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The unique ability of centrosomes to nucleate and organize microtubules makes them unri-
valed conductors of important interphase processes, such as intracellular payload traffic,
cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in
mitosis that centrosomes loom large, for they orchestrate, with clockmaker’s precision,
the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the
replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to
aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects
of centrosome function in normal and cancer cells have been molecularly characterized
during the last two decades, greatly enhancing our mechanistic understanding of this tiny
organelle. Whether centrosome defects alone can cause cancer, remains unanswered.
Until recently, the aggregate of the evidence had suggested that centrosome dysfunction,
by deregulating the fidelity of chromosome segregation, promotes and accelerates the
characteristic Darwinian evolution of the cancer genome enabled by increased mutational
load and/or decreased DNA repair. Very recent experimental work has shown that misseg-
regated chromosomes resulting from centrosome dysfunction may experience extensive
DNA damage, suggesting additional dimensions to the role of centrosomes in cancer.
Centrosome dysfunction is particularly prevalent in tumors in which the genome has under-
gone extensive structural rearrangements and chromosome domain reshuffling. Ongoing
gene reshuffling reprograms the genome for continuous growth, survival, and evasion of
the immune system. Manipulation of molecular networks controlling centrosome function
may soon become a viable target for specific therapeutic intervention in cancer, particularly
since normal cells, which lack centrosome alterations, may be spared the toxicity of such
therapies.
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Cancer is an evolutionary multistep process arising in single
cells resulting from accumulation of non-lethal mutations that
increase, decrease, deregulate, or interfere with the function of
critical genes, leading to autonomous growth and loss of home-
ostasis. Cancer cells fail to execute programed cell death when
required, fail to exit the cell cycle when prompted, or to differ-
entiate in response to appropriate external or internal regulatory
signals. This dynamic“renegade”behavior (1), which was elegantly
codified by Hanahan and Weinberg in a series of publications
addressing the Hallmarks of cancer cells (2, 3), lay at the core of
cancer biology and dispels the notion of sporadic cancer as a sim-
ple, oligogenic somatic genetic disease. Cancer is indeed a family
of complex evolutionary somatic genetic disorders resulting from
dynamic and ongoing reprograming of the genome, the nature of
which will continue to challenge our ingenuity for years to come.

THE FIRST CANCER CELL HALLMARK
An abnormal complement of chromosomes, i.e., aneuploidy, is
arguably the first identified hallmark of cancer cells. Beginning
in 1890 Leo Hansemann, in a series of beautifully illustrated

observations (Figure 1), documented the frequent presence of
asymmetric and multipolar mitoses in carcinoma tissue (4, 5).
Though uncertain of the significance of his findings, Hanse-
mann was aware that daughter cells resulting from asymmetric
mitoses received abnormal amounts of “chromatin.” Perhaps in
part prompted by these findings, Theodore Boveri, who was aware
of Leo Hansemann’s work and publically acknowledged his find-
ings, formulated his now famous theory of cancer development
(6). Half a century later, Torbjörn Caspersson, who pioneered
cytological microspectrofluorimetric analysis of nuclei acids (7),
would resoundingly confirm Hansemann and Boveri’s predic-
tions. Caspersson was the first to observe that cancer cells, unlike
normal cells, which always contained a constant amount of DNA,
almost always exhibited greater, but highly variable quantities of
nuclear DNA (8). It can thus be stated that an abnormal chromo-
some complement, possibly resulting from abnormal centrosome
function, was the first hallmark of cancer ever identified. Since
these pioneering observations, the nearly universal occurrence
of abnormal chromosomes in cancer, in a bewildering combina-
tion of numerical and structural abnormalities, has been widely
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Pihan Centrosome dysfunction in cancer

FIGURE 1 | Leo Hansemann’s drawings of abnormal mitoses in
cancer tissue. Abnormal metaphases (13, 30, 32, 33, 35), anaphases
(8, 29), and telophases (31) are exquisitely represented, with many of
the drawings implying supernumerary centrosomes, which could not
be directly visualized in these preparations. Apparent mitotic

catastrophes are represented as well (28, 34) (reproduced with
permission from Virchows Archive). Hansemann took care of placing
cancer tissue samples in warm fixative immediately after surgical
resection to avoid anoxia-induced changes and in the process
beautifully preserved spindle microtubules.

documented. A number of data repositories, such as The Can-
cer Genome Anatomy Project (9, 10), which includes Mitelman’s
cancer cytogenetic collection currently containing 62,601 cancer
karyotypes (11), provide a plethora of data and an overview of the
spectrum and extent of large scale genome changes in cancer.

CONTEMPORARY VIEW ON CENTROSOMES STRUCTURE
AND FUNCTION
The centrosome is a multifunctional structurally complex macro-
molecular machine composed of hundreds of proteins (12–16)
(Figure 2). It is the primary microtubule-organizing center
(MTOC) in metazoans (17–26) controlling several interphase and
mitotic microtubule-dependent processes (17–19, 22–25, 27).

In interphase, the centrosome establishes and controls the
microtubule network that serves as the highway for fast intra-
cellular payload traffic of protein and organelles (26). It con-
tributes to the development and maintenance of cell polarity
(28), cell adhesion (29), cell locomotion (30), and the organi-
zation of the immunological synapse (31). In differentiated cells
the maternal centriole guides the establishment of the primary
cilium (32). However, it is during mitosis that centrosomes play
their most visible role. Centrosomes organize and fine-tune the
microtubule arrays that form the mitotic spindle – the elegant and
precisely choreographed supramolecular machine that ensures the
segregation of exactly one full diploid set of chromosomes to
each daughter cell during mitosis (21, 33). Additionally, astral
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FIGURE 2 | Prototypic vertebrate centrosome. Salient architectural
features of the post-mitotic centrosome (after centriole disengagement, but
before procentriole nucleation) include fully developed mother and daughter
centrioles and electron dense but highly structured pericentriolar material
(PCM).

microtubules arising in centrosomes control mitotic spindle posi-
tion and orientation (34–36), thereby specifying the cell division
plane, which ultimately control cell fate in some stem cell niches,
such as the developing central nervous system (34–36). The cen-
trosome, specifically its maternal centriole, is critical for the devel-
opment of the primary and secondary cilium in differentiated
cells.

The centrosome possesses microtubule-independent functions
as well. The most important of these is its cell cycle regulatory
activity. Several proteins that localize to centrosomes sequentially
control a number of cell cycle processes. Centrosomes license post-
mitotic G1 cells for entry into the next S phase (37). In addition,
centrosomes may control the timing of S-phase and mitotic entry.
Cyclins A and E have centrosome localization sequences (CLS)
which are critical for Cdk2-dependent S-phase entry. Interfer-
ence with cycle A/E binding to the centrosome prevents entry
into S phase (38). Centrosomal localization of Cyclin E-Cdk2 is
required for initiation of DNA synthesis (39), whereas Cyclin A-
Cdk2 by binding MCM5 and Orc1 – two proteins involved in
DNA replication – prevents centrosome overduplication in S phase
(40). Centrosomes may also control the initial activation of cyclin
B1-Cdk1 in the cytoplasm, which is critical for mitotic entry. Enzy-
matically active cyclin B1-Cdk1 appears first at the centrosome at
the onset of mitosis (41, 42). Cyclin B-Cdk1 is maintained inactive
via phosphorylation of ATP binding pocket amino acids Thr14 and
Tyr15 by Wee kinase. Mitotic onset is triggered by a massive wave of
Cyclin B-Cdk1 activation that starts at the centrosome by Cdc25B

phosphatase initially dephosphorylating Cdk1. This initially acti-
vated centrosomal pool of Cyclin B-Cdk1 at the end of prophase,
phosphorylates Cdc25B and Wee1, activating the first and inhibit-
ing the second, and triggering a rapidly expanding wave of Cyclin
B-Cdk1 activation with its epicenter at the centrosome. The impor-
tance of preventing activation of the centrosomal pool of Cyclin
B-Cdk1 is highlighted by it being closely guarded by the checkpoint
kinase Chk-1, which localizes to the centrosome in interphase, but
not mitosis, and inhibits Cdk1 activation (43). Inhibition of cen-
trosomal Chk-1 results in premature separation of centrosomes
and activation of Cyclin B-Cdk1 leading to premature entry into
mitosis (44). Moreover, Aurora kinase A – which localized to the
centrosome and increases through S and G2 phases – appears to be
the trigger for nuclear envelope breakdown (NEB) in mitosis (45).
Cyclin F, the only F-box cyclin, accumulates in the centrosome in
G2 and is involved in ubiquitinylation of CP110 targeting it for
proteolytic degradation. Degradation of CP110 ensures restric-
tion of centrosome replication to once in each cell cycle. Cyclin F
also targets the ribonucleotide reductase RRM2, leading to down-
regulation of dNTP pools at the end of S phase (46). Proteolytic
cleavage of CP110 and RRM2 are important to prevent genomic
instability. Finally, in some cells the maternal centrosome, late dur-
ing cytokinesis, moves close to the central spindle and appears to
license abscission by releasing central spindle microtubules (47).
This function appears to enhance the fidelity of cytokinesis (48).
Considered together, these findings reveal that the centrosome is
an integral component and relay station for signals that control
events throughout the cell cycle, functions that if disrupted may
lead to abnormal DNA replication and cell division.

