx; yq “
1
2

log
σ2

X ` σ2
N

σ2
N

`
1
2

˜

y2

σ2
X ` σ2

N
´
py´ xq2

σ2
N

¸

log e, (121)

ıYxαy}Ypyq “
1
2

log
σ2

X ` σ2
N

v2
α

`
1
2

˜

y2

σ2
X ` σ2

N
´

y2

v2
α

¸

log e. (122)

Assembling (120) and (121), the right side of (92) becomes

1
α

logE
”

exppα ıX;YpX; yq ` p1´ αqDα

´

PY|Xp¨|Xq } PYxαy

¯ı

“
1
2

log
σ2

X ` σ2
N

σ2
N

`
1
2

y2 log e
σ2

X ` σ2
N
`

1´ α

2α
λα

`
1
α

logE
«

expe

˜

´
αpy´ Xq2

2σ2
N

`
αp1´ αqX2

2s2
α

¸ff

(123)

“
1
2

log
σ2

X ` σ2
N

σ2
N

`
1´ α

2α
λα `

y2 log e
2

˜

1
σ2

X ` σ2
N
´

s2
α ´ αp1´ αqσ2

X
σ2

Ns2
α ` α2v2

ασ2
X

¸

`
1

2α
log

σ2
Ns2

α

σ2
Ns2

α ` α2v2
ασ2

X
(124)

“
1
2

log
σ2

X ` σ2
N

v2
α

`
1
2

˜

y2

σ2
X ` σ2

N
´

y2

v2
α

¸

log e, (125)
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where (124) follows by Gaussian integration, and the marvelous simplification in (125) is
satisfied provided that we choose

s2
α “

α σ2
X v2

α

v2
α ´ σ2

N
. (126)

Comparing (122) and (125), we see that (92) is indeed satisfied with Yxαy „ N
`

0, v2
α

˘

if v2
α

satisfies the quadratic equation (126), whose solution is in (116)–(118). Invoking (32) and
(116), we obtain

Icα pX; X` Nq “
α snr

1` α ∆` α snr
log e`

1
2

log
ˆ

1`
1
2

ˆ

∆` snr´
1
α

˙˙

´
1

2p1´ αq
log

2´ 1
α ` ∆` snr

1` α ∆` α snr
. (127)

Beyond its role in evaluating the Augustin–Csiszár mutual information for Gaussian
inputs, the Gaussian distribution in (116) has found some utility in the analysis of
finite blocklength fundamental limits for data transmission [55].

33. This item gives a variational representation for the Augustin–Csiszár mutual informa-
tion in terms of mutual information and conditional relative entropy (i.e., non-Rényi
information measures). As we will see in Section 10, this representation accounts
for the role played by Augustin–Csiszár mutual information in expressing error
exponent functions.

Theorem 8. For α P p0, 1q, the Augustin–Csiszár mutual information satisfies the varia-
tional representation in terms of conditional relative entropy and mutual information,

p1´ αq Icα pPX , PY|Xq “ min
QY|X

!

α DpQY|X}PY|X|PXq ` p1´ αq IpPX , QY|Xq
)

, (128)

where the minimum is over all the random transformations from the input to the
output spaces.

Proof. Invoking (47) with pP1, P0q Ð pPY|X“x, QYqwe obtain

p1´ αqDαpPY|X“x}QYq “ min
RY

!

α DpRY}PY|X“xq ` p1´ αqDpRY}QYq
)

(129)

“ min
RY|X“x

!

α DpRY|X“x}PY|X“xq ` p1´ αqDpRY|X“x}QYq
)

. (130)

Averaging over x „ PX, followed by minimization with respect to QY yields (128)
upon recalling (67).

In the finite-alphabet case with α P p0, 1qY p1,8q, the representation in (128) is implicit
in the appendix of [32], and stated explicitly in [39], where it is shown by means of
a minimax theorem. This is one of the instances in which the proof of the result is
considerably easier for α P p0, 1q; we can take the following route to show (128) for
α ą 1. Neglecting to emphasize its dependence on PX , denote

fαpQY, RY|Xq “
α

1´ α
DpRY|X}PY|X|PXq `DpRY|X}QY|PXq. (131)

Invoking (47) we obtain

DαpPY|X“x}QYq “ max
RY|X“x

"

α

1´ α
DpRY|X“x}PY|X“xq `DpRY|X“x}QYq

*

. (132)
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Averaging (132) with respect to PX followed by minimization over QY, results in

Icα pPX , PY|Xq “ min
QY

max
RY|X

fαpQY, RY|Xq (133)

ě max
RY|X

min
QY

fαpQY, RY|Xq (134)

“ max
RY|X

"

α

1´ α
DpRY|X}PY|X|PXq ` IpPX , RY|Xq

*

, (135)

which shows ě in (128). If a minimax theorem can be invoked to show equality in
(134), then (128) is established for α ą 1. For that purpose, for fixed RY|X , f p¨, RY|Xq is
convex and lower semicontinuous in QY on the set where it is finite. Rewriting

f pQY, RY|Xq

“
1

1´ α
DpRY|X}PY|X|PXq `DpRY|X}QY|PXq ´DpRY|X}PY|X|PXq, (136)

it can be seen that f pQY, ¨q is upper semicontinuous and concave (if α ą 1). A different,
and considerably more intricate route is taken in Lemma 13(d) of [43], which also
gives (128) for α ą 1 assuming finite input alphabets.

34. Unlike mutual information, neither IαpX; Yq “ IαpY; Xq nor Icα pX; Yq “ Icα pY; Xq hold
in general.

Example 8. Erasure transformation. Let A “ t0, 1u,B “ t0, 1, eu,

PY|Xpb|aq “

$

’

&

’

%

1´ δ, a “ b;
δ, b “ e;
0, a ‰ b ‰ e,

(137)

with δ P p0, 1q, and PXp0q “
1
2 . Then, we obtain, for α P p0, 1q Y p1,8q,

IαpX; Yq “ Icα pX; Yq “
α

α´ 1
log

´

δ` p1´ δq 2p1´
1
α q
¯

, (138)

IαpY; Xq “
1

α´ 1
log

´

δ` p1´ δq 2α´1
¯

, (139)

Icα pY; Xq “ IpX; Yq “ 1´ δ bits. (140)

35. It was shown in Theorem 5.2 of [38] that α-mutual information satisfies the data
processing lemma, namely, if X and Z are conditionally independent given Y, then

IαpX; Zq ď mintIαpX; Yq, IαpY; Zqu, (141)

IαpZ; Xq ď mintIαpZ; Yq, IαpY; Xqu. (142)

As shown by Csiszár [32] using the data processing inequality for Rényi divergence,
the data processing lemma also holds for Icα .

36. From (53), (54) and the monotonicity of DαpP}Qq in α, we obtain the ordering

IβpX; Yq ď IαpX; Yq ď Icα pX; Yq ď Icν pX; Yq ď IpX; Yq, 0 ă β ď α ď ν ă 1; (143)

IpX; Yq ď Icν pX; Yq ď Icα pX; Yq ď IαpX; Yq ď IβpX; Yq, 1 ă ν ď α ď β. (144)

37. The convexity/concavity properties of the generalized mutual informations are sum-
marized next.
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Theorem 9.

(a) ρ I 1
1`ρ
pX; Yq and ρ Ic1

1`ρ

pX; Yq are concave and monotonically non-decreasing in

ρ ě 0.
(b) Ip¨, PY|Xq and Icα p¨, PY|Xq are concave functions. The same holds for Iαp¨, PY|Xq if

α ą 1.
(c) If α P p0, 1q, then IpPX , ¨q, IαpPX , ¨q and Icα pPX , ¨q are convex functions.

Proof.

(a) According to (81) and (128), respectively, with α “ 1
1`ρ P p0, 1q, ρ I 1

1`ρ
pX; Yq

and ρ Ic1
1`ρ

pX; Yq are the infima of affine functions with nonnegative slopes.

(b) For mutual information the result goes back to [56] in the finite-alphabet case.
In general, it holds since (67) is the infimum of linear functions of PX . The same
reasoning applies to Augustin–Csiszár mutual information in view of (110).
For α-mutual information with α ą 1, notice from (51) that DαpPY|X }QY|PXq

is concave in PX if α ą 1. Therefore,

Iαpλ P1
X ` p1´ λq P0

X , PY|Xq (145)

“ inf
QY

DαpPY|X }QY|λ P1
X ` p1´ λq P0

Xq (146)

ě inf
QY

λ DαpPY|X }QY| P1
Xq ` p1´ λqDαpPY|X }QY| P0

Xq (147)

ě λ IαpP1
X , PY|Xq ` p1´ λq IαpP0

X , PY|Xq. (148)

(c) The convexity of IpPX, ¨q and IαpPX, ¨q follow from the convexity of DαpP}Qq
in pP, Qq for α P p0, 1s as we saw in Item 18. To show convexity of Icα pPX, ¨q
if α P p0, 1q, we apply (169) in Item 45 with PY|X “ λP1

Y|X ` p1´ λqP0
Y|X, and

invoke the convexity of IαpPX , ¨q:

p1´ αq Icα pPX , PY|Xq

“ max
QX

!

p1´ αq IαpQX , λP1
Y|X ` p1´ λqP0

Y|Xq ´DpPX }QXq
)

, (149)

ď max
QX

!

λ
´

1´ αq IαpQX , P1
Y|Xq ´DpPX }QXq

¯

`p1´ λq
´

1´ αq IαpQX , P0
Y|Xq ´DpPX }QXq

¯)

(150)

ď p1´ αq
´

λIcα pPX , P1
Y|Xq ` p1´ λqIcα pPX , P0

Y|Xq
¯

. (151)

Although not used in the sequel, we note, for completeness, that if α P p0, 1q Y
p1,8q, [38] (see corrected version in [41]) shows that exp

´´

1´ 1
α

¯

Iαp¨, PY|Xq
¯

{pα´ 1q
is concave.

5. Interplay between IαpPX , PY|Xq and IcαpPX , PY|Xq

In this section we study the interplay between both notions of mutual informations
of order α, and, in particular, various variational representations of these
information measures.

38. For given α P p0, 1q Y p1,8q and PY|X : AÑ B, define QXrαs !" PX , the α-adjunct of
PX by

ıQXrαs}PX
pxq “ pα´ 1qDα

´

PY|X“x}PYrαs

¯

´ κα, (152)

with κα the constant in (14) and PYrαs, the α-response to PX .
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39. Example 9. Let Y “ X ` N with X „ N
`

0, σ2
X
˘

independent of N „ N
`

0, σ2
N
˘

, and

snr “
σ2

X
σ2

N
. The α-adjunct of the input is

QXrαs “ N
ˆ

0, σ2
X

1` α2 snr

1` α snr

˙

. (153)

40. Theorem 10. The xαy-response to QXrαs is PYrαs, the α-response to PX .

Proof. We just need to verify that (92) is satisfied if we substitute Yxαy by Yrαs, and
instead of taking the expectation in the right side with respect to X „ PX we take it
with respect to rX „ QXrαs. Then,

E
”

exppα ıX;YprX; yq ` p1´ αqDα

´

PY|Xp¨|
rXq } PYrαs

¯ı

“ E
”

exp
´

ıQXrαs}PX
pXq ` α ıX;YpX; yq ` p1´ αqDα

´

PY|Xp¨|Xq } PYrαs

¯¯ı

(154)

“ E
“

exppα ıX;YpX; yq ´ καq
‰

(155)

“ exp
´

α ıYrαs}Ypyq
¯

, (156)

where (154) is by change of measure, (155) follows by substitution of (152), and (156)
is the same as (13).