CENTROSOME INTEGRITY CHECKPOINT
In the course of experiments investigating the function of sev-
eral centrosome components, an important aspect of centrosome
self-regulation was revealed. Depletion of centrosomal AKAP450
and pericentrin, by targeting their common centrosome bind-
ing domains induces post-mitotic cell cycle arrest. Moreover,
targeted depletion of 14 out of 15 centrosome components by
siRNA, prolonged cytokinesis and triggered G1 arrest in telom-
erized (immortal), non-transformed human cells (49, 50). Cell
cycle arrest occurred from within G1, was independent of mitosis
and cytokinesis, and dependent on p38-induced phosphoryla-
tion of p53 at Ser-33. Ser-33 phosphorylated p53 localizes to the
centrosome from which it translocates into the nucleus upregulat-
ing p21 and inducing S1 arrest via inhibition of Cdk2-CyclinA/E
activity (50). This seemingly universal G1 arrest response of non-
transformed cells to centrosome “injury” constitutes a de facto
“centrosome integrity checkpoint” that precludes normal cells
from reentering the cell cycle once centrosome integrity has been
compromised, thus avoiding chromosome instability (CIN) and
genomic instability (50).

CENTROSOME STRUCTURE
CENTRIOLES
A mature centrosome is comprised of two centrioles in orthog-
onal configuration, surrounded by an amorphous electron-dense
protein-rich cloud, termed pericentriolar material (PCM) (51–53)
(Figure 2). Each centriole is a cylindrical structure made up of nine
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parallel microtubule triplets, their long axes running the length of
the cylinder. Each microtubule triplet is composed of an internal
A, middle B, and external C microtubule. Unlike A and B, the C
microtubule runs only two-thirds the length of the centriole and
is absent from its distal portion. In the proximal centriole, the A
microtubule of one triplet is connected to the C microtubule of
the previous triplet by an A-C linker, which becomes an A-B linker
beyond the end of the C microtubule toward the distal end of the
centriole barrel. The microtubule triplets are heavily acetylated
(54) and polyglutamylated (55) and thus very stable, exchang-
ing little if any with the soluble pool of αβ tubulin heterodimers.
The ninefold radial symmetry of centrioles is apparently deter-
mined and maintained by the proximal-end cartwheel assembly
(Figure 2). Comprised of nine spokes radiating from a central hub,
the cartwheel assembly is composed almost entirely of a single pro-
tein, Sas-6. The cartwheel assembly is repeated six times along the
interior of the proximal end of the centriole. Although nearly iden-
tical, the older, “mother” centriole, additionally exhibits distal and
subdistal appendages, which are essential for centrosome tethering
to the plasma membrane and initiation of ciliogenesis (56). In G1
phase of the cell cycle, disengaged mother and daughter centrioles
are tethered to each other by intercentriolar fibers. Attesting to
the complexity of this organelle, many structural and regulatory
proteins have specific locations within the centriole (Figure 2).

PERICENTRIOLAR MATERIAL
While centrioles are essential to restrict centrosome duplication
to once in every cell cycle (57, 58), they are largely dispensable
for microtubule nucleation. It is instead the pericentriolar amor-
phous cloud of proteins, the PCM, the structure responsible for
most of the centrosome microtubule-organizing activity, includ-
ing microtubule nucleation and control of microtubule number,
polarity, distribution, and flux (21) (Figure 2). Until both cen-
trioles are fully mature at the end of G2, most of the PCM is
associated with the mother centriole (58, 59). This ensures that
the developing daughter centriole in S phase remains“inactive.”Of
the hundreds of proteins that localize to the pericentriolar cloud,
γ-tubulin plays a central role by providing a template for the ini-
tiation of polymerization of α- and β-tubulin heterodimers into
growing microtubules. γ-tubulin (TUBG1, TUBG2) performs this
task in complex with other proteins collectively known as gamma
tubulin complex proteins (GCP2–6 or TUBGCPs) (60–62). GCPs
exhibit conserved “grip domains” at both N- and C-terminal ends
(63). Two copies of γ-tubulin (GCP1) together with GPC2 and
GPC3 form a tetramer termed γ-tubulin small complex (γ-TuSC)
(64, 65). Several γ-TuSC, together with GCPs 4–6, assemble into
a higher-order complex with a toroidal shape known as γ-tubulin
ring complex (γTuRC) (62, 65–69) (Figure 2). The γTuRC toroid
is stabilized on one of its sides by a complex of GCPs 4–6 pro-
teins (70). Two other core components of the γTuRC complex,
which do not contain Grip domains, GCP-WD (GCP7, NEDD1)
and GCP8 (MOZART2), are non-essential for γTuRC assembly
(71–74). However, GCP-WD is essential for γTuRC attachment
to the PCM. The C-terminus of GCP-WD binds γ-tubulin in
the γTuRC and the N-terminus WD domains form the blades
of a β-propeller structure that binds to the PCM (72, 73, 75–77).
GCP8 (MOZART2) appears to play a role in the recruitment

of γTuRC to the PCM during interphase (74). An additional
γTuRC core component is GCP9 (MOZART1) (74, 78). In human
cells MOZART1 is required for recruitment of γTuRC to mitotic
centrosomes (78). While Grip-GCPs and γ-tubulin are consid-
ered structural components of the γTuRC (72, 73, 75–77), some
GCPs may have regulatory functions as well. γTuRC is targeted to
MTOCs with the help of several centrosomal proteins, including
AKAP450 (CG-NAP, AKAP9) (79), pericentrin (PCNT) (80), and
CDK5RAP2 (Cep215) (81), and in human cells is dependent on
an intact mature γTuRC (82). However, attachment of γTuRC to
the centrosome occurs via GCP-DW (NEDD1) and this attach-
ment factor is recruited to the centrosome independently of the
γTuRC (72, 73). A number of non-stoichiometric regulatory mol-
ecules preferentially associate with the γTuRC in mitosis (72, 73,
78). These include Plk1, and seven of the eight Augmin/HAUS
complex subunits (78) (Figure 2). The Augmin complex was
initially defined in Drosophila as an eight-subunit centrosome
protein complex of 340 kDa that localizes γTuRC to the mitotic
spindle where it is indispensable for nucleating microtubules in
a centrosome-independent manner, increasing microtubule den-
sity within the spindle, and stabilizing kinetochore microtubules
(83). Humans possess a similar protein complex termed HAUS1–
8 (78, 83, 84). Just as Augmin, the HAUS complex resides in the
centrosome PCM and moves to spindle microtubules during mito-
sis, where it is important to increase the density of kinetochore
and polar microtubules (83). In the absence of HAUS, mitotic
human cells have reduced spindle tension (insufficient number
of microtubules) and are unable to extinguish the mitotic spindle
assembly checkpoint, leading to stalled mitosis and microtubule-
dependent centrosome fragmentation (84). HAUS1–8 complexes
also have a role in cytokinesis (83). The function of the individ-
ual HAUS units is currently poorly understood. It is thought that
HAUS8 directly contact microtubules, while HAUS6 binds γTuRC
via NEDD1 (83).