41. For given α P p0, 1q Y p1,8q and PY|X : A Ñ B, we define QXxαy !" PX, the xαy-
adjunct of an input probability measure PX through

ıQXxαy}PX
pxq “ p1´ αqDα

´

PY|X“x } PYxαy

¯

` υα, (157)

where PYxαy is the xαy-response to PX and υα is a normalizing constant so that QXxαy
is a probability measure. According to (9), we must have

E
”

exp
´

ıQXxαy}PX
pXq

¯ı

“ 1, X „ PX . (158)

Hence,

υα “ pα´ 1qDα

´

PY|X } PYxαy |QXxαy

¯

. (159)

42. With the aid of the expression in Example 7, we obtain

Example 10. Let Y “ X ` N with X „ N
`

0, σ2
X
˘

independent of N „ N
`

0, σ2
N
˘

, and

snr “
σ2

X
σ2

N
. Then, the xαy-adjunct of the input is

QXxαy “ N
ˆ

0, σ2
X

1` αp∆` snrq

1` αp∆´ snrq ` 2 α2 snr

˙

, (160)

which, in contrast to QXrαs, has larger variance than σ2
X if α P p0, 1q.

43. The following result is the dual of Theorem 10.

Theorem 11. The α-response to QXxαy is PYxαy, the xαy-response to PX . Therefore,

υα “ pα´ 1q Iα

´

QXxαy, PY|X

¯

. (161)
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Proof. The proof is similar to that of Theorem 10. We just need to verify that we
obtain the right side of (92) if on the right side of (91) we substitute PX by QXxαy and
PYrαs by PYxαy. Let sX „ QXxαy. Then,

1
α

logE
”

exp
´

α ıX;YpsX; yq ` p1´ αqDα

´

PY|X } PYxαy
ˇ

ˇQXxαy

¯¯ı

“
1
α

logE
”

exp
´

ıQXxαy}PX
pXq ` α ıX;YpX; yq ´ υα

¯ı

(162)

“
1
α

logE
”

exp
´

α ıX;YpX; yq ` p1´ αqDα

´

PY|Xp¨|Xq } PYxαy

¯¯ı

(163)

“ ıYxαy}Ypyq, (164)

where (162)–(164) follow by change of measure, (157), and (92), respectively.

44. By recourse to a minimax theorem, the following representation is given for α P
p0, 1qY p1,8q in the case of finite alphabets in [39], and dropping the restriction on the
finiteness of the output space in [43]. As we show, a very simple and general proof is
possible for α P p0, 1q.

Theorem 12. Fix α P p0, 1q, PX P PA and PY|X : AÑ B. Then,

p1´ αq IαpX; Yq “ min
QX

!

p1´ αq Icα pQX , PY|Xq `DpQX } PXq
)

, (165)

where the minimum is attained by QXrαs, the α-adjunct of PX defined in (152).

Proof. The variational representations in (81) and (128) result in (165). To show
that the minimum is indeed attained by QXrαs, recall from Theorem 10 that the xαy-
response to QXrαs is PYrαs. Therefore, evaluating the term in tu in (165) for QX Ð QXrαs

yields, with rX „ QXrαs,

p1´ αq Icα pQXrαs, PY|Xq `DpQXrαs } PXq

“ p1´ αqE
”

DαpPY|Xp¨|
rXq } PYrαsq

ı

`DpQXrαs } PXq (166)

“ ´κα (167)

“ p1´ αq IαpX; Yq, (168)

where (167) follows from (152) and (168) results from (69)–(75).

45. For finite-input alphabets, Lemma 18(b) of [43] (earlier Theorem 3.4 of [35] gave an
equivalent variational characterization assuming, in addition, finite output alphabets)
established the following dual to Theorem 12.

Theorem 13. Fix α P p0, 1q, PX P PA and PY|X : AÑ B. Then,

p1´ αq Icα pX; Yq “ max
QX

!

p1´ αq IαpQX , PY|Xq ´DpPX }QXq
)

. (169)

The maximum is attained by QXxαy, the xαy-adjunct of PX defined by (157).

Proof. First observe that (165) implies that ě holds in (169). Second, the term in tu
on the right side of (169) evaluated at QX Ð QXxαy becomes

p1´ αq IαpQXxαy, PY|Xq ´DpPX }QXxαyq

“ p1´ αq IαpQXxαy, PY|Xq ` p1´ αqIcα pPX , PY|Xq ` υα (170)

“ p1´ αqIcα pPX , PY|Xq, (171)
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where (170) follows by taking the expectation of minus (157) with respect to PX.
Therefore, ď also holds in (169) and the maximum is attained by QXxαy, as we wanted
to show.

Hinging on Theorem 8, Theorems 12 and 13 are given for α P p0, 1qwhich is the region
of interest in the analysis of error exponents. Whenever, as in the finite-alphabet case,
(128) holds for α ą 1, Theorems 12 and 13 also hold for α ą 1.
Notice that since the definition of QXxαy involves PYxαy, the fact that it attains the
maximum in (169) does not bring us any closer to finding Icα pX; Yq for a specific input
probability measure PX . Fortunately, as we will see in Section 8, (169) proves to be the
gateway to the maximization of Icα pX; Yq in the presence of input-cost constraints.

46. Focusing on the main range of interest, α P p0, 1q, we can express (169) as

Icα pPX , PY|Xq “ max
QX

"

IαpQX , PY|Xq ´
1

1´ α
DpPX }QXq

*

(172)

“ max
ξě0

"

Ipξq ´ ξ

1´ α

*

(173)

“ Ipξαq ´
ξα

1´ α
, (174)

where we have defined the function (dependent on α, PX , and PY|X)

Ipξq “ max
QX :

DpPX}QXq ď ξ

IαpQX , PY|Xq, (175)

and ξα is the solution to

9Ipξαq “
1

1´ α
. (176)

Recall that the maxima over the input distribution in (172) and (175) are attained by
the xαy-adjunct QXxαy defined in Item 41.

47. At this point it is convenient to summarize the notions of input and output probability
measures that we have defined for a given α, random transformation PY|X , and input
probability measure PX :

• PY: The familiar output probability measure PX Ñ PY|X Ñ PY, defined in Item 5.
• PYrαs: The α-response to PX, defined in Item 7. It is the unique achiever of the

minimization in the definition of α-mutual information in (67).
• PYxαy: The xαy-response to PX defined in Item 26. It is the unique achiever of

the minimization in the definition of Augustin–Csiszár α-mutual information
in (110).

• QXrαs: The α-adjunct of PX, defined in (152). The xαy-response to QXrαs is PYrαs.
Furthermore, QXrαs achieves the minimum in (165).

• QXxαy: The xαy-adjunct of PX , defined in (157). The α-response to QXxαy is PYxαy.
Furthermore, QXxαy achieves the maximum in (169).

6. Maximization of IαpX; Yq

Just like the maximization of mutual information with respect to the input distribu-
tion yields the channel capacity (of course, subject to conditions [57]), the maximization
of IαpX; Yq and of Icα pX; Yq arises in the analysis of error exponents, as we will see in
Section 10. A recent in-depth treatment of the maximization of α-mutual information is
given in [45]. As we see most clearly in (82) for the discrete case, when it comes to its
optimization, one advantage of IαpX; Yq over IpX; Yq is that the input distribution does not
affect the expression through its influence on the output distribution.

48. The maximization of α-mutual information is facilitated by the following result.
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Theorem 14 ([45]). Given α P p0, 1q Y p1,8q; a random transformation PY|X : A Ñ B;
and, a convex set P Ă PA, the following are equivalent.

(a) P˚X P P attains the maximal α-mutual information on P ,

IαpP˚X , PY|Xq “ max
PPP

IαpP, PY|Xq ă 8. (177)

(b) For any PX P P , and any output distribution QY P PB ,

DαpPY|X } P˚Yrαs|PXq ď DαpPY|X } P˚Yrαs|P
˚
Xq (178)

ď DαpPY|X }QY|P˚Xq, (179)

where P˚Yrαs is the α-response to P˚X .

Moreover, if PYrαs denotes the α-response to PX , then

DαpPYrαs}P
˚
Yrαsq ď IαpP˚X , PY|Xq ´ IαpPX , PY|Xq ă 8. (180)

Note that, while Iαp¨, PY|Xq may not be maximized by a unique (or, in fact, by any)
input distribution, the resulting α-response P˚Yrαs is indeed unique. If P is such that
none of its elements attain the maximal Iα, it is known [42,45] that the α-response to
any asymptotically optimal sequence of input distributions converges to P˚Yrαs. This is
the counterpart of a result by Kemperman [58] concerning mutual information.

49. The following example appears in [45].
Example 11. Let Y “ X ` N where N „ N

`

0, σ2
N
˘

independent of X. Fix α P p0, 1q and
P ą 0. Suppose that the set, P Ă PA, of allowable input probability measures consists of
those that satisfy the constraint

E
«

expe

˜

´
αp1´ αqX2

2
`

α2P` σ2
N
˘

¸ff

ě

d

α2P` σ2
N

α P` σ2
N

. (181)

We can readily check that X˚ „ Np0, Pq satisfies (181) with equality, and as we saw in
Example 2, its α-response is P˚Yrαs “ N p0, α P` σ2q. Theorem 14 establishes that P˚X does
indeed maximize the α-mutual information among all the distributions in P , yielding (recall
Example 6)

max
PXPP

IαpX; Yq “
1
2

log
ˆ

1`
αP
σ2

˙

. (182)

Curiously, if, instead of P defined by the constraint (181), we consider the more conventional
P “ tX : ErX2s ď Pu, then the left side of (182) is unknown at present. Numerical evidence
shows that it can exceed the right side by employing non-Gaussian inputs.

50. Recalling (56) and (178) implies that if P˚X attains the finite maximal unconstrained
α-mutual information and its α-response is denoted by P˚Yrαs, then,

max
X

IαpX; Yq “ max
PPP

IαpP, PY|Xq “ max
aPA

DαpPY|X“a}P
˚
Yrαsq, (183)

which requires that P˚XpA˚α q “ 1, with

A˚α “
"

x P A : DαpPY|X“x}P
˚
Yrαsq “ max

aPA
DαpPY|X“a}P

˚
Yrαsq

*

. (184)



Entropy 2021, 23, 199 25 of 52

For discrete alphabets, this requires that if x R A˚α , then P˚Xpxq “ 0, which is tanta-
mount to

ÿ

yPB
Pα

Y|Xpy|xqE
1´α

α

”

Pα
Y|Xpy|X

˚q

ı

ě exp
´

α´1
α IαpX˚; Y˚q

¯

, (185)

with equality for all x P A such that P˚Xpxq ą 0. For finite-alphabet random transfor-
mations this observation is equivalent to Theorem 5.6.5 in [9].