Recently, superresolution microscopy has begun to provide
insights into the organization of the PCM (85–87). With the excep-
tion of an early study using fluorescence microscopy with image
deconvolution that suggested the PCM is organized in a lattice-like
structure around the centriole (88), it has been generally believed
that the PCM is largely unstructured. Using SIM and STORM,
two forms of superresolution fluorescence microscopy, Mennella
et al (87) have demonstrated that the PCM in Drosophila S2 cells,
contrary to the prevailing view, is highly organized into two or
three main structural domains (Figure 2). One layer juxtaposed
to the centriole wall and a second, matrix-like layer, located fur-
ther away. Some coil–coil proteins in the juxtacentriolar layer,
such as pericentrin-like protein (PLP), have their carboxy ter-
mini located near the centriole wall from which they extend,
in clusters with quasi ninefold symmetry, centrifugally into the
matrix layer. RNA interference experiments indicate that the jux-
tacentriolar layer is fundamentally required for organization of
the external matrix layer. Remarkably, many of the proteins of
the PCM have distinctive and strictly defined distribution vol-
umes around the maternal centriole. With Sas-6 located at the
center of the centriole and exhibiting the smallest distribution
volume, followed by Sas-4, known to localize to the centriole
wall, followed by PLP and asterless (ASL) in the inner region and
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SPD-2, γ-tubulin, and CNN in the outer matrix-like region fur-
ther away from the centriole (87). Until mitosis PLP distributes
around the mother centriole only. Beginning in mitosis PLP also
distributes to the daughter centriole, a process that is completed
by the end of telophase. In mammalian cells, pericentrin/kendrin
and CG-NAP, two PACT (pericentrin-AKAP450 centrosome tar-
geting) proteins, have a distribution similar to Drosophila PLP,
which is consistent with PCNT/Kendrin being the ortholog of
PLP. PCNT associates with CEP192 (SPD-2) and CDK5Rap2 in
a functional complex in the inner layer of the PCM (89–93)
(Figure 2). It is apparent that this layered organization of the
PCM subserves two different needs, the inner layer as an orga-
nizer of the PCM and the outer layer with most of the micro-
tubule nucleation functionality by providing docking sites for
the γTuRC (87) (Figure 2). A similar study using mammalian
cells revealed essentially equivalent organization of the PCM (86).
Again PCNT distribution and orientation was consistent with its
role in organizing the external PCM toroid responsible for micro-
tubule nucleation (86). γ-tubulin and NEDD1 distributed to a
region estimated to be at the center of the partially extended
PCNT (Figure 2). Nevertheless, the distributions of components
of the PCM seem to be even more complex that these initial
studies revealed. A large survey of centrosome/centriole protein
localization in interphase U2OS cells using 3D-SIM revealed that
γ-tubulin and NEDD/GCP-WD, in addition to their distribu-
tion around the mother centriole and to a lesser extent around
the daughter centriole, are also present, in a dot-like pattern,
inside the mother centriole, as the gravitational center of the
pericentriolar ring (94). Remarkably, this is consistent with pre-
vious immuno-EM data demonstrating these two proteins also
residing inside the centriole (95, 96). Examination of the dis-
tribution, orthogonal to the mother centriole long axis, of an
additional 18 proteins revealed distinctive pattern consisting of
either toroid-like or dot-like structures. Four proteins (centrin,
Sas-6, STIL, and Plk-4) distributed in compact dots. All other
proteins (94) revealed toroid structures of varying sizes. Only one
other protein, CPAP showed both toroid and central dot-like local-
ization. Of the toroid proteins Cep135 and CP110 formed rings
of nearly identical size, but distributed to the opposite ends (prox-
imal and distal, respectively) of the centriole, in agreement with
previous immuno-EM data (97, 98). All other proteins formed
toroids of larger diameter, which were separated into three arbi-
trary groups. The inner group is composed by Cep192, NEDD1,
Cep152-C, Cap350; the intermediate by Cep152-N, Cep215, γ-
tubulin; and the outer layer by CPAP and pericentrin. Cep164
localized to the distal appendages, whereas Cep170 and ninein to
subdistal appendages. These data indicate the γTuRC distributes
between the inner and intermediate layers of the PCM in inter-
phase U2OS cells. By using amino- or carboxy-terminal specific
antibodies, and other domain specific antibodies, it was possible
to demonstrate that some of these protein have not only specific
localization, but also defined orientations within the PCM (94).
The proteins with the largest distribution volumes were ninein
(99) and Cep170 (100), which localized to the centriole subdistal
appendages, whereas the distal appendage protein Cep164 (101)
had slightly lower distribution volume. The location of these pro-
teins is concordant with their previous localization by electron

microscopy (52). CP110 and Centrin localizes to the distal end of
centrioles (97, 98).

These studies combined indicate that the PCM, in spite of its
amorphous appearance under the regular fluorescence or electron
microscope, is highly organized (Figure 2). In cells in interphase it
is distributed onto roughly two pericentriolar cylinders. An inner
layer closely apposed to centriolar microtubules, composed of
Sas-4, Spd-2, and Polo kinase, and an outer layer composed of
PACT proteins (dPLP, PCNT), Asterless (Asl), and Plk-4 kinase.
As cells transit S phase and G2 and in preparation for mitosis
other proteins, such as γ-tubulin and centrosomin are recruited
to the external layer. Upon mitotic entry the PCM experiences a
drastic expansion in which PCNT, Cep192, and Cep215 form large
extended networks. γ-tubulin, however, does not co-localize with
this network suggesting additional PCM components tethering
γTuRC to the PCM networks (94) (vide supra).

CENTRIOLE-PCM INTERACTIONS
It has become apparent that there is crosstalk between centrioles
and the PCM. While centrioles appear to control protein recruit-
ment to the PCM, the PCM may in turn regulate and contribute
components to nascent centrioles. Centrosomes experience dra-
matic changes during the cell cycle. They double in size from
S phase to mitosis, primarily through the accrual of PCM. Yet
until recently little was know about the factors that control this
behavior. Since the work of Bobinec et al. (102), it has been
known that the PCM is under the control of centrioles. Centri-
ole tubulins are constitutively highly glutamylated, which render
them highly stable (55). Injection of anti-glutamylated α-tubulin
antibodies leads to disassembly of centrioles, and remarkably,
dissipation of the PCM (102). This process is reversible as cells
spontaneously reassemble centrioles de novo, which is followed
by recruitment of PCM. One centriole component in particu-
lar, Sas-4 (human CPAP), which is a component of the proximal
centriole and of the complex that initiates template-dependent
procentriole growth (103, 104), plays a critical role in PCM recruit-
ment (90, 105). Defects in Sas-4 lead to abnormal centrioles
and defects in PCM recruitment. Centrosomal CPAP continu-
ously exchanges with a cytoplasmic CPAP pool (106), which is
highest in G2 when recruitment of proteins to the PCM is max-
imal. Overexpression of CPAP results in overly long centrioles
and defective PCM leading to abnormal cell division (98, 107).
Expression via their own promoters of mutant forms of Sas-4 lack-
ing the conserved PN2–3 region or defective in tubulin binding,
impair (90) or promote (105), respectively, PCM recruiting, with-
out affecting centriole duplication. These separation-of-function
mutations highlight how different regions of Sas-4 critically con-
trol centriologenesis and PCM recruiting through independent
domains.

THE CENTROSOME CYCLE
Centrosome replication bears remarkable similarities to DNA
replication. Both are semiconservative and controlled by successive
waves of cyclin E-Cdk2 and cyclin A-Cdk2 activity (19, 108–112)
(Figure 3). Both occur during discrete phases of the cell cycle and
both rely on licensing mechanisms for tight control and preven-
tion of re-replication during a single cell cycle (113–117). There is
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FIGURE 3 | Canonical template-dependent centrosome duplication cycle.
Normal centrosome duplication begins with centriole disengagement at the
end of mitosis (anaphase-telophase). During S phase under influence of cyclin
E/A-Cdk2 a procentriole is nucleated on each parental centriole, which
elongate until in late S or G2 capping proteins suppress further growth. At the
G2/M transition, the fibers that connect parental centrioles are dissolved

while centrosomes begin to separate and mature further (acquire a full
complement of PCM proteins). During prophase centrosomes continue to
migrate apart until they reach opposite sides of the condensing chromosomes
at metaphase and organize a bipolar spindle in preparation for chromosome
segregation. The nuclear (DNA/chromosome) and CDK cycles are shown for
correlation and comparison.

general agreement that centriole disengagement – the disorienta-
tion and physical separation of centrioles at their proximal ends at
the end of mitosis – is a critical early step in licensing centrosomes
for replication in S phase. Lack of disengagement blocks cen-
trosome duplication in S phase (118). Centriole disengagement,
which occurs late in mitosis, is blocked by non-degradable forms
of securin (119) or cyclin B1 (120), both of which block the pro-
teolytic activity of separase, directly implicating proteolysis in this
process (119, 120). Indeed, recent evidence suggests a mechanism
analogous to the one operating on sister chromatid separation
at anaphase, in which cohesin – the tripartite ring-like protein
complex composed of Scc1, Smc1, and Smc3 – at centromeres
is cleaved by separase-mediated proteolysis of Scc1. Presumably,
cohesin complexes localized at the junction of engaged centri-
oles are proteolyzed in an analogous manner. Ectopic expression
of separase, or depletion of Sgo1 – a protein that protects cohesin
from separase – leads to unscheduled chromosome separation and

centriole disengagement (121, 122) supporting this proposal. Nev-
ertheless, disengagement occurs much later than sister chromatid
splitting raising questions about cohesin as the exclusive target.
Moreover, recent experimental work in Drosophila indicates that
cohesin cleavage may be insufficient for centriole disengagement
(123), suggesting that additional targets may exist. Two recent
papers provide evidence that the relevant second substrate may be
pericentrin B (PCNTB)/kendrin (124, 125). Both studies demon-
strated that PCNTB is cleaved by separase at a consensus site
(R2231) releasing a rapidly degraded C-terminal fragment and
retaining at the centrosome the N-terminal fragment until late
in mitosis. Importantly, release of the N-terminal fragment coin-
cided with an abrupt decrease of PCNTB at the centrosome and
with centriole disengagement at the end of mitosis (125). Expres-
sion of a separase cleavage-resistant form of PCNTB blocked
centriole disengagement and replication, proving in vivo proof
of its physiological relevance (124, 125). Nevertheless, the critical
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licensing molecular event(s) that renders a disengaged centriole
competent for replication has not been elucidated.

Raising levels of cyclin A/E-Cdk2 are necessary to trigger cen-
triole duplication (109–112), yet the initial centrosomal molecular
targets of cyclin-Cdk2 that initiate/license centrosome duplication
have not been defined with absolute certainty. Several candidate
proteins have ben postulated to fulfill the licensing factor role.
Among these, nucleophosmin (NPM1) (126–131), Mps1 (132–
139), and Polo-like kinases (Plk1, 2, and 4) (118, 127, 140) figure
most prominently.

The first postulated critical target of Cdk2 in triggering cen-
trosome duplication was nucleophosmin (NPM1/B23), which is
a multifunctional chaperone protein – a large fraction of which
localizes to the nucleolus. NPM1 rapidly shuttles between nucleus
and cytoplasm (141) and associates with the centrosome. Inac-
tivation of NPM1 leads to unrestricted centrosome replication
(142) indicating that one of its functions is to restrain centrosome
duplication. Early work by Fukasawa and collaborators showed
that NPM1 is one of the most conspicuous targets of Cdk2 in
unduplicated centrosomes and that phosphorylation of NPM1 on
T199 by Cdk2-cyclin E leads to its dissociation from centrosomes
(129, 130). Careful immunofluorescence with an antibody specific
to centrosomal NPM1 showed it to localize between the centrioles
in the unduplicated centrosome, to dissociate from centrosomes
upon its phosphorylation, and to re-associates with the centro-
some during mitosis (129, 143, 144). Based on these observations
a centrosome duplication licensing role for NPM1 has been pro-
posed (129). Phosphorylation of T199 and S4, have both been
postulated as critical events for NPM1 downstream functions.
Both Cdk2 and Plk1 phosphorylate T199 creating high-affinity
docking site for the kinase ROCK-II, which becomes “hyperacti-
vated” upon binding NPM1 (145). Activated ROCK-II, reportedly
bypasses the Cdk2 requirement for centrosome replication (145).
But NPM1 is also phosphorylated at S4 by Plk1 during mitosis
(146) and by Plk-2 near the G1/S transition (147, 148). Plk1 S4
phosphorylation in coordination with separase contributes to cen-
triole disengagement (118), while Plk-2 S4 phosphorylation has
been proposed to be the trigger for centrosome replication (127),
based on the fact that NPM1 S4A – a non-phosphorylatable form
of NPM1 – blocks centrosome duplication, while phosphomimetic
mutants have the opposite effect, i.e., centrosome overreplica-
tion (127). Clearly, further experimentation will be required to
precisely map the role of NPM1 in centrosome duplication.

Mps1 (Esk) (132, 133, 136, 149) overexpression in S-arrested
mouse cells leads to centrosome overduplication, while a kinase-
dead form blocks centrosome duplication (133). Similarly, over-
expression of a dominant negative form of Msp1 in human cells
blocks centrosome duplication, while active Mps1 overexpression
accelerates centrosome duplication (132). Notably, siRNA Mps1
knock-down blocks centrosome duplication and in addition cause
pleiotropic defects resulting in severe mitotic abnormalities, attest-
ing to Mps1 regulatory function in many mitotic processes, in
particular on the spindle assembly checkpoint (132). Mps1 nor-
mally is under negative regulation by proteosomal destruction.
Preventing the degradation of Mps1 by transient exposure to pro-
teasome inhibition is sufficient to cause centrosome reduplication
in human cells (136). Phosphorylation of Mps1 T468 appears to

be the critical target of Cdk2 leading to proteasome resistance and
Mps1 accumulation, since phosphomimetic mutations of T468
prevent Mps1 degradation and lead to Cdk2 independent centro-
some duplication (136). This process seems to be more nuanced in
human cells. Early studies showed that hMps1 was only detectable
at kinetochores but not at centrosomes, and that neither overex-
pression of hMps1, kinase-dead hMps1, or siRNA knock-down of
endogenous hMps1 in human cells revealed a centrosome pheno-
type, casting doubts into an hMps1 role in centrosome duplication
(138). Nevertheless, GFP-hMps1T468A, a non-phosphorylatable
form of hMps1, accumulates in the cytoplasm but is continuously
removed from centrosomes in a proteasome-dependent manner
(136), suggesting that it is the centrosomal pool of hMps1 the
one relevant for the hMps1 centrosome phenotype. In contrast
hMps1T468D and hMps1T468E, mutants that mimic T468 phos-
phorylation, and hMps1delta12/13 that lacks an Mps1 degradation
signal (MDS), readily cause centrosome reduplication, even in the
absence of cyclin A-Cdk activity. Accordingly, failure of wild type
hMps1 overexpression to cause centrosome re-duplication appears
to be the consequence of its efficient proteasome-dependent
removal from the centrosome (137). The exquisite control of cen-
trosomal hMps1 appears to depend largely on its MDS signal. Yet
the MDS signal bears no resemblance to known targeting motifs
for SCF or APC/C type E3-ubiquiting ligases. Emerging evidence
suggest that hMps1 degradation may be controlled by ornithine
decarboxylase antizyme (OAZ) (135). OAZ target substrates for
ubiquitin-independent proteasome-mediated degradation (150).
It has been demonstrated that OAZ localizes to the centrosome and
that its activity suppresses centrosome re-duplication,while reduc-
ing OAZ at the centrosome leads to centrosome re-duplication
(151). Indeed OAZ binds hMpsi1 through its MDS motif and leads
to its degradation through proteasome-dependent proteolysis. Yet
one additional mechanisms control the level of hMps1. A single
N-terminal D-box makes hMps1 a target for APC/C-dependent
degradation during mitosis, an activity that is controlled by Cdc20
and Cdh1 (152). It is possible that this second hMps1 degradation
mechanism is used at the end of mitosis to rapidly reset hMps1
to low levels before reaching the G1/S transition, where the finer
regulation effected by OAZ takes over (137).

Polo-like kinases have also been considered key factors in cen-
trosome replication, possibly playing a licensing role as well. It
has long being known that in addition to separase, Plk1 activity is
required for centriole disengagement at the end of mitosis (118).
Moreover, the recently described phosphorylation of NPM1 S4
has been proposed as a centriole duplication trigger (127). Addi-
tionally, new procentrioles require a Plk1 dependent modification,
which can only occur through mitotic passage, when Plk1 activity
is high. This prevents the growth of “granddaughter” centrioles,
i.e., procentrioles growing from daughter centriole walls within
the same cell cycle (153, 154). Plk-4 has also received consid-
erable attention as a potential centrosome replication licensing
factor (155–157) [reviewed in (140, 158)]. Plk-4 activity peaks
only transiently during mitosis and is kept at very low levels
during interphase (156, 159) by autoregulatory self-destruction.
Plk-4 homdimerizes and autophosphorylates in trans, which trig-
gers rapid SCFlimb E3 ubiquitination and proteasome directed
proteolysis (158–162) enforcing low activity levels through most
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of the cell cycle. Plk-4 peak activity in mitosis is due to its interac-
tion with Twins – the regulatory subunit of protein phosphatase
2A (PP2A), which in complex with PP2A dephosphorylates Plk-
4, briefly spearing it from proteolysis (156). Plk-4/Sak activity is
required in the earliest steps of procentriole formation (97, 155,
157, 163), and is recruited to the centrosome together with Cep152
(homolog of D. melanogaster Asterless) through interactions with
Cep192 (164) (homolog of C. elegans Spd-2). The complex local-
izes to the outer surface of the proximal end of the mother centri-
ole, precisely the site from which the procentriole will sprout (97).
Thus, Plk-4 satisfies most criteria for a licensing factor for centriole
duplication (116): Plk-4 levels peak only once during the cell cycle
in mitosis; Plk-4 is kept low during all other stages of the cell cycle
by autoregulatory phosphorylation-triggered proteolysis; increas-
ing levels of Plk-4 experimentally leads to centriole reduplication;
and, decreasing Plk-4 or suppressing its activity prevents centriole
duplication (165).

Centrosome replication begins at the G1/S transition with
nucleation of a procentriole at the base of the parental centri-
oles (108, 166–169) [reviewed in Ref. (170–172)]. Of these Plk-4
(97), Cep152 (97), and SAS-6 (172) initiates the process, with Plk-
4 participating as the dominant kinase and regulator of the early
steps of centriole duplication. By superresolution microscopy, Plk-
4 initially localizes to a single spot within the toroid defined by
N-terminal Cep152 at the proximal end of the mother centriole,
but outside the one defined by C-terminal Cep152, which is consis-
tent with the known interaction between Plk-4 and the N-terminal
Cep152 (173–175). Interestingly, Plk-4 is detectable in G1 cells at
the spot on the mother centriole from which later Sas-6 will ini-
tiate cartwheel assembly formation. This observation suggest that
Plk-4 determines the site of initiation of procentriole formation.