51. Getting slightly ahead of ourselves, we note that, in view of (128), an important
consequence of Theorem 15 below, is that, as anticipated in Item 25, the unconstrained
maximization of IαpX; Yq for α P p0, 1q can be expressed in terms of the solution
to an optimization problem involving only conventional mutual information and
conditional relative entropy. For ρ ě 0,

ρ sup
X

I 1
1`ρ
pX; Yq “ sup

X
min

QY|X : AÑB

!

DpQY|X}PY|X|PXq ` ρ IpPX , QY|Xq
)

. (186)

7. Unconstrained Maximization of IcαpX; Yq

52. In view of the fact that it is much easier to determine the α-mutual information
than the order-α Augustin–Csiszár information, it would be advantageous to show
that the unconstrained maximum of Icα pX; Yq equals the unconstrained maximum of
IαpX; Yq. In the finite-alphabet setting, in which it is possible to invoke a "minisup”
theorem (e.g., see Section 7.1.7 of [59]), Csiszár [32] showed this result for α ą 0. The
assumption of finite output alphabets was dropped in Theorem 1 of [42], and further
generalized in Theorem 3 of the same reference. As we see next, for α P p0, 1q, it is
possible to give an elementary proof without restrictions on the alphabets.

Theorem 15. Let α P p0, 1q. If the suprema are over PA, the set of all probability measures
defined on the input space, then

sup
X

Icα pX; Yq “ sup
X

IαpX; Yq. (187)

Proof. In view of (143),ě holds in (187). To showď, we assume supX IαpX; Yq ă 8
as, otherwise, there is nothing left to prove. The unconstrained maximization identity
in (183) implies

sup
X

IαpX; Yq “ sup
aPA

DαpPY|X“a}P
˚
Yrαsq (188)

“ sup
PXPP

E
”

DαpPY|Xp¨|Xq}P
˚
Yrαsq

ı

(189)

ě inf
QPQ

sup
PXPP

E
”

DαpPY|Xp¨|Xq}Qq
ı

(190)

ě sup
PXPP

inf
QPQ

E
”

DαpPY|Xp¨|Xq}Qq
ı

(191)

“ sup
X

Icα pX; Yq, (192)

where P˚Yrαs is the unique α-response to any input that achieves the maximal α-mutual
information, and if there is no such input, it is the limit of the α-responses to any
asymptotically optimal input sequence (Item 48).
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Furthermore, if tXnu is asymptotically optimal for Iα, i.e., limnÑ8 IαpXn; Ynq “

supX IαpX; Yq, then tXnu is also asymptotically optimal for Icα because for any δ ą 0,
we can find N, such that for all n ą N,

IαpXn; Ynq ` δ ě sup
aPA

DαpPY|X“a}P
˚
Yrαsq (193)

ě E
”

DαpPY|Xp¨|Xnq}P˚Yrαsq
ı

(194)

ě Icα pXn; Ynq (195)

ě IαpXn; Ynq. (196)

8. Maximization of IcαpX; Yq Subject to Average Cost Constraints

This section is at the heart of the relevance of Rényi information measures to error
exponent functions.

53. Given α P p0, 1q, PY|X : A Ñ B, a cost function b : A Ñ r0,8q and real scalar θ ě 0,
the objective is to maximize the Augustin–Csiszár mutual information allowing only
those probability measures that satisfy ErbpXqs ď θ, namely,

Cc
αpθq “ sup

PX :
ErbpXqs ď θ

Icα pPX , PY|Xq. (197)

Unfortunately, identity (187) no longer holds when the maximizations over the input
probability measure are cost-constrained, and, in general, we can only claim

Cc
αpθq ě sup

PX :
ErbpXqs ď θ

IαpPX , PY|Xq. (198)

A conceptually simple approach to solve for Cc
αpθq is to

(a) postulate an input probability measure P˚X that achieves the supremum in (197);
(b) solve for its xαy-response P˚Y using (92);
(c) show that pP˚X , P˚Y q is a saddle point for the game with payoff function

BpPX , QYq “

ż

Dα

´

PY|X“x}QY

¯

dPX , (199)

where QY P PA and PX is chosen from the convex subset of PA of probability
measures which satisfy ErbpXqs ď θ.

Since P˚Y is already known, by definition, to be the xαy-response to P˚X , verifying the
saddle point is tantamount to showing that BpPX, P˚Y q is maximized by P˚X among
tPX P PA : ErbpXqs ď θu. Theorem 1 of [43] guarantees the existence of a saddle point
in the case of finite input alphabets. In addition to the fact that it is not always easy
to guess the optimum input P˚X (see e.g., Section 12), the main stumbling block is
the difficulty in determining the xαy-response to any candidate input distribution,
although sometimes this is indeed feasible as we saw in Example 7.

54. Naturally, Theorem 15 implies

Cc
αpθq ď sup

X
IαpX; Yq. (200)

If the unconstrained maximization of Icα p¨, PY|Xq is achieved by an input distribution
X‹ that satisfies ErbpX‹qs ď θ, then equality holds in (200), which, in turn, is equal to
Icα pP‹X , PY|Xq. In that case, the average cost constraint is said to be inactive. For most
cost functions and random transformations of practical interest, the cost constraint is
active for all θ ą 0. To ascertain whether it is, we simply verify whether there exists
an input achieving the right side of (200), which happens to satisfy the constraint.
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If so, Cc
αpθq has been found. The same holds if we can find a sequence tXnu such

that ErbpXnqs ď θ and IαpXn; Ynq Ñ supX IαpX; Yq. Otherwise, we proceed with
the method described below. Thus, henceforth, we assume that the cost constraint
is active.

55. The approach proposed in this paper to solve for Cc
αpθq for α P p0, 1q hinges on

the variational representation in (172), which allows us to sidestep having to find
any xαy-response. Note that once we set out to maximize Icα pPX, PY|Xq over P “

tPX P PA : ErbpXqs ď θu, the allowable QX in the maximization in (175) range over a
ξ-blow-up of P defined by

ΓξpPq “ tQX P PA : DPX P P , such that DpPX}QXq ď ξu. (201)

As we show in Item 56, we can accomplish such an optimization by solving an
unconstrained maximization of the sum of α-mutual information and a term suitably
derived from the cost function.

56. It will not be necessary to solve for (176), as our goal is to further maximize (172)
over PX subject to an average cost constraint. The Lagrangian corresponding to the
constrained optimization in (197) is

Lαpν, PXq “ Icα pX; Yq ´ νErbpXqs ` ν θ, (202)

where on the left side we have omitted, for brevity, the dependence on θ stemming
from the last term on the right side. The Lagrange multiplier method (e.g., [60])
implies that if X˚ achieves the supremum in (197), then there exists ν˚ ě 0 such that
for all PX on A and ν ě 0,

Lαpν
˚, PXq ď Lαpν

˚, P˚Xq ď Lαpν, P˚Xq. (203)

Note from (202) that the right inequality in (203) can only be achieved if

ErbpX˚qs “ θ, (204)

and, consequently,

Cc
αpθq “ Lαpν

˚, P˚Xq “ min
νě0

max
PX

Lαpν, PXq “ max
PX

min
νě0

Lαpν, PXq. (205)

The pivotal result enabling us to obtain Cc
αpθqwithout the need to deal with Augustin–

Csiszár mutual information is the following.

Theorem 16. Given α P p0, 1q, ν ě 0, PY|X : A Ñ B, and b : A Ñ r0,8q, denote
the function

Aαpνq “ max
X

"

IαpX; Yq `
1

1´ α
logErexpp´p1´ αqν bpXqqs

*

. (206)

Then,

sup
PXPPA

Lαpν, PXq “ ν θ `Aαpνq, (207)

and

Cc
αpθq “ min

νě0
tν θ `Aαpνqu. (208)

Proof. Plugging (172) into (197) we obtain, with X „ PX , and X̂ „ QX ,
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sup
PXPPA

Lαpν, PXq “ sup
PX

tIcα pX; Yq ´ νErbpXqs ` ν θu (209)

“ sup
PXPPA

"

max
QXPPA

"

IαpQX , PY|Xq ´
1

1´ α
DpPX }QXq

*

´ νErbpXqs ` ν θ

*

(210)

“ ν θ ` max
QXPPA

"

IαpQX , PY|Xq ´
1

1´ α
inf
PX
tDpPX }QXq ` νp1´ αqErbpXqsu

*

(211)

“ ν θ ` max
QXPPA

"

IαpQX , PY|Xq `
1

1´ α
logE

“

exp
`

´νp1´ αqbpX̂q
˘‰

*

(212)

“ ν θ `Aαpνq, (213)

where (209) and (213) follow from (202) and (206), respectively, and (212) follows by
invoking Theorem 1 with Z „ QX and

gpaq “ p1´ αqν bpaq, (214)

which is nonnegative since α P p0, 1q and ν ą 0. Finally, (208) follows from (205)
and (207).

In conclusion, we have shown that the maximization of Augustin–Csiszár mutual
information of order α subject to ErbpXqs ď θ boils down to the unconstrained
maximization of a Lagrangian consisting of the sum of α-mutual information and
an exponential average of the cost function. Circumventing the need to deal with
xαy-responses and with Augustin–Csiszár mutual information of order α leads to a
particularly simple optimization, as illustrated in Sections 11 and 12.

57. Theorem 16 solves for the maximal Augustin–Csiszár mutual information of order
α under an average cost constraint without having to find out the input probability
measure P˚X that attains it nor its xαy-response P˚Y (using the notation in Item 53).
Instead, it gives the solution as

Cc
αpθq “ min

νě0

"

ν θ `max
X

"

IαpX; Yq `
1

1´ α
logErexpp´p1´ αqν bpXqqs

**

. (215)

Although we are not going to invoke a minimax theorem, with the aid of Theorem 9-(b)
we can see that the functional within the inner brackets is concave in PX ; Furthermore,
if V P p0, 1s, then logErVνs is easily seen to be convex in ν with the aid of the Cauchy-
Schwarz inequality. Before we characterize the saddle point pν˚, Q˚Xq of the game in
(215) we note that pP˚X , P˚Y q can be readily obtained from pν˚, Q˚Xq.

Theorem 17. Fix α P p0, 1q. Let ν˚ ą 0 denote the minimizer on the right side of (215), and
Q˚X the input probability measure that attains the maximum in (206) (or (215)) for ν “ ν˚.
Then,

(a) Q˚X is the xαy-adjunct of P˚X .
(b) P˚Y “ Q˚Yrαs, the α-response to Q˚X .

(c) P˚X !" Q˚X with

ıP˚X }Q
˚
X
paq “ ´p1´ αqν˚ bpaq ` τα, a P A, (216)

where τα is a normalizing constant ensuring that P˚X is a probability measure.

Proof.

(a) We had already established in Theorem 13 that the maximum on the right side
of (210) is achieved by the xαy-adjunct of PX. In the special case ν “ ν˚, such
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PX is P˚X . Therefore, Q˚X , the argument that achieves the maximum in (206) for
ν “ ν˚, is the xαy-adjunct of P˚X .

(b) According to Theorem 11, the α-response to Q˚X is the xαy-response to P˚X,
which is P˚Y by definition.

(c) For ν “ ν˚, P˚X achieves the supremum in (209) and the infimum in (211).
Therefore, (216) follows from Theorem 1 with Z „ Q˚X and gp¨q given by (214)
particularized to ν “ ν˚.

The saddle point of (215) admits the following characterization.