SAS-4 may be important in recruiting Cep152, a PCM protein
that participates in nucleation of procentrioles (164, 176). The
interaction of Cep152 with Sas-4/CPAP may provide the initial
scaffold for procentriole formation (147, 174). Phosphorylation of
the F-box SCFFbxw5 E3-ubiquitin ligase by Plk-4 appears to stabi-
lize SAS-6, a natural substrate of SCFFbxw5, initiating procentriole
growth (177) (Figure 3). The first structure to appear at the site
of procentriole formation, even before microtubules nucleation is
apparent, is the cartwheel assembly. Mutations in cartwheel con-
stituents such as SAS-6 – the central component of the cartwheel
driving the establishment and maintenance of the ninefold sym-
metry of the centriole (178,179) – lead to absence or severely defec-
tive centrioles. In human cells the first protein known to localize
to the procentriole is indeed HsSAS-6 (180). SAS-6 molecules
have conserved amino-terminal domains, followed by coil–coil
domains capped by poorly conserved carboxy-terminal domains.
SAS-6 homodimerizes in parallel via the coil-coil domains result-
ing in a rod-like structure in which the conserved globular amino-
terminal domains are located next to each other at one end of
the rod-like dimer. Interactions of one of these domains with
a similar domain in a second homodimer leads to the progres-
sive assembly of the cartwheel, with the globular amino-terminal
domains constituting the central hub, and the coil–coil homod-
imers the centrifugally radiating spokes of the cartwheel assembly
(181, 182) (Figure 2). The self-assembly of the cartwheel starting
from homodimers of SAS-6 is a remarkable effective biological

organizing principle that satisfies the need of ninefold symmetry
in the simplest possible manner (182–184). SAS-6 is known to
interact with SAS-5/Ana2/STIL, but the nature and consequences
of the interaction are not well defined. It has ben proposed that
SAS-5/Ana2/STIL interacts with SAS-6 through a STAN motif,
stabilizing the procentriole cartwheel structure (185–188). Over-
expressed SAS-6 and Ana2 in flies co-assemble into long cartwheel
structures closely resembling the natural structure (188). Two
safety mechanisms are put in place to avoid overreplicating the
cartwheel structure. During S and G2 phases the SCFFbxw5 E3-
ubiquitin ligase is inhibited by Plk-4 mediated phosphorylation.
As the cell cycle progresses Plk-4 autophosphorylates, triggering its
own proteolysis, and relieving the inhibition of SCFFbxw5, which
then ubiquitinylates Sas-6 triggering its degradation (177). A sec-
ond safety check is active in mitosis where Sas-6 is ubiquitinylated
by APCCcdh1, which targets it for proteolysis ensuring low levels
of Sas-6 throughout mitosis (180). This tandem safety mechanism
prevents re-initiation of centriole duplication once a daughter
centriole has emerged.

Superresolution microscopy tracing the localization in S/G2
cells of Sas-6, Cep135 and STIL, three proteins involved in
template-dependent procentriole formation, shows that Sas-6 and
STIL co-localize precisely (189–191), whereas Cep135 localizes
away from Sas-6/STIL in a position similar to C-Nap1, a marker of
the proximal end of mother centriole (170). In late G2 and M phase
cells, however, Cep135 staining could be seen to extend into the
area occupied by Sas-6/STIL indicating that Cep135 progressively
associates with the proximal end of growing daughter centrioles.
Both Sas-6 and STIL are degraded upon exit from mitosis (180,
189–191) and are no longer detectable in the centrioles from early
G1 cells. Unresolved still are the mechanism that propagate the
cartwheel at the proximal end of the centriole, which could occur
by deposition of cartwheel structures in layers or by a helical mech-
anism resembling the bristles of a bottle brush, the mechanisms
that limits the growth of the cartwheel, and the interacting proteins
that regulate the self-assembly and precisely control the angle of
interacting SAS-6 homodimers to ensure ninefold symmetry. The
initial structure is stabilized further by SAS-4/CPAP, which also
plays an important role in recruiting microtubules to the perimeter
of the growing cartwheel structure (90, 103, 104, 107).

Microtubules are next added to the cartwheel in an orderly fash-
ion with nucleation of the A microtubule initiated at a cone-like
structure attached to the distal carboxy-terminal end of the radiat-
ing SAS-6 spokes and proceeding unidirectionally to the distal end
of the nascent centriole (192). The cone-like structure may contain
γ-tubulin and its interacting partner NEDD1, because depletion
of these components prevents centriole growth (72). The B and
C microtubules apparently require δ-tubulin and ε-tubulin (193,
194) and appear to polymerize bi-directionally. Additional pro-
teins participate in the regulation and addition of microtubules
to the emerging centriole. Amongst these CPAP and STIL form a
complex with SAS-6 and are likely to contribute to microtubule
addition (190). CPAP localization to the procentriole is depen-
dent on phosphorylation by Plk-2 (195). Procentrioles, securely
attached to their mothers, grow by elongation through G1, S, and
G2 phases (Figure 3). Centriole elongation and final length are
specifically controlled, and are characteristic of a species and cell
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type. There appears to be distinct proximal and distal elongation
steps that are independently regulated. Distal growth may be regu-
lated at least partially by the centrin-binding protein hPOC5 (pro-
teome of centriole 5) since its depletion prevent distal but not prox-
imal elongation (196). Conversely, CPAP, CP110, and POC1 may
control proximal elongation. Overexpression of CPAP (98, 107,
197) or POC1 (198), or depletion of CP110 (98) leads to unusu-
ally long daughter centrioles. Conversely, depletion of POC1 (198)
or overexpression of CP110, prevent procentriole elongation and
leads to centriole overreplication (98). siRNA depletion of Cyclin
F, which interacts with CP110, leads to CP110 overexpression and
centrosome overreplication (46). Cyclin F is part of the ubiquitin
ligase SCFcyclinF, which targets substrates for proteasome degrada-
tion. A recently described deubiquitinating enzyme named USP33
(199) specifically interacts with CP110 bound to centrioles in late S
and G2/M cells, protecting it from SCFcyclinF. Depletion of USP33
leads to decreased levels of CP110 (199) and centriole elonga-
tion. Remarkably, no other centrosome SCFcyclinF substrate is also
a substrate of USP33, attesting to the importance of fine-tuning
the levels of CP110 in centriole replication (199). The process is
completed with the distal binding of the capping proteins CP110
and Cep97, which prevent further growth of the procentriole,
determining its final length (97, 98, 200, 201) (Figure 2).

Initially devoid of PCM, the daughter centriole rapidly matures,
i.e., acquires PCM and the increased ability to nucleate micro-
tubules, by the end of G2 and in mitosis, through the concerted
actions of the kinases Aurora-A and Plk1 which reach high levels
at the centrosome at the end of G2 (202–204). In a manner highly
reminiscent of its priming function in DNA replication (205,
206), Plk1 induced centrosome maturation is essential for priming
procentriole nucleation in the next cell cycle (118, 153, 154).

At the G2/M transition in a process termed centrosome dis-
junction, centrosomes begin to separate by dissolving the linker
protein fibers connecting the proximal ends of the two parental
centrioles, which were established previously around the time of
centriole disengagement in late M or early G1 (207) (Figure 3).
Dissolution of the linker fibers is dependent on Nek2 activity.
Nek2 is a NIMA-related kinase that accumulates at the centro-
some through S and G2 phases. At the G2/M transition it triggers
dissolution of the intercentriolar linker. The importance of Nek2
in this process is illustrated by changing Nek2 levels at the cen-
trosome. Overexpression of Nek2 leads to premature separation
of centrosomes (170) while knock down with siRNA inhibits
centrosome separation (208). Two main protein components of
the linker fibers, C-Nap1 and rootletin, are phosphorylated by
Nek2A (170, 209), promoting their migration onto the fibers.
While rootletin appears to distribute uniformly throughout the
fibers the Nek2 and C-Nap1 localize mostly to the proximal ends
of the mother centriole (170) suggesting that they are dock-
ing sites for rootletin (209) (Figures 2 and 3). The levels of
rootletin itself may control the length of the fibers. Overexpress-
ing this protein lengthens the fibers (210, 211), while depleting it
results in premature centrosome separation (212). Two additional
putative linker proteins, Cep68 and Cep215 (CDK5RAP2), have
been described, the former being a bona fide substrate of Nek2A
and the latter possibly of Plk1 (213). By high-resolution fluores-
cence/deconvolution microscopy and immune-EM, Cep68 is seen

to form fibers that attach to the proximal end of mother centri-
oles, while Cep215 instead, tightly surrounds the mother centriole
(213). siRNA knockdown of either induces premature centrosome
separation (213) implicating them in centrosome cohesion. How-
ever, overexpression of Cep68 does not induce fiber formation by
itself but is readily recruited to rootletin fibers (213) indicating that
Cep68 cooperates with rootletin and C-Nap1 in centrosome cohe-
sion. Cep215 neither distributes to the linker, nor interacts with
rootletin or C-Nap1, indicating that it does not represent a bona
fide linker protein. Instead, its centrosome cohesion promoting
function may be related to its interaction with pericentrin (213).
Since Nek2 activation promotes centrosome separation by evict-
ing linker components, it needs to be tightly regulated to prevent
premature separation of centrosomes. Nek2 becomes activated by
homodimerization through its coil–coil motifs, which facilitates
autophosphorylation of the catalytic domain (214, 215). Further
insight into Nek2 regulation has come from the discovery of KVHF
motifs in its non-catalytical C-terminal domain. KVHF motifs
are consensus sequences for the binding of Protein phosphatase 1
(PP1). PP1a dephosphorylates the catalytic domain of Nek2 and
inactivates it. Notably PP1 itself can be inactivated by Nek2 medi-
ated phosphorylation (214, 215). This on-off bi-stable switch is
characteristic of many of the regulators that control abrupt mitotic
transitions. The balance of this metastable switch appears to be
tipped by the Inhibitor-2 protein (216), which binds and inhibits
PP1 leading to runaway auto activation of Nek2.