Theorem 18. If α P p0, 1q, the saddle point pν˚, Q˚Xq of (215) satisfies

E
“

bpX̄˚q exp
`

´p1´ αqν˚ bpX̄˚q
˘‰

“ θ E
“

exp
`

´p1´ αqν˚ bpX̄˚q
˘‰

, X̄˚ „ Q˚X ; (217)

Dα

´

PY|X“a }Q˚Yrαs
¯

“ ν˚ bpaq ` cαpν
˚q, a P A, (218)

where Q˚Yrαs is the α-response to Q˚X , and cαpν
˚q does not depend on a P A. Furthermore,

Aαpν
˚q “ cαpν

˚q, (219)

Cc
αpθq “ ν˚ θ ` cαpν

˚q. (220)

Proof. First, we show that the scalar ν˚ ě 0 that minimizes

f pνq “ ν θ ` IαpQ˚X , PY|Xq `
1

1´ α
logE

“

exp
`

´p1´ αqν bpX̄˚q
˘‰

(221)

satisfies (217). If we abbreviate V “ exp
`

´p1´ αqbpX̄˚q
˘

P p0, 1s, then the dominated
convergence theorem results in

d
dν

"

ν θ `
1

1´ α
logErVνs

*

“ θ `
1

1´ α

ErVν log Vs
ErVνs

. (222)

Therefore, (217) is equivalent to 9f pν˚q “ 0, which is all we need on account of the
convexity of f p¨q. To show (218), notice that for all a P A,

p1´ αqν˚ bpaq ´ τα “ ıQ˚X}P
˚
X
paq (223)

“ p1´ αqDαpPY|X“a } P˚Y q ` υα, (224)

where (223) is (216) and (224) is (157) with PYxαy Ð P˚Y in view of Theorem 17-(b). In
conclusion, (218) holds with

cαpν
˚q “

υα ` τα

α´ 1
. (225)
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Finally, (206) implies

Aαpν
˚q “ IαpQ˚X , PY|Xq `

1
1´ α

logE
“

exp
`

´p1´ αqν˚ bpX̄˚q
˘‰

(226)

“
1

α´ 1
logE

”

exp
´

pα´ 1qDα

´

PY|Xp¨|X̄
˚q } P˚Y

¯¯ı

`
1

1´ α
logE

“

exp
`

pα´ 1qν˚ bpX̄˚q
˘‰

(227)

“
1

α´ 1
logE

“

exp
`

pα´ 1q
`

ν˚ bpX̄˚q ` cαpν
˚q
˘˘‰

`
1

1´ α
logE

“

exp
`

pα´ 1qν˚ bpX̄˚q
˘‰

(228)

“ cαpν
˚q, (229)

where (227) follows from the definition of α-mutual information and Theorem 17-(b),
and (228) follows from (218). Plugging (219) into (208) results in (220).

58. Typically, the application of Theorem 18 involves

(a) guessing the form of the auxiliary input Q˚X (modulo some unknown parameter),
(b) obtaining its α-response Q˚Yrαs, and

(c) verifying that (217) and (218) are satisfied for some specific choice of the
unknown parameter.

With the same approach, we can postulate, for every ν ě 0, an input distribution Rν
X ,

whose α-response Rν
Yrαs satisfies

Dα

´

PY|X“a }Rν
Yrαs

¯

“ ν bpaq ` cαpνq, a P A, (230)

where the only condition we place on cαpνq is that it not depend on a P A. If this is
indeed the case, then the same derivation in (226)–(229) results in

Aαpνq “ cαpνq, (231)

and we determine ν˚ as the solution to θ “ ´ 9cαpν
˚q, in lieu of (217).

Sections 11 and 12 illustrate the effortless nature of this approach to solve for Aαpνq.
Incidentally, (230) can be seen as the α-generalization of the condition in Problem 8.2
of [48], elaborated later in [61].

9. Gallager’s E0 Functions and the Maximal Augustin–Csiszár Mutual Information

In keeping with Gallager’s setting [9], we stick to discrete alphabets throughout
this section.

59. In his derivation of an achievability result for discrete memoryless channels, Gal-
lager [8] introduced the function (1), which we repeat for convenience,

E0pρ, PXq “ ´ log
ÿ

yPB

˜

ÿ

xPA
PXpxqP

1
1`ρ

Y|X py|xq

¸1`ρ

. (232)

Comparing (82) and (232), we obtain

E0pρ, PXq “ ρ I 1
1`ρ
pX; Yq, (233)

which, as we mentioned in Section 1, is the observation by Csiszár in [30] that triggered
the third phase in the representation of error exponents. Popularized in [9], the
E0 function was employed by Shannon, Gallager and Berlekamp [10] for ρ ě 0
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and by Arimoto [62] for ρ P p´1, 0q in the derivation of converse results in data
transmission, the latter of which considers rates above capacity, a region in which
error probability increases with blocklength, approaching one at an exponential rate.
For the achievability part, [8] showed upper bounds on the error probability involving
E0pρ, PXq for ρ P r0, 1s. Therefore, for rates below capacity, the α-mutual information
only enters the picture for α P p0, 1q. One exception in which Rényi divergence of order
greater than 1 plays a role at rates below capacity was found by Sason [63], where
a refined achievability result is shown for binary linear codes for output symmetric
channels (a case in which equiprobable PX maximizes (233)), as a function of their
Hamming weight distribution.
Although Gallager did not have the benefit of the insight provided by the Rényi
information measures, he did notice certain behaviors of E0 reminiscent of mutual
information. For example, the derivative of (233) with respect to ρ, at ρ Ð 0 is equal to
IpX; Yq. As pointed out by Csiszár in [32], in the absence of cost constraints, Gallager’s
E0 function in (232) satisfies

max
PX

E0pρ, PXq “ ρ max
X

I 1
1`ρ
pX; Yq “ ρ max

X
Ic1

1`ρ
pX; Yq, (234)

in view of (233) and (187).
Recall that Gallager’s modified E0 function in the case of cost constraints is

E0pρ, PX , r, θq “ ´ log
ÿ

yPB

˜

ÿ

xPA
PXpxq exppr bpxq ´ r θqP

1
1`ρ

Y|X py|xq

¸1`ρ

, (235)

which, like (232) he introduced in order to show an achievability result. Up until
now, no counterpart to (234) has been found with cost constraints and (235). This is
accomplished in the remainder of this section.

60. In the finite alphabet case the following result is useful to obtain a numerical solution
for the functional in (206). More importantly, it is relevant to the discussion in Item 61.

Theorem 19. In the special case of discrete alphabets, the function in (206) is equal to

Aαpνq “ max
G

α

α´ 1
log

ÿ

yPB

˜

ÿ

aPA
Gpaq Pα

Y|Xpy|aq

¸
1
α

, (236)

where the maximization is over all G : AÑ r0,8q such that
ÿ

aPA
Gpaq expp´p1´ αqνbpaqq “ 1. (237)

Proof. Recalling (82) we have

IαpX; Yq `
1

1´ α
logErexpp´p1´ αqν bpXqqs

“
α

α´ 1
log

ÿ

yPB

˜

ÿ

xPA
PXpxqPα

Y|X“xpyq

¸
1
α

`
1

1´ α
logErexpp´p1´ αqν bpXqqs (238)

“
α

α´ 1
log

ÿ

yPB

¨

˝

E
”

Pα
Y|Xpy|Xq

ı

Erexpp´p1´ αqνbpXqqs

˛

‚

1
α

(239)

“
α

α´ 1
log

ÿ

yPB

˜

ÿ

aPA
Gpaq Pα

Y|Xpy|aq

¸
1
α

, (240)
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where

Gpxq “
PXpxq

ř

aPA PXpaq expp´p1´ αqν bpaqq
. (241)

61. We can now proceed to close the circle between the maximization of Augustin–Csiszár
mutual information subject to average cost constraints (Phase 3 in Section 1) and
Gallager’s approach (Phase 1 in Section 1).

Theorem 20. In the discrete alphabet case, recalling the definitions in (202) and (235) , for
ρ ą 0,

max
PX

E0pρ, PX , r, θq “ ρ max
PX

L 1
1`ρ

ˆ

r`
r
ρ

, PX

˙

, r ą 0; (242)

min
rě0

max
PX

E0pρ, PX , r, θq “ ρCc
1

1`ρ
pθq, (243)

where the maximizations are over PA.

Proof. With

α “
1

1` ρ
and ν “ r

1` ρ

ρ
“

r
1´ α

, (244)

the maximization of (235) with the respect to the input probability measure yields

max
PX

E0pρ, PX , r, θq

“ max
PX

$

&

%

p1` ρq r θ ´ log
ÿ

yPB

˜

ÿ

xPA
PXpxq exppr bpxqqP

1
1`ρ

Y|X py|xq

¸1`ρ
,

.

-

(245)

“ ρ ν θ ` ρ max
PX

α

α´ 1
log

ÿ

yPB

˜

ÿ

xPA
PXpxq exppp1´ αq ν bpxqqPα

Y|Xpy|xq

¸
1
α

(246)

“ ρ ν θ ` ρ max
G

α

α´ 1
log

ÿ

yPB

˜

ÿ

xPA
GpxqPα

Y|Xpy|xq

¸
1
α

(247)

“ ρ ν θ ` ρAαpνq (248)

“ ρ max
PX

Lαpν, PXq, (249)

where

• the maximization on the right side of (247) is over all G : AÑ r0,8q that satisfy
(237), since that constraint is tantamount to enforcing the constraint that PX P PA
on the left side of (247);

• (248)ðù Theorem 19;
• (249)ðù Theorem 16.
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The proof of (242) is complete once (244) is invoked to substitute α and ν from the
right side of (249). If we now minimize the outer sides of (245)–(249) with respect to r
we obtain, using (205) and (244),

min
rě0

max
PX

E0pρ, PX , r, θq “ ρ min
rě0

max
PX

Lα

ˆ

r
1´ α

, PX

˙

(250)

“ ρ min
νě0

max
PX

Lαpν, PXq (251)

“ ρCc
1

1`ρ
pθq. (252)

In p. 329 of [9], Gallager poses the unconstrained maximization (i.e., over PX P PA)
of the Lagrangian

E0pρ, PX , r, θq ` γ
ÿ

aPA
PXpaqbpaq ´ γ θ. (253)

Note the apparent discrepancy between the optimizations in (243) and (253): the latter
is parametrized by r and γ (in addition to ρ and θ), while the maximization on the
right side of (243) does not enforce any average cost constraint. In fact, there is no
disparity since Gallager loc. cit. finds serendipitously that γ “ 0 regardless of r and θ,
and, therefore, just one parameter is enough.

62. The raison d’être for Augustin’s introduction of Icα in [36] was his quest to view Gal-
lager’s approach with average cost constraints under the optic of Rényi information
measures. Contrasting (232) and (235) and inspired by the fact that, in the absence of
cost constraints, (232) satisfies a variational characterization in view of (69) and (233),
Augustin [36] dealt, not with (235), but with

min
QY

DαpP̃Y|X}QY|PXq, where P̃Y|X“x “ PY|X“x exp
`

r1bpxq
˘

.

Assuming finite alphabets, Augustin was able to connect this quantity with the
maximal Icα pX; Yq under cost constraints in an arcane analysis that invokes a min-
imax theorem. This line of work was continued in Section 5 of [43], which refers
to minQY DαpP̃Y|X}QY|PXq as the Rényi-Gallager information. Unfortunately, since
P̃Y|X is not a random transformation, the conditional pseudo-Rényi divergence
DαpP̃Y|X}QY|PXq need not satisfy the key additive decomposition in Theorem 4 so the
approach of [36,43] fails to establish an identity equating the maximization of Gal-
lager’s function (235) with the maximization of Augustin–Csiszár mutual information,
which is what we have accomplished through a crisp and
elementary analysis.

10. Error Exponent Functions

The central objects of interest in the error exponent analysis of data transmission
are the functions EsppR, PXq and ErpR, PXq of a random transformation PY|X : A Ñ B.
Reflecting the three different phases referred to in Section 1, there is no unanimity in the
definition of those functions. Following [48], we adopt the standard canonical Phase 2
(Section 1.2) definitions of those functions, which are given in Items 63 and 67.

63. If R ě 0 and PX P PA, the sphere-packing error exponent function is (e.g., (10.19)
of [48])

EsppR, PXq “ min
QY|X : AÑ B

IpPX , QY|Xq ď R

DpQY|X } PY|X | PXq. (254)

64. As a function of R ě 0, the basic properties of (254) for fixed pPX , PY|Xq are as follows.
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(a) If R ě IpPX , PY|Xq, then EsppR, PXq “ 0;
(b) If R ă IpPX , PY|Xq, then EsppR, PXq ą 0;
(c) The infimum of the arguments for which the sphere-packing error exponent

function is finite is denoted by R8pPXq;
(d) On the interval R P pR8pPXq, IpPX, PY|Xqq, EsppR, PXq is convex, strictly de-

creasing, continuous, and equal to (254) where the constraint is satisfied with
equality. This implies that for R belonging to that interval, we can find ρR ě 0
so that for all r ě 0,

Esppr, PXq ě EsppR, PXq ´ ρR r` ρR R. (255)

65. In view of Theorem 8 and its definition in (254), it is not surprising that EsppR, PXq is
intimately related to the Augustin–Csiszár mutual information, through the following
key identity.

Theorem 21.

EsppR, PXq “ sup
ρě0

"

ρ Ic1
1`ρ
pX; Yq ´ ρ R

*

, R ě 0; (256)

R8pPXq “ Ic0 pX; Yq. (257)

Proof. First note that ě holds in (256) because from (128) we obtain, for all ρ ě 0,

ρ Ic1
1`ρ
pX; Yq “ min

QY|X

!

DpQY|X}PY|X|PXq ` ρ IpPX , QY|Xq
)

(258)

ď min
QY|X :

IpPX , QY|Xq ď R

!

DpQY|X}PY|X|PXq ` ρ IpPX , QY|Xq
)

(259)

ď EsppR, PXq ` ρ R, (260)

where (260) follows from the definition in (254). To show ď in (256) for those R such
that 0 ă EsppR, PXq ă 8, Property (d) in Item 64 allows us to write

min
QY|X

!

DpQY|X}PY|X|PXq ` ρR IpPX , QY|Xq
)

“ min
rě0

 

Esppr, PXq ` ρR r
(

(261)

ě EsppR, PXq ` ρR R, (262)

where (262) follows from (255).

To determine the region where the sphere-packing error exponent is infinite and show
(257), first note that if R ă Ic0 pX; Yq “ limαÓ0 Icα pX; Yq, then EsppR, PXq “ 8 because
for any ρ ě 0, the function in tu on the right side of (256) satisfies

ρ Ic1
1`ρ
pX; Yq ´ ρ R “ ρ Ic1

1`ρ
pX; Yq ´ ρ Ic0 pX; Yq ` ρ Ic0 pX; Yq ´ ρ R (263)

ě ρ Ic0 pX; Yq ´ ρ R, (264)

where (264) follows from the monotonicity of Icα pX; Yq in α we saw in (143). Con-
versely, if Ic0 pX; Yq ă R ă 8, there exists ε P p0, 1q such that Icε pX; Yq ă R, which
implies that in the minimization

Icε pX; Yq “ min
QY|X

"

ε

1´ ε
DpQY|X}PY|X|PXq ` IpPX , QY|Xq

*

(265)

we may restrict to those QY|X such that IpPX , QY|Xq ď R, and consequently, Icε pX; Yq ě
ε

1´ε EsppR, PXq. Therefore, to avoid a contradiction, we must have EsppR, PXq ă 8.
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The remaining case is Ic0 pX; Yq “ 8. Again, the monotonicity of the Augustin–
Csiszár mutual information implies that Icα pX; Yq “ 8 for all α ą 0. So, (128) pre-
scribes DpQY|X}PY|X|PXq “ 8 for any QY|X is such that IpPX, QY|Xq ă 8. Therefore,
EsppR, PXq “ 8 for all R ě 0, as we wanted to show.

Augustin [36] provided lower bounds on error probability for codes of type PX as a
function of Icα pX; Yq but did not state (256); neither did Csiszár in [32] as he was inter-
ested in a non-conventional parametrization (generalized cutoff rates) of the reliability
function. As pointed out in p. 5605 of [64], the ingredients for the proof of (256) were
already present in the hint of Problem 23 of Section II.5 of [24]. In the discrete case, an
exponential lower bound on error probability for codes with constant composition
PX is given as a function of Ic1

1`ρ

pPX , PY|Xq in [44,64]. As in [64], Nakiboglu [65] gives

(256) as the definition of the sphere-packing function and connects it with (254) in
Lemma 3 therein, within the context of discrete input alphabets.
In the discrete case, (257) is well-known (e.g., [66]), and given by (83). As pointed
out in [40], maxX Ic0 pX; Yq is the zero-error capacity with noiseless feedback found
by Shannon [67], provided there is at least a pair pa1, a2q P A2 such that PY|X“a1

K

PY|X“a2
. Otherwise, the zero-error capacity with feedback is zero.

66. The critical rate, RcpPXq, is defined as the smallest abscissa at which the convex
function Espp¨, PXqmeets its supporting line of slope ´1. According to (256),

Ic1
2
pX; Yq “ RcpPXq ` EsppRcpPXq, PXq. (266)

67. If R ě 0 and PX P PA, the random-coding exponent function is (e.g., (10.15) of [48])

ErpR, PXq “ min
QY|X : AÑB

!

DpQY|X}PY|X|PXq ` rIpPX , QY|Xq ´ Rs`
)

, (267)

with rts` “ maxt0, tu.
68. The random-coding error exponent function is determined by the sphere-packing

error exponent function through the following relation, illustrated in Figure 1.

R8pPXq RcpPXq IpPX ,PY|Xq

Ic1
2
pX; Yq EsppR,PXq

ErpR,PXq

R

Figure 1. Espp¨, PXq and Erp¨, PXq.



Entropy 2021, 23, 199 36 of 52

Theorem 22.

ErpR, PXq “ min
rěR

 

Esppr, PXq ` r´ R
(

(268)

“

$

’

’

&

’

’

%

0, R ě IpPX , PY|Xq;
EsppR, PXq, R P rRcpPXq, IpPX , PY|Xqs;
Ic1

2
pX; Yq ´ R, R P r0, RcpPXqs.

(269)

“ sup
ρPr0,1s

"

ρ Ic1
1`ρ
pX; Yq ´ ρ R

*

. (270)

Proof. Identities (268) and (269) are well-known (e.g. Lemma 10.4 and Corollary
10.4 in [48]). To show (270), note that (256) expresses Espp¨, PXq as the supremum of
supporting lines parametrized by their slope ´ρ. By definition of critical rate (for
brevity, we do not show explicitly its dependence on PX), if R P rRc, IpPX , PY|Xqs, then
EsppR, PXq can be obtained by restricting the optimization in (256) to ρ P r0, 1s. In that
segment of values of R, EsppR, PXq “ ErpR, PXq according to (269). Moreover, on the
interval R P r0, Rcs, we have

max
ρPr0,1s

"

ρ Ic1
1`ρ
pX; Yq ´ ρ R

*

“ Ic1
2
pX; Yq ´ R (271)

“ EsppRc, PXq ` Rc ´ R (272)

“ ErpR, PXq, (273)

where we have used (266) and (269).

The first explicit connection between ErpR, PXq and the Augustin–Csiszár mutual
information was made by Poltyrev [35] although he used a different form for Icα pX; Yq,
as we discussed in (29).

69. The unconstrained maximizations over the input distribution of the sphere-packing
and random coding error exponent functions are denoted, respectively, by

EsppRq “ sup
PX

EsppR, PXq, (274)

ErpRq “ sup
PX

ErpR, PXq. (275)

Coding theorems [8–10,22,48] have shown that when these functions coincide they
yield the reliability function (optimum speed at which the error probability vanishes
with blocklength) as a function of the rate R ă maxX IpX; Yq. The intuition is that,
for the most favorable input distribution, errors occur when the channel behaves
so atypically that codes of rate R are not reliable. There are many ways in which
the channel may exhibit such behavior and they are all unlikely, but the most likely
among them is the one that achieves (254).
It follows from (187), (256) and (270) that (274) and (275) can be expressed as

EsppRq “ sup
ρě0

"

ρ sup
X

I 1
1`ρ
pX; Yq ´ ρ R

*

, (276)

ErpRq “ sup
ρPr0,1s

"

ρ sup
X

I 1
1`ρ
pX; Yq ´ ρ R

*

. (277)

Therefore, we can sidestep working with the Augustin–Csiszár mutual information
in the absence of cost constraints.

70. Shannon [1] showed that, operating at rates below maximal mutual information, it
is possible to find codes whose error probability vanishes with blocklength; for the
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converse, instead of error probability, Shannon measured reliability by the conditional
entropy of the message given the channel output. That alternative reliability measure,
as well as its generalization to Arimoto-Rényi conditional entropy, is also useful
analyzing the average performance over code ensembles. It turns out (see e.g., [28,68])
that, below capacity, those conditional entropies also vanish exponentially fast in
much the same way as error probability with bounds that are governed by EsppRq
and ErpRq thereby lending additional operational significance to those functions.

71. We now introduce a cost function b : AÑ r0,8q and real scalar θ ě 0, and reexamine
the optimizations in (274) and (275) allowing only those probability measures that
satisfy ErbpXqs ď θ. With a patent, but unavoidable, abuse of notation we define

EsppR, θq “ sup
PX :

ErbpXqs ď θ

EsppR, PXq (278)

“ sup
ρě0

$

’

’

&

’

’

%

ρ sup
PX :

ErbpXqs ď θ

Ic1
1`ρ
pX; Yq ´ ρ R

,

/

/

.

/

/

-

(279)

“ sup
ρě0

"

ρCc
1

1`ρ
pθq ´ ρ R

*

(280)

“ sup
ρě0

"

´ρ R` ρ min
νě0

"

ν θ `A 1
1`ρ
pνq

**

(281)

“ sup
ρě0

"

´ρ R`min
νě0

tρ ν θ

`max
X

"

ρ I 1
1`ρ
pX; Yq ` p1` ρq logE

„

exp
ˆ

´
ρ ν

1` ρ
bpXq

˙***

, (282)

where (279), (281) and (282) follow from (256), (208) and (206), respectively.
72. In parallel to (278)–(281),

ErpR, θq “ sup
PX :

ErbpXqs ď θ

ErpR, PXq (283)

“ sup
ρPr0,1s

$

’

’

&

’

’

%

ρ sup
PX :

ErbpXqs ď θ

Ic1
1`ρ
pX; Yq ´ ρ R

,

/

/

.