Upstream regulators of the cell cycle directly control timely
activation of Nek2. The main function of Aurora-A in centrosome
separation is activation of Plk1 kinase by phosphorylating T120
in the T loop (217–219). Activated Plk1 phosphorylates and binds
Mst2 kinase, which can now bind Nek2A and PP1γ (215, 220).
Unlike PP1α, PP1γ antagonizes Nek2, not by direct dephosphory-
lation, but by dephosphorylating C-Nap1, its binding partner. The
level of Plk1 phosphorylated Mst2 ultimately determines the dis-
sociation of the Mst2-Nek2A-PPIγ complex (221) with increasing
phosphorylated Mst2 leading to a reduction in PP1γ on the com-
plex. Thus, phosphorylation of Mst2 by Plk1 leads to a reduction
in the levels of PP1γ in the Mst2-Nek2A-PP1γ complex resulting
in increased Nek2 dependent phosphorylation of C-Nap1 and dis-
solution of centrosome linker fibers (221). This Hippo dependent
increase in Nek2 activity is counteracted by pericentrin and HEF1,
the latter a focal adhesion scaffold protein. While pericentrin is an
inhibitor of Nek2 kinase activity, HEF1 inhibits accumulation of
Nek2 at the centrosome (222). siRNA knockdown of pericentrin
causes premature separation of centrosomes in interphase. It has
been proposed that pericentrin changes the structural conforma-
tion of Nek2 catalytic domain into an inhibitory conformation
(223). Pericentrin and Cep125 localization to the centrosome also
depends on Plk1 activity suggesting an additional level of regula-
tion, either indirectly through Nek2A or by direct phosphorylation
of some proteins involved in centrosome cohesion (213, 224).

After dissolution of the centriole linker, motor proteins bind
anti-parallel astral microtubules and exert their sliding forces by
walking toward MT plus ends (Figure 3). The kinesin Eg5 is
the principal force generator for centrosome separation at this
stage (225–229). Eg5 is a homotetrameric plus-end directed motor
belonging to the kinesin-5 subfamily (230, 231). Knockdown of
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Eg5, by siRNA or chemical inhibition with monastrol, arrest cells in
prometaphase with monopolar spindles (232,233). Mainly cytoso-
lic during interphase, Eg5 rapidly accumulates at spindle poles in
prophase (234). There is evidence that Plk1 phosphorylation of
Eg5 targets it to the spindle poles (235–237). Inhibition of Plk1
prevents accumulation of Eg5 at the centrosome, but does not
change the overall level of cytoplasmic Plk1 (236). Cdk1 phospho-
rylates Eg5 at T927 (238). Plk1 can substitute for Cdk1. However,
Plk1 phosphorylated Eg5 triggers slow and erratic centrosome
separation, while Cdk1 triggers fast movement. The difference in
centrosome behavior under these conditions has been attributed
to differential modulation of microtubule dynamics by Cdk1 and
Plk1 (237). Plk1 induced accumulation of Eg5 at the centrosome is
microtubule dependent and is abolished in the presence of noco-
dazole, a standard MT depolymerizing agent (236). The effect of
Plk1 on Eg5 may indeed be associated with the ability of Plk1 to
increase the capacity of centrosomes to nucleate MT (204). Other
members of the NIMA kinase family also participate in Eg5 regula-
tion. There is experimental evidence that suggest phosphorylation
of S1033 in Eg5 by Nek6 is the critical event that targets Eg5 to
the centrosome after Plk1 activation (235). Tellingly, mutations
in Eg5 that prevent S1033 phosphorylation abolish Eg5 localiza-
tion to the centrosome (235). Moreover, differential regulation of
Eg5 targeting to the centrosome, before and after NEB, appears to
exist (239). Indeed, recent experimental evidence seems to vali-
date this proposal (240). It has long been known that there are two
pathways to mitotic spindle assembly. A prophase pathway occur-
ring entirely before NEB, and a back-up pathway that occur in
prometaphase, after NEB (241–246), reviewed in Ref. (225, 228).
Importantly, the back-up prometaphase pathway is mechanisti-
cally more complicated and more likely to lead to chromosome
segregation errors than the prophase pathway (247). Moreover,
the two pathways are temporally, spatially and genetically distinct
(240). These differences may be important in that the proba-
bility of a mitosis generating abnormally attached chromosomes
depends on avoiding kinetochore MT from the two spindle poles
contacting the same kinetochore. In the prometaphase pathway
centrosomes are incompletely separated when astral microtubules
can first contact kinetochores after NEB, increasing the chances of
chromosomes with merothelic attachments to the spindle poles.
This has indeed been demonstrated in PtK1 cells (247). In con-
clusion, it appears that whether a cell uses the prophase or the
prometaphase centrosome separation and spindle assembly path-
ways, may have important consequences in the form of increased
CIN in the latter. Incompletely separated centrosomes represent
a mitotic liability that may translate into CIN. Nevertheless, the
potential contribution of abnormal centrosome separation to CIN
in cancer has not been directly studied.

A recent detailed in vivo imaging study in Eg5-
mEGFP/mCherry-α-tubulin in HeLa cells in which the kinetics
of centrosome separation could be precisely followed and cells
indexed as either prophase or prometaphase centrosome separa-
tion pathway users, revealed interesting results (240). Cells using
the “back-up” prometaphase pathway had longer lags, and lower
velocity and a shorter centrosome translocation times. Of 1,388
mitotic events studied, half used the prophase centrosome separa-
tion pathway, and the other half used the prometaphase pathway

(240). Whereas 0.7% of cell utilizing the prophase pathway had
lagging chromosomes at metaphase (a surrogate of CIN), as many
a 2.3% cells using the prometaphase pathway exhibited the same
phenotype (240). It would be of great interest to repeat this exper-
iments in immortalized non-transformed cells, since HeLa were
derived from a uterine cervix carcinoma and exhibits measurable
CIN under standard growth conditions [see Ref. (248) and ref-
erences therein] and also to study this phenomenon in additional
cancer cells. During metaphase centrosomes complete maturation
achieving maximal microtubule-organizing capacity, and together
with kinetochores, assemble the mitotic spindle. Late in mitosis
(anaphase, telophase) daughter centrioles disengage from their
mothers reinitiating he centrosome replication once again.

ABNORMAL CENTROSOMES IN CANCER
Theodore Boveri, who co-discovered the centrosome, was the first
to propose that centrosomes may induce CIN, which could lead
to cancer (6). Boveri’s cancer development theory was singularly
influenced by observations made by his colleague Leo Hansemann.
Hansemann had observed abnormal mitoses in cancer tissue and
had compiled beautiful renderings of their salient features (4, 5)
(vide supra), which to Boveri’s trained embryologist eye, immedi-
ately suggested the work of abnormal centrosomes. Boveri theo-
rized that a peculiar “combination of genetic determinants” may
give rise to cancer and the transmission of that peculiar combina-
tion of genetic determinants (i.e., genes) may occasionally arise in
daughter cells of abnormal multipolar mitoses. Boveri reasoned
that the degree of centrosome abnormalities he inferred from
Hansemann’s drawings, were probably detrimental as a whole, as
he had directly observed in doubly fertilized sea-urchin zygotes
(249). He theorized that only cells exhibiting lesser degrees of
centrosome malfunction could propagate the cancer phenotype,
which he ascribed directly to the genetic material (6).