/

/

-

(284)

“ sup
ρPr0,1s

"

ρCc
1

1`ρ
pθq ´ ρ R

*

, (285)

where (284) follows from (270). In particular, if we define the critical rate and the
cutoff rate as

Rc “ sup
PX :

ErbpXqs ď θ

RcpPXq, (286)

R0 “ sup
PX :

ErbpXqs ď θ

Ic1
2
pX; Yq, (287)

respectively, then it follows from (270) that

ErpRq “ R0 ´ R, R P r0, Rcs. (288)
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Summarizing, the evaluation of EsppR, θq and ErpR, θq can be accomplished by the
method proposed in Section 8, at the heart of which is the maximization in (206)
involving α-mutual information instead of Augustin–Csiszár mutual information. In
Sections 11 and 12, we illustrate the evaluation of the error exponent functions with
two important additive-noise examples.

11. Additive Independent Gaussian Noise; Input Power Constraint

We illustrate the procedure in Item 58 by taking Example 6 considerably further.

73. Suppose A “ B “ R, bpxq “ x2, and PY|X“a “ N
`

a, σ2
N
˘

. We start by testing whether
we can find Rν

X P PA such that its α-response satisfies (230). Naturally, it makes sense
to try Rν

X “ N
`

0, σ2˘ for some yet to be determined σ2. As we saw in Example 6, this
choice implies that its α-response is Rν

Yrαs “ N
`

0, α σ2 ` σ2
N
˘

. Specializing Example 4,
we obtain

Dα

´

PY|X“x }Rν
Yrαs

¯

“ Dα

´

N
´

x, σ2
N

¯

›

›N
´

0, α σ2 ` σ2
N

¯¯

(289)

“
1
2

log

˜

1`
α σ2

σ2
N

¸

´
1

2p1´ αq
log

˜

1`
αp1´ αqσ2

α2σ2 ` σ2
N

¸

`
1
2

αx2

α2σ2 ` σ2
N

log e. (290)

Therefore, (230) is indeed satisfied with

cαpνq “
1
2

log

˜

1`
α σ2

σ2
N

¸

´
1

2p1´ αq
log

˜

1`
αp1´ αqσ2

α2σ2 ` σ2
N

¸

, (291)

ν “
1
2

α

α2σ2 ` σ2
N

log e, (292)

where (292) follows if we choose the variance of the auxiliary input as

σ2 “
log e
2 α ν

´
σ2

N
α2 (293)

“
σ2

N
α2

´ α

λ
´ 1

¯

. (294)

In (294) we have introduced an alternative, more convenient, parametrization for the
Lagrange multiplier

λ “
2 ν σ2

N
log e

P p0, αq. (295)

In conclusion, with the choice in (293), N
`

0, σ2˘ attains the maximum in (206), and
in view of (231), Aαpνq is given by the right side of (291) substituting σ2 by (293).
Therefore, we have

ν θ `Aαpνq “
λ

2
snr log e` cα

˜

λ log e
2 σ2

N

¸

(296)

“
λ

2
snr log e`

1
2

log
ˆ

1`
1
λ
´

1
α

˙

´
1

2p1´ αq
logpα´ λp1´ αqq `

log α

1´ α
, (297)

where we denoted snr “ θ
σ2

N
.
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In accordance with Theorem 16 all that remains is to minimize (297) with respect
to ν, or equivalently, with respect to λ. Differentiating (297) with respect to λ, the
minimum is achieved at λ˚ satisfying

snr “
1

λ˚
α´ λ˚

α´ λ˚ ` α λ˚
, (298)

whose only valid root (obtained by solving a quadratic equation) is

λ˚ “
1` α snr´ α ∆

2 snr p1´ αq
P p0, αq, (299)

with ∆ defined in (118). So, for α P p0, 1q, (208) becomes

Cc
αpsnr σ2

Nq “
1` α snr´ α ∆

4p1´ αq
log e`

1
2

log
ˆ

1`
2 snr p1´ αq

1` α snr´ α ∆
´

1
α

˙

´
1

2p1´ αq
log

ˆ

α snr` α ∆´ 1
2 snr α2

˙

. (300)

Letting α “ 1
1`ρ , we obtain

Cc
1

1`ρ
psnr σ2

Nq “
snr

2 ρ
p1´ βq log e`

1
2

logp1` β snrq ´
1` ρ

2 ρ
logpp1` ρqβq, (301)

with

β “
1
2

ˆ

1´
1

α snr
`

∆
snr

˙

“
1
2

¨

˝1´
1` ρ

snr
`

d

4
snr

`

ˆ

1` ρ

snr
´ 1

˙2
˛

‚. (302)

74. Alternatively, it is instructive to apply Theorem 18 to the current Gaussian/quadratic
cost setting. Suppose we let Q˚X “ N

`

0, σ˚2˘, where σ˚2 is to be determined. With the
aid of the formulas

E
”

X2 e´µX2
ı

“
σ2

`

1` 2 µ σ2
˘

3
2

, (303)

E
”

e´µX2
ı

“
1

a

1` 2 µ σ2
, (304)

where µ ě 0, and X „ N
`

0, σ2˘, (217) becomes

1
snr

“
σ2

N
σ˚2 ` p1´ αqλ˚, (305)

upon substituting σ2 Ð σ˚2 and

µ Ð ν˚
1´ α

log e
“ λ˚

1´ α

2σ2
N

. (306)

Likewise (218) translates into (291) and (292) with pν, σ2q Ð pν˚, σ˚2q, namely,

cαpν
˚q “

1
2

log

˜

1`
α σ˚2

σ2
N

¸

´
1

2p1´ αq
log

˜

1`
αp1´ αqσ˚2

α2σ˚2 ` σ2
N

¸

, (307)

λ˚ “
ασ2

N
α2σ˚2 ` σ2

N
. (308)
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Eliminating σ˚2 from (305) by means of (308) results in (299) and the same derivation
that led to (300) shows that it is equal to ν˚θ ` cαpν

˚q.
75. Applying Theorem 17, we can readily find the input distribution, P˚X, that attains

Cc
αpθq as well as its xαy-response P˚Y (recall the notation in Item 53). According to

Example 2, P˚Y , the α-response to Q˚X is Gaussian with zero mean and variance

σ2
N ` α σ˚2 “ σ2

N

ˆ

1`
1

λ˚
´

1
α

˙

(309)

“
σ2

N
2

ˆ

2´
1
α
` ∆` snr

˙

, (310)

where (309) follows from (308) and (310) follows by using the expression for ∆ in
(118). Note from Example 7 that P˚Y is nothing but the xαy-response to N

`

0, snr σ2
N
˘

.
We can easily verify from Theorem 17 that indeed P˚X “ N

`

0, snr σ2
N
˘

since in this case
(216) becomes

ıP˚X }Q
˚
X
paq “ ´p1´ αqν˚ a2 ` τα, (311)

which can only be satisfied by P˚X “ N
`

0, snr σ2
N
˘

in view of (305). As an independent
confirmation, we can verify, after some algebra, that the right sides of (127) and (300)
are identical.
In fact, in the current Gaussian setting, we could start by postulating that the distri-
bution that maximizes the Augustin–Csiszár mutual information under the second
moment constraint does not depend on α and is given by P˚X “ Np0, θq. Its xαy-
response P˚Yxαy was already obtained in Example 7. Then, an alternative method to
find Cc

αpθq, given in Section 6.2 of [43], is to follow the approach outlined in Item
53. To validate the choice of P˚X we must show that it maximizes BpPX , P˚Yxαyq (in the

notation introduced in (199)) among the subset of PA which satisfies ErX2s ď θ. This
follows from the fact that Dα

´

PY|X“x}P˚Yxαy
¯

is an affine function of x2.

76. Let’s now use the result in Item 73 to evaluate, with a novel parametrization, the error
exponent functions for the Gaussian channel under an average power constraint.

Theorem 23. Let A “ B “ R, bpxq “ x2, and PY|X“a “ N
`

a, σ2
N
˘

. Then, for β P r0, 1s,

EsppR, snr σ2
Nq “

snr

2
p1´ βq log e´

1
2

logp1` snr βp1´ βqq, (312)

R “
1
2

log

˜

1`
β2

βp1´ βq ` 1
snr

¸

. (313)

The critical rate and cutoff rate are, respectively,

Rc “
1
2

log

˜

1
2
`

snr

4
`

1
2

c

1`
snr2

4

¸

, (314)

R0 “
1
2

˜

1`
snr

2
´

c

1`
snr2

4

¸

log e`
1
2

log

˜

1
2
`

1
2

c

1`
snr2

4

¸

. (315)
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Proof. Expression (315) for the cutoff rate follows by letting ρ “ 1 in (301) and
(302). The supremum in (281) is attained by ρ˚ ě 0 that satisfies (recall the concavity
result in Theorem 9-(a))

R “
d

dρ
ρCc

1
1`ρ
psnr σ2

Nq

ˇ

ˇ

ˇ

ˇ

ρÐρ˚
(316)

“
1
2

log
ˆ

snr`
1
β

˙

´
1
2

logp1` ρ˚q, (317)

obtained after a dose of symbolic computation working with (301). In particular,
letting ρ˚ “ 1, we obtain the critical rate in (314). Note that if in (302) we substitute
ρ Ð ρ˚, with ρ˚ given as a function of R, snr and β by (317), we end up with an
equation involving R, snr, and β. We proceed to verify that that equation is, in fact,
(312). By solving a quadratic equation, we can readily check that (302) is the positive
root of

1` ρ “ snrp1´ βq `
1
β

. (318)

If we particularize (318) to ρ Ð ρ˚, with ρ˚ given by (317), namely,

ρ˚ “ ´1` expp´2Rq
ˆ

snr`
1
β

˙

, (319)

we obtain

expp2Rq “
snr β` 1

snr βp1´ βq ` 1
, (320)

which is (313). Notice that the right side of (320) is monotonic increasing in β ą 0
ranging from 1 (for β “ 0) to 1` snr (for β “ 1). Therefore, β P r0, 1s spans the whole
gamut of values of R of interest.
Assembling (281), (301) and (317), we obtain

EsppR, snr σ2
Nq

“ ´ρ˚R`
snr

2
p1´ βq log e`

ρ˚

2
logp1` β snrq ´

1` ρ˚

2
logpp1` ρ˚qβq (321)

“ ´ρ˚R`
snr

2
p1´ βq log e`

ρ˚

2
logp1` β snrq ´

1` ρ˚

2
log β

` p1` ρ˚qR´
1` ρ˚

2
log

ˆ

snr`
1
β

˙

(322)

“ R`
snr

2
p1´ βq log e´

1
2

logp1` β snrq (323)

“
snr

2
p1´ βq log e´

1
2

logp1` snr βp1´ βqq, (324)

where (324) follows by substituting (313) on the left side.

Note that the parametric expression in (312) and (313) (shown in Figure 2) is, in fact,
a closed-form expression for EsppR, snr σ2

Nq since we can invert (313) to obtain

β “
1
2
p1´ expp´2 Rqq

˜

1`

d

1`
4

snr p1´ expp´2 Rqq

¸

. (325)
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The random coding error exponent is

ErpR, θq “

#

EsppR, θq, R P pRc, 1
2 logp1` snrqq;

R0 ´ R, R P r0, Rcs,
(326)

with the critical rate Rc and cutoff rate R0 in (314) and (315), respectively. It can be
checked that (326) coincides with the expression given by Gallager [9] (p. 340) where
he optimizes (235) with respect to ρ and r, but not PX, which he just assumes to be
PX “ Np0, θq. The expression for Rc in (314) can be found in (7.4.34) of [9]; R0 in (314)
is implicit in p. 340 of [9], and explicit in e.g., [69].

1 2 1
2 logp1` snrq 3

10

20

snr
2 log e

R

EsppR, snr σ2
Nq snr “ 5 dB

snr “ 10 dB
snr “ 15 dB

Figure 2. EsppR, snr σ2
Nq in (312) and (313); logarithms in base 2.

77. The expression for EsppR, θq in Theorem 23 has more structure than meets the eye.
The analysis in Item 73 has shown that EsppR, PXq is maximized over PX with second

moment not exceeding θ by P˚X “ Np0, θq regardless of R P
´

0, 1
2 logp1` snrq

¯

. The
fact that we have found a closed-form expression for (254) when evaluated at such
input probability measure and PY|X“a “ N

`

a, σ2
N
˘

is indicative that the minimum
therein is attained by a Gaussian random transformation Q˚Y|X. This is indeed the
case: define the random transformation

Q˚Y|X“a “ N
´

β a, σ2
1

¯

, (327)

σ2
1

σ2
N
“ 1` snr βp1´ βq. (328)

In comparison with the nominal random transformation PY|X“a “ N
`

a, σ2
N
˘

, this
channel attenuates the input and contaminates it with a more powerful noise. Then,

IpP˚X , Q˚Y|Xq “
1
2

log

˜

1`
β2

βp1´ βq ` 1
snr

¸

“ R. (329)
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Furthermore, invoking (33), we get

DpQ˚Y|X}PY|X|P
˚
Xq “ E

”

D
´

N
´

βX˚, σ2
1

¯

}N
´

X˚, σ2
N

¯¯ı

(330)

“
1
2

˜

pβ´ 1q2snr`
σ2

1
σ2

N
´ 1

¸

log e´
1
2

log
σ2

1
σ2

N
(331)

“
snr

2
p1´ βq log e´

1
2

logp1` snr βp1´ βqq (332)

“ EsppR, snr σ2
Nq, (333)

where (333) is (312). Therefore, Q˚Y|X does indeed achieve the minimum in (254) if

PY|X“a “ N
`

a, σ2
N
˘

and P˚X “ Np0, θq. So, the most likely error mechanism is the
result of atypically large noise strength and an attenuated received signal. Both effects
cannot be combined into additional noise variance: there is no σ2 ą 0 such that
QY|X“a “ N

`

a, σ2˘ achieves the minimum in (254).

12. Additive Independent Exponential Noise; Input-Mean Constraint

This section finds the sphere-packing error exponent for the additive independent
exponential noise channel under an input-mean constraint.

78. Suppose that A “ B “ r0,8q, bpxq “ x, and

Y “ X` N, (334)

where N is exponentially distributed, independent of X, and ErNs “ ζ. Therefore
PY|X“a has density

pY|X“aptq “
1
ζ

e´
t´a

ζ 1tt ě au. (335)

It is shown in [70,71] that

max
X : ErXsďθ

IpX; X` Nq “ logp1` snrq, (336)

snr “
θ

ζ
, (337)

achieved by a mixed random variable with density

f ˚Xptq “
ζ

ζ ` θ
δptq `

θ

pζ ` θq2
e´t{pζ`θq1tt ą 0u. (338)

To determine Cc
αpsnr ζq, α P p0, 1q, we invoke Theorem 18. A sensible candidate for

the auxiliary input distribution Q˚X is a mixed random variable with density

q˚Xptq “ Γ˚ δptq ` p1´ Γ˚q
1
µ

e´t{µ 1tt ą 0u, (339)

µ “
ζ

α Γ˚
, (340)

where Γ˚ P p0, 1q is yet to be determined. This is an attractive choice because its
α-response, Q˚Yrαs, is particularly simple: exponential with mean α µ “ ζ

Γ˚ , as we can
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verify using Laplace transforms. Then, if Z is exponential with unit mean, with the
aid of Example 5, we can write

Dα

´

PY|X“x }Q˚Yrαs
¯

“ Dαpζ Z` x } α µ Zq (341)

“
x

α µ
log e` log

α µ

ζ
`

1
1´ α

log
ˆ

α` p1´ αq
ζ

α µ

˙

(342)

“
Γ˚x

ζ
log e´ log Γ˚ `

1
1´ α

logpα` p1´ αqΓ˚q. (343)

So, (218) is satisfied with

ν˚ “
Γ˚

ζ
log e, (344)

cαpν
˚q “

1
1´ α

logpα` p1´ αqΓ˚q ´ log Γ˚. (345)

To evaluate (217), it is useful to note that if γ ą ´1, then

E
”

Ze´γZ
ı

“
1

p1` γq2
, (346)

E
”

e´γZ
ı

“
1

1` γ
. (347)

Therefore, the left side of (217) specializes to, with X̄˚ „ Q˚X ,

E
“

bpX̄˚q exp
`

´p1´ αqν˚ bpX̄˚q
˘‰

“
µp1´ Γ˚q

´

1` µp1´ αq ν˚

log e

¯2 (348)

“ ζ α

ˆ

1
Γ˚
´ 1

˙

, (349)

while the expectation on the right side of (217) is given by

E
“

exp
`

´p1´ αqν˚ bpX̄˚q
˘‰

“ α` Γ˚ ´ αΓ˚. (350)

Therefore, (217) yields

snr “
1

Γ˚
´

1
α` p1´ αqΓ˚

(351)

whose solution is

Γ˚ “
1

2ρ snr

ˆ

b

p1` snrq2 ` 4ρ snr´ 1´ snr

˙

, (352)

with ρ “ 1´α
α . So, finally, (220), (344) and (345) give the closed-form expression

Cc
αpθq “ snr Γ˚ log e´ log Γ˚ `

1
1´ α

logpα` p1´ αqΓ˚q. (353)

As in Item 73, we can postulate an auxiliary distribution that satisfies (230) for every
ν ě 0. This is identical to what we did in (341)–(343) except that now (344) and (345)
hold for generic ν and Γ. Then, (351) is the result of solving θ “ ´ 9cαpν

˚q, which is, in
fact, somewhat simpler than obtaining it through (217).

79. We proceed to get a very simple parametric expression for EsppR, θq.



Entropy 2021, 23, 199 45 of 52

Theorem 24. Let A “ B “ r0,8q, bpxq “ x, and Y “ X ` N, with N exponentially
distributed, independent of X, and ErNs “ ζ. Then, under the average cost constraint
ErbpXqs ď ζ snr,

EsppR, ζ snrq “

ˆ

1
η
´ 1

˙

log e` log η, (354)

R “ logp1` η snrq, (355)

where η P p0, 1s.

Proof. Rewriting (353), results in

ρCc
1

1`ρ
pθq “ ρ snr Γ˚ log e´ ρ log Γ˚ ` p1` ρq log

1` ρ Γ˚

1` ρ
, (356)

which is monotonically decreasing with ρ. With 9Γ˚ “ B
Bρ Γ˚pρ, snrq, the counterpart of

(317) is now

R “
d

dρ
ρCc

1
1`ρ
pθq

ˇ

ˇ

ˇ

ˇ

ρÐρ˚
(357)

“ pΓ˚ ` ρ˚ 9Γ˚q
ˆ

snr´
1

Γ˚
`

1` ρ˚

1` ρ˚Γ˚

˙

log e` log
1` ρ˚Γ˚

Γ˚ ` ρ˚ Γ˚
(358)

“ pΓ˚ ` ρ˚ 9Γ˚q
ˆ

snr`
1

Γ˚
Γ˚ ´ 1

1` ρ˚Γ˚

˙

log e` log
1` ρ˚Γ˚

Γ˚ ` ρ˚ Γ˚
(359)

“ log
1` ρ˚Γ˚

Γ˚ ` ρ˚ Γ˚
, (360)

where the drastic simplification in (360) occurs because, with the current parametriza-
tion, (351) becomes

1´ Γ˚ “ p1` ρ˚ Γ˚q Γ˚ snr. (361)

Now we go ahead and express both ρ˚ and Γ˚ as functions of snr and R exclusively.
We may rewrite (357)–(360) as

ρ˚ Γ˚ “
expp´Rq ´ Γ˚

1´ expp´Rq
, (362)

which, when plugged in (361), results in

Γ˚ “
1
snr
p1´ expp´Rqq ă 1, (363)

ρ˚ “
p1` snrq expp´Rq ´ 1

p1´ expp´Rqq2
ą 0, (364)
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where the inequalities in (363) and (364) follow from R ă logp1` snrq. So, in conclusion,

EsppR, θq “ max
ρě0

"

ρCc
1

1`ρ
pθq ´ ρ R

*

(365)

“ ρ˚Cc
1

1`ρ˚
pθq ´ ρ˚ R (366)

“ ρ˚ snr Γ˚ log e´ ρ˚ log Γ˚ ` p1` ρ˚q log
1` ρ˚Γ˚

1` ρ˚
´ ρ˚ R (367)

“ ρ˚ snr Γ˚ log e´ ρ˚ log Γ˚ ` p1` ρ˚qpR` log Γ˚q ´ ρ˚ R (368)

“ ρ˚ snr Γ˚ log e` log Γ˚ ` R (369)

“

ˆ

snr

exppRq ´ 1
´ 1

˙

log e` log
exppRq ´ 1

snr
(370)

“

ˆ

1
η
´ 1

˙

log e` log η, (371)

where we have introduced

η “
exppRq ´ 1

snr
“

Γ˚

1´ snr Γ˚
. (372)

Evidently, the left identity in (372) is the same as (355).

The critical rate and the cutoff rate are obtained by particularizing (360) and (356) to
ρ˚ “ 1 and ρ “ 1, respectively. This yields

Rc “ log
1` Γ˚1
2 Γ˚1

, (373)

R0 “ snr Γ˚1 log e´ logp4 Γ˚1 q ` 2 logp1` Γ˚1 q, (374)

Γ˚1 “

b

p1` snrq2 ` 4 snr´ 1´ snr

2 snr
. (375)

As in (326), the random coding error exponent is

ErpR, ζ snrq “

#

EsppR, ζ snrq, R P pRc, logp1` snrqq;
R0 ´ R, R P r0, Rcs,

(376)

with the critical rate Rc and cutoff rate R0 in (373) and (375), respectively. This function
is shown along with EsppR, ζ snrq in Figure 3 for snr “ 3.