Abnormal centrosomes in cancer were initially detected in some
of the most common human cancers including breast, colon, lung,
and brain cancer (250, 251). These findings were quickly con-
firmed and expanded by others (252–263). A century after Boveri
and Hansemann original observations, we can affirm that centro-
some defects are indeed pervasive in cancer. Excepting leukemias
and some low-grade lymphomas, most carcinomas and sarcomas,
and a subset of high-grade lymphoma [for a survey of clinical
cancer types, see Ref. (264)] exhibit abnormal centrosomes. Fur-
thermore, it is now well established that centrosome abnormalities
in cancer correlate closely with and are an important cause of
CIN (251) [for a review, see Ref. (265–268)], and that centro-
some abnormalities and CIN frequently co-occur in carcinoma
in situ (269, 270). These observations place centrosome abnor-
malities at the earliest stages of cancer development and argue
against a purely secondary role or late effect. Nevertheless, despite
their common occurrence, and perhaps due to the heterogene-
ity of centrosome abnormalities in cancer, it has been difficult
to determine whether centrosomes abnormalities are caused by
primary intrinsic centrosome defects, or are the consequence of
dysfunction of other cellular processes that lead to the accumu-
lation of normally replicated centrosomes, such as for instance in
cases of cell division failure (271, 272). In consequence a consider-
able volume of ongoing research is being devoted to elucidating in
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Pihan Centrosome dysfunction in cancer

detail the molecular pathways involved in centrosome dysfunction
in cancer, their impact on the cancer genome, and the prospects
of utilizing centrosome defects as biomarkers (205, 273, 274) and
targets for cancer specific therapy (275–279).

THE SPECTRUM OF CENTROSOME ABNORMALITIES IN
CANCER
Centrosome phenotypes in cancer are heterogeneous with both
numerical and structural abnormalities documented. Neverthe-
less, attempts at classification of centrosome abnormalities in
cancer have met with limited success, primarily because of the
difficulty inherent in carrying out comprehensive surveys at the
ultrastructural level using EM, which until recently has been
the only technology capable of visualizing centrioles and PCM
with sufficient detail (280–283). The emergence of superresolu-
tion microscopy promises to drastically change the status quo.

Structured illumination microscopy is already providing images
of whole centrosomes with unprecedented resolution and is
poised to contribute greatly to our understanding of centrosome
phenotypes in cancer in the immediate future (85) (vide supra).

The most evident and widely documented centrosome cancer
phenotype is supernumerary centrosomes (250, 251) (Figure 4).
In principle, supernumerary centrosomes may result from at least
three separate mechanisms: template-mediated over-replication
of pre-existing centrosomes within one cell cycle (hereby termed
the over-replication pathway), a phenotype that has been variably
referred to as centrosome amplification (254, 263, 284–286) or
hyperamplification (252, 255, 287, 288), de novo formation during
interphase (de novo pathway) (289, 290) (Figure 4) or from accu-
mulation of normally (or abnormally) replicated centrosomes due
to failed cell division after replication of centrosomes and chromo-
somes has occurred (accumulation pathway) (291, 292) (Figure 4)

FIGURE 4 | Pathways to supernumerary centrosomes in cancer. Canonical
template-dependent centrosome replication pathway (A). Normal
centrosome duplication proceeds sequentially in the following steps: centriole
disengagement (1), linker fiber development (2), procentriole nucleation (3),
centriole elongation (4), linker dissolution (5), centrosome maturation (6) and
separation, before (7) and after (8) NEB. There are at least three pathways to
supernumerary centrosomes in cancer (B–D). Centrosome accumulation
pathway due to polyploidization events (B). Events such as cytokinesis failure,
mitotic slippage (mitotic failure before cytokinesis), etc., with or without
normal DNA replication, result in accumulation of normally replicated
centrosomes, which execute all stages of replication as in the canonical
template-dependent pathway A. Centrosome over-replication pathway (C).

Some cancer cells, particularly if arrested in S or G2 phases, such as during
DNA replication stress induced by hypoxia, chemotherapy or radiation
therapy, undergo multiple rounds of templated centriole duplication (3′), which
subsequently elongate (4′) and mature (5′) leading to functional centrosomes
capable of enacting multipolar mitoses (6′). De novo centriole formation
pathway (D). Under similar conditions certain cancer cells, even when
containing resident centrosome, build new centrioles de novo, via centriole
satellites (2′′). Once synthesized such centrioles (3′′) can elongate (4′′), mature
by acquiring normal mitotic PCM (5′′), and become competent at mitosis (6′′)
usually enacting multipolar spindles. In subsequent cell divisions, de novo
centrosomes are thought to replicate via the canonical template-dependent
pathway.
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Pihan Centrosome dysfunction in cancer

[reviewed in Ref. (293,294)]. While in the latter the normal numer-
ical relationship of one centrosome per diploid chromosome set in
G1 phase is maintained, in the former two pathways it is halved or
worse. This difference profoundly affects the chances of daughter
cell survival in cells carrying multipolar mitoses to completion,
since daughter cell viability is predicated on receiving at least a
full haploid set of chromosomes. This in fact is one of the sem-
inal experimental observations made by Boveri in dispermic see
urchin eggs, which allowed him to infer that chromosomes are
not interchangeable and therefore must carry different genetic
determinants (249).

It is likely that only one of these three centrosome amplifi-
cation pathways operates in an individual tumor. Nevertheless,
there is precedent for pathway cooperation. Using a marker for the
mother centriole, Duensing et al. were able to determine that the
papillomavirus oncoprotein HPV16-E7 leads to over-replication
of centrosomes in G2, while HPV16-E6 leads to both increased
centrosomes and increased ploidy (295), by a mechanism that
apparently involves cytokinesis failure.

IN VIVO CENTROSOME BIOGENESIS IN CANCER AND
NON-CANCER CELLS
In a series of seminal observations that rekindled interest in cen-
trosome biology in cancer, Fukasawa et al were the first to note that
p53 null mouse embryo fibroblasts (MEFs) in culture frequently
acquire supernumerary centrosomes (285). The supernumerary
centrosome phenotype of p53 null MEFs was exacerbated by
forced overexpressing of Cyclin E, a cyclin known to promote cen-
trosome replication (288). Furthermore in an assay that measures
the entrainment of centrosome replication to the DNA replication
cycle by blocking cells at the G1-S boundary with a DNA repli-
cation inhibitor, the authors could demonstrate that in p53 wild
type cells, only one round of centrosome replication occurred,
while in p53 null MEFs, and to a lesser extent in Waf1 null MEFs,
centrosome continued to replicate several times (296) (centro-
some over-replication pathway). Furthermore, restoring p53 to
p53−/− MEFs restored normal centrosome replication control.
These experiments clearly demonstrated that p53 played a major
role in centrosome homeostasis, and that prevention of centro-
some over replication was clearly dependent on an intact p53-Waf1
axis (296). These experiments however did not offer a glimpse as
to the actual pathway leading to supernumerary centrosomes in
continuously proliferating p53 deficient MEFs. More direct evi-
dence for a plausible mechanisms of supernumerary centrosomes
in cycling p53 null cells was obtained by overexpressing a number
of mitotic kinases (Aurora-A, polo-like kinase 1 (PLK1),Aurora-B,
or Aurora-C kinases) in a p53 wild or null context. High level of
Aurora-A or Plk1 lead to supernumerary centrosomes via defects
in cell division resulting in tetraploidization and centrosome accu-
mulation (292, 297) (Figure 4). These results suggested that the
supernumerary centrosome phenotype of p53 null cells docu-
mented by Fukasawa et al (285) in normally dividing MEFs was
most likely due to polyploidization and accumulation of centro-
somes rather than over replication (292). However, it is important
to make clear from the outset that cell division failure, as a cause
of centrosome amplification is only a viable tumorigenic mech-
anism insofar as it may be intermittent and stochastic, occurring

only in a minority of cell divisions. Sustained division failure leads
to exponential chromosome and centrosome accumulation with
giant cell formation, which is detrimental to tumor growth. Accu-
mulation of centrosomes and subsequent multipolar spindles is
an attractive explanation for supernumerary centrosomes in p53
null MEFs, because it is consistent with one of the known check-
point functions of p53, which is to impose a G1 arrest in response
to tetraploidization (298–300). Absence of this p53 checkpoint
explained why p53 null MEFs with extra centrosomes continued
to divide and enact multipolar spindles. Moreover, these observa-
tions fit in well with the transient tetraploid state know to occur
in many cancers before aneuploidy ensues (301).

Although tetraploidy and centrosome accumulation may be a
prevalent pathway to supernumerary centrosomes in cancer, there
is precedent for centrosome over-replication in especial situations.
For instance, overexpression of PLK-4 in Hela cells arrested in S
phase with aphidicolin leads to over replication of centrosomes,
with multiple procentrioles attached to the mother centriole (97,
157). A similar phenotype can be induced by overexpression of
other core components of the template-mediated centriole repli-
cation pathway, such as HsSAS-6 (106, 189–191, 302). However,
even non-cancer cells may respond differentially to perturbations
in the centrosome replication pathway depending on tissue of ori-
gin or differentiation. For instance, overexpression of DSas-6 in
Drosophila leads, within on cell cycle, to a fraction of centro-
some undergoing template-dependent over replication in syncytial
embryo and somatic brain cells, de novo assembly of multiple cen-
trosomes in eggs, and no abnormality in spermatocytes (303).
These studies reinforce the concept that normal cells use the de
novo assembly pathway only in the absence of resident centro-
somes such as it exist in eggs. The need for tight control of the
core proteins involved in centriole duplication and their regu-
latory kinases is again exemplified by PLK-4. While high levels
of PLK-4 leads to multiple procentrioles (97, 157), insufficient
levels of PLK-4 is associated with abnormal centrosomes with
reduced microtubule nucleation capacity, abnormal spindles, and
CIN (304, 305).