80. In parallel to Item 77, we find the random transformation that explains the most likely
mechanism to produce errors at every rate R, namely the minimizer of (254) when
PX “ P˚X , the maximizer of the Augustin–Csiszár mutual information of order α. In
this case, P˚X is not as trivial to guess as in Section 11, but since we already found
Q˚X in (339) with Γ “ Γ˚, we can invoke Theorem 17 to show that the density of P˚X
achieving the maximal order-α Augustin–Csiszár mutual information is

p˚Xptq “
Γ˚

α` p1´ αqΓ˚
δptq `

1´ Γ˚

α` p1´ αqΓ˚
α Γ˚

ζ
e´t Γ˚{ζ 1tt ą 0u, (377)

whose mean is, as it should,

α ζ

Γ˚
1´ Γ˚

α` p1´ αqΓ˚
“ ζ snr “ θ. (378)
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Let Q˚Y be exponential with mean θ ` κ, and Q˚Y|X“a have density

q˚Y|X“aptq “
1
κ

e´
t´a

κ 1tt ě au, (379)

with

κ “
ζ

η
, (380)

and η as defined in (372). Using Laplace transforms, we can verify that P˚X Ñ Q˚Y|X Ñ
Q˚Y where P˚X is the probability measure with density in (377). Let Z be unit-mean
exponentially distributed. Writing mutual information as the difference between the
output differential entropy and the noise differential entropy we get

IpP˚X , Q˚Y|Xq “ hppθ ` κqZq ´ hpκZq (381)

“ log
ˆ

1`
θ

κ

˙

(382)

“ R, (383)

in view of (363). Furthermore, using (335) and (379),

DpQ˚Y|X } PY|X|P
˚
Xq “ log

ζ

κ
`

ˆ

κ

ζ
´ 1

˙

log e (384)

“ log η `

ˆ

1
η
´ 1

˙

log e (385)

“ EsppR, ζ snrq, (386)

where we have used (380) and (354). Therefore, we have shown that Q˚Y|X is indeed
the minimizer of (254). In this case, the most likely mechanism for errors to happen is
that the channel adds independent exponential noise with mean ζ{η, instead of the
nominal mean ζ. In this respect, the behavior is reminiscent of that of the exponential
timing channel for which the error exponent is dominated (at least above critical rate)
by an exponential server which is slower than the nominal [72].

Rc logp1` snrq

R0

EsppR, ζ snrq
ErpR, ζ snrq

R

Figure 3. Error exponent functions in (354), (355) and (376).

13. Recap

81. The analysis of the fundamental limits of noisy channels in the regime of vanishing
error probability with blocklength growing without bound expresses channel capacity
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in terms of a basic information measure: the input–output mutual information maxi-
mized over the input distribution. In the regime of fixed nonzero error probability, the
asymptotic fundamental limit is a function of not only capacity but channel disper-
sion [73], which is also expressible in terms of an information measure: the variance
of the information density obtained with the capacity-achieving distribution. In the
regime of exponentially decreasing error probability (at fixed rate below capacity)
the analysis of the fundamental limits has gone through three distinct phases. No
information measures were involved during the first phase and any optimization with
respect to various auxiliary parameters and input distribution had to rely on standard
convex optimization techniques, such as Karush-Kuhn-Tucker conditions, which not
only are cumbersome to solve in this particular setting, but shed little light on the
structure of the solution. The second phase firmly anchored the problem in a large
deviations foundation, with the fundamental limits expressed in terms of conditional
relative entropy as well as mutual information. Unfortunately, the associated maxi-
minimization in (2) did not immediately lend itself to analytical progress. Thanks to
Csiszár’s realization of the relevance of Rényi’s information measures to this problem,
the third phase has found a way to, not only express the error exponent functions as a
function of information measures, but to solve the associated optimization problems
in a systematic way. While, in the absence of cost constraints, the problem reduces
to finding the maximal α-mutual information, cost constraints make the problem
much more challenging because of the difficulty in determining the order-α Augustin–
Csiszár mutual information. Fortunately, thanks to the introduction of an auxiliary
input distribution (the xαy-adjunct of the distribution that maximizes Icα ), we have
shown that α-mutual information also comes to the rescue in the maximization of
the order-α Augustin–Csiszár mutual information in the presence of average cost
constraints. We have also finally ended the isolation of Gallager’s E0 function with
cost constraints from the representations in Phases 2 and 3. The pursuit of such a
link is what motivated Augustin in 1978 to define a generalized mutual information
measure. Overall, the analysis has given yet another instance of the benefits of varia-
tional representations of information measures, leading to solutions based on saddle
points. However, we have steered clear of off-the-shelf minimax theorems and their
associated topological constraints.
We have worked out two channels/cost constraints (additive Gaussian noise with
quadratic cost, and additive exponential noise with a linear cost) that admit closed-
form error-exponent functions, most easily expressed in parametric form. Further-
more, in Items 77 and 80 we have illuminated the structure of those closed-form
expressions by identifying the anomalous channel behavior responsible for most
errors at every given rate. In the exponential noise case, the solution is simply a
noisier exponential channel, while in the Gaussian case it is the result of both a noisier
Gaussian channel and an attenuated input.
These observations prompt the question of whether there might be an alternative
general approach that eschews Rényi’s information measures to arrive at not only the
most likely anomalous channel behavior, but the error exponent functions themselves.
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Appendix A

Recall that the relative information ıP}Q is defined only if P ! Q, while DpP}Qq P

r0,`8s is always defined and equal to `8 if (but not only if) P
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Example 1. If X ∼ N
(
µX , σ2

X
)

(Gaussian with mean µX and variance σ2
X) and Y ∼

N
(
µY, σ2

Y
)
, then,

ıX‖Y(a) =
1
2

log
σ2

Y
σ2

X
+

1
2

(
(a− µY)

2

σ2
Y

− (a− µX)
2

σ2
X

)
log e. (10)

4. Let (A, F ) and (B, G ) be measurable spaces, known as the input and output spaces,
respectively. Likewise, A and B are referred to as the input and output alphabets
respectively. The simplified notation PY|X : A → B denotes a random transformation
from (A, F ) to (B, G ), i.e. for any x ∈ A, PY|X=x(·) is a probability measure on
(B, G ), and for any B ∈ G , PY|X=·(B) is an F -measurable function.

5. We abbreviate by PA the set of probability measures on (A, F ), and by PA×B the
set of probability measures on (A× B, F ⊗ G ). If P ∈ PA and PY|X : A → B is a
random transformation, the corresponding joint probability measure is denoted by
P PY|X ∈ PA×B (or, interchangeably, PY|XP). The notation P → PY|X → Q simply
indicates that the output marginal of the joint probability measure P PY|X is denoted
by Q ∈ PB , namely,

Q(B) =
∫

PY|X(B|x)dPX(x) = E
[

PY|X(B|X)
]
, B ∈ G . (11)

6. If PX → PY|X → PY and PY|X=a � PY, the information density ıX;Y : A × B →
[−∞, ∞) is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (12)

Following Rényi’s terminology [49], if PXPY|X � PX × PY, the dependence between
X and Y is said to be regular, and the information density can be defined on (x, y) ∈
A × B. Henceforth, we assume that PY|X is such that the dependence between its
input and output is regular regardless of the input probability measure. For example,
if X = Y ∈ R, then PY|X=a(A) = 1{a ∈ A}, and their dependence is not regular, since
for any PX with non-discrete components PXY 6� PX × PY.

7. Let α > 0, and PX → PY|X → PY. The α-response to PX ∈ PA is the output probability
measure PY[α] � PY with relative information given by

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (13)

where κα is a scalar that guarantees that PY[α] is a probability measure. Invoking (9),
we obtain

κα = α logE
[
E

1
α [exp(α ıX;Y(X; Ȳ))|Ȳ]

]
, (X, Ȳ) ∼ PX × PY. (14)

For brevity, the dependence of κα on PX and PY|X is omitted. Jensen’s inequality
applied to (·)α results in κα ≤ 0 for α ∈ (0, 1) and κα ≥ 0 for α > 1. Although the
α-response has a long record of services to information theory, this terminology and
notation were introduced recently in [45]. Alternative terminology and notation were
proposed in [42], which refers to the α-response as the order α Rényi mean. Note that
κ1 = 0 and the 1-response to PX is PY. If pY[α] and pY|X denote the densities of PY[α]
and PY|X with respect to some common dominating measure, then (13) becomes

pY[α](y) = exp
(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]
, X ∼ PX . (15)

For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

Q.
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Lemma A1. If Q ! R and X „ P ! R, then

E
”

ıP}RpXq ´ ıQ}RpXq
ı

“ DpP }Qq, (A1)

regardless of whether the right side is finite.

Proof. If P ! Q ! R, we may invoke the chain rule (7) to decompose

ıP}Rpaq ´ ıQ}Rpaq “ ıP}Qpaq. (A2)

Then, the result follows by taking expectations of (A2) when a Ð X „ P.
To show that (A1) also holds when P
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For α > 1 (resp. α < 1) we can think of the normalized version of pα
Y|X as a random

transformation with less (resp. more) "noise" than pY|X .

Q, i.e., that the expectation on the left side is
`8, we invoke the Lebesgue decomposition theorem (e.g. p. 384 of [74]), which ensures
that we can find α P r0, 1q, P0 K Q and P1 ! Q, such that

P “ α P1 ` p1´ αqP0. (A3)

Since P1 K P0, we have

DpP1 } Pq “ log
1
α

, (A4)

DpP0 } Pq “ log
1

1´ α
. (A5)

If X1 „ P1, then

E
”

ıP}RpX1q ´ ıQ}RpX1q

ı

“ E
”

ıP1}RpX1q ´ ıQ}RpX1q

ı

´E
”

ıP1}RpX1q ´ ıP}RpX1q

ı

(A6)

“ DpP1 }Qq ´DpP1 } Pq (A7)

“ DpP1 }Qq ´ log
1
α

, (A8)

where

• (A7)ðù (A1) with pP, Q, Rq Ð pP1, Q, Rq and (A1) with pP, Q, Rq Ð pP1, P, Rq, which
we are entitled to invoke since P1 is dominated by both Q and R;

• (A8)ðù (A4).

Analogously, if X0 „ P0, then

E
”

ıP}RpX0q

ı

“ E
”

ıP0}RpX0q

ı

´E
”

ıP0}RpX0q ´ ıP}RpX0q

ı

(A9)

“ DpP0 }Rq ´DpP0 } Pq (A10)

“ DpP0 }Rq ´ log
1

1´ α
. (A11)

Therefore, we are ready to conclude that

E
”

ıP}RpXq ´ ıQ}RpXq
ı

“ αE
”

ıP}RpX1q ´ ıQ}RpX1q

ı

` p1´ αqE
”

ıP}RpX0q ´ ıQ}RpX0q

ı

(A12)

“ α DpP1 }Qq ` p1´ αqDpP0 }Rq ´ p1´ αqE
”

ıQ}RpX0q

ı

´ hpαq (A13)

“ `8, (A14)

where

• (A12)ðù (A3);
• (A13)ðù hp¨q is the binary entropy function, (A8) and (A11);
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• (A14)ðù E
”

ıQ}RpX0q

ı

“ ´8ðù P0
´

x P A : dQ
dR pxq “ 0

¯

“ 1ðù P0 K Q.

Corollary A1. Suppose that Q ! R and X „ P ! R. Then,

E
”

ıQ}RpXq
ı

“ DpP }Rq ´DpP }Qq, (A15)

as long as at least one of the relative entropies on the right side is finite.
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