Most cancer cells, but not normal untransformed cells, expe-
rience centrosome over replication upon prolonged interphase
arrest. This phenotype is very relevant in oncology since cancer
chemotherapy, which often includes DNA replication inhibitors,
could potentially cause centrosome amplification, furthering
genomic instability. Competence for centrosome over replication
in cancer cells arrested in S phase appears to be conferred, in
addition to Plk-4 which triggers procentriole formation, by pro-
centriole maturation normally induced by active Plk1pT210 at the
S to G2 transition (153). Prolonging interphase, particularly G2
phase leads to procentriole maturation and disengagement allow-
ing for a second procentriole to form, which in a background of
persistently high Plk1pT210, matures and disengage perpetuating
the over-replication cycle (153). Nevertheless, Plk1 is dispensable
for centriole formation and appears to participate only in cen-
trosome maturation/disengagement, thus coordinating the cell
cycle with procentriole maturation (153). Cells arrested in S-
phase by depletion of a mitotic inhibitor (early mitotic inhibitor 1,
Emi1) assembled procentrioles, which do not grow further unless
Plk1pT210 is available. Plk1pT210 peaks at the beginning of G2
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Pihan Centrosome dysfunction in cancer

fulfilling its role as centrosome maturation factor. Plk1pT210 does
not localize to the centrosome until late S early G2 since it is not
present in HU S-phase arrested cells (217) but is found at the
centrosome in G2 arrested cells, all of which is consistent with
Plk1pT210 being critical in the centrosome cycle in G2 (153).

De novo centrosome formation (Figure 4) is known to nor-
mally occur only in lower eukaryotes (306), in eggs (307), and
in parthenogenetic embryos (308). Although it has never been
documented in normal vertebrate cells, other than in Chinese
hamster ovary (CHO) cells, it may occur in cancer cells under
special circumstances. In CHO cells arrested in S phase by hydrox-
yurea, destruction of centrosomes by laser microsurgery leads to
the appearance of new PCM clouds 5–8 h after ablation (289).
The clouds of PCM contain γ-tubulin, pericentrin (components
of the PCM), and ninein (centriole). By 24 h clouds appeared
more compact and exhibited a central denser area where a cen-
triole was located. As many as 14 centrosomes per cell developed
in cells arrested in S-phase for 24 h. Of note, PCM accumula-
tion and accretion into denser clouds was not dependent on
microtubules. Only the development of centrioles was, since noco-
dazole pre-treatment abolished centriole formation but not PCM
accumulation (289). Most centrioles had normal EM structure
but some were aberrant partially open centriolar cylinders, dis-
torted/bent walls, and different cylinder lengths. These structures
are very similar to those observed during centrosome reassem-
bly after loading cytoplasm with anti-polyglutamylated tubulin
antibody a maneuver that leads to centrosome dispersal (102).
In general all newly formed centrosome clustered together near
the nuclear envelope and only rarely were they dispersed or away
from the nuclear envelope. Interestingly, ninein distribution vol-
ume within the PCM clouds was restricted to a single dot located
next to the single area of greatest γ-tubulin density, a location that
suggest its normal presence in the distal end of the centriole. Nev-
ertheless, there were no obvious appendages on the neocentrioles
when examined by electron microscopy. These structures are able
to nucleate microtubules and are thus functional. When cells with
neocentrosomes were allowed to reenter mitosis by HU washout
and exposure to caffeine, which induced rapid entry into mitosis,
the majority of the cells assembled multipolar spindles, attempted
multifurrow cytokinesis, which failed to complete, resulting in sin-
gle daughter cells. Only two cells with multipolar spindles resulted
in two (one) or three (one) daughter cells. Importantly, de novo
centrosome formation in non-transformed mammalian cells does
not occur in the presence of a single pre-existing normal centro-
some. Taken all these data together it is reasonable to conclude that
the template-dependent centriole duplication pathway is dom-
inant, and the de novo centrosome formation pathway is only
enacted if no centriole template is available to the cell. For instance,
CHO cells with intact centrosome subjected to the identical S-
phase block replicate centrosomes every 20 h and only using the
template-dependent mechanism (309). One can conclude that de
novo centrosome formation is a default back-up mechanism for
cells that no longer have functional centrosomes. How the presence
of centrioles suppresses the de novo pathway is currently unknown.

The significance of the de novo centrosome assembly pathway
in cancer has been difficult to ascertain. For once, removal of the
centrosome from normal, untransformed vertebrate cells leads to

cell cycle arrest in G1 without centrosome neoformation (48, 310).
Selective ablation of a single centrosome suppresses de novo cen-
trosome formation in the daughter cell receiving the non-ablated
centrosome indicating that an active pathway exist to suppress
de novo centrosome formation. However, transformed cells such
as HeLa cells lack such a checkpoint. Removal of resident centro-
somes by laser ablation or micromechanical manipulation in HeLa
cells does not result in G1 arrest, instead cells progress through
mitosis and into S phase assembling centrosomes de novo (290).
De novo centrosome assembly begins at the G1/S transition as
faint centrin dots, which become recognizable centrosomes before
mitosis. Remarkably, such centrosomes are immature, i.e., do not
nucleate full arrays of microtubules, until the next cell cycle sug-
gesting that cell cycle progression is necessary for completion of
centrosome maturation. After the second mitosis, neocentrosomes
coalesced into a single focus, evinced prominent PCM, and were
associated with the main microtubule array focus indicating that
they are by now fully competent centrosomes (290). Interestingly,
de novo assembly of centrosome does not occur in cells arrested in
G1 phase after centrosome ablation, but it does in cells arrested in
S phase, indicating that the de novo pathway is only turned on in S
phase, the cell cycle phase where normal, i.e., template-dependent
centriole duplication occurs. Whether a mother or daughter cen-
triole can suppress the de novo pathway was tested by specifically
ablating the mother centriole within a centrosome at the mitotic
spindle pole. The de novo pathway remained inactive in the daugh-
ter cell that received the centrosome containing the ablated mother
centriole, indicating that even an immature centriole is sufficient
to maintain the de novo pathway fully suppressed. During the next
mitosis the daughter containing the centrosome with the ablated
mother centriole enacted bipolar spindles. Since only one of the
spindle poles had a centriole-containing centrosome, one of the
daughters of this cell received a normal diplosomal centrosome,
while the sister receiving no centrosome, promptly proceeded to
assemble centrosomes de novo upon reaching S phase (290). It
is important to note that HeLa cells, as many other cancer cells,
lack active p53 dependent checkpoint, and that this may enable
progression through G1 in the absence of centrosomes. The de
novo centrosome assembly pathway may therefore be not only an
important back-up mechanisms in cancer cells to regenerate lost
centrosomes, but also an intrinsically destabilizing process that
leads to multipolar spindles and its attendant complications, if
accidentally activated.

A detailed analysis of centrosome biogenesis in HU-arrested
CHO (which are p53+/−), which lack a p53 dependent G1 check-
point (293), has added new layers of complexity and indicated that
the overreplication and de novo pathways may not fundamentally
differ after all (311). Time-lapse imaging of centrin1-GFP express-
ing CHO cells revealed that perinuclear centrin spots appeared
soon after HU arrest. These spot are quite similar to those appear-
ing shortly after laser ablation of the centrosome, which are known
to represent the earliest step in de novo centriole formation (290).
Further characterization revealed that such structures correspond
indeed to centriolar satellites, which are known to participate in
centriologenesis. Such precursors could be traced to their forma-
tion in the nucleolus, export to the cytoplasm, coalescence round
the native centrosome, development of centrioles, and acquisition
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of functional PCM (311). These observations suggest that the
phenomenon of centrosome amplification commences through
a dynein/dinactin-mediated buildup of PCM material in prepa-
ration for centrosome construction. Centriolar satellites are peri-
centriolar protein-rich, electron dense ∼100 nm quasi-spherical
bodies that appear to represent assembly factories for centrosome
or ciliary components (312–314). Payload traffic to and from cen-
triole satellites is microtubule- and dynein/dynactin-dependent
(311, 313–316).

A similar process has been reported by Kramer and collabo-
rators using a lung cancer cell line carrying a centrin-2-Dendra2
transgene in which the fluorescent protein tag is photoconvert-
ible from green to red, permitting to distinguish unambigu-
ously between pre-existing centrioles (photoconverted red) from
newly developed centrioles (green) (317). Using this system, again
numerous centrin containing centriole satellites formed after
gamma-irradiation or bleomycin exposure, before centrosome
amplification became evident (317). In fact, all manners of DNA
damage induced the appearance of green Centrin-2 dots, i.e.,newly
formed centrioles, with no instance in which splitting of red signals
(i.e., pre-existing centrosomes) occurred, even after X-ray irradi-
ation, where “centrosome splitting” was first described (317). Of
note, the newly formed centrin dots were mobile and loosely asso-
ciated with the pre-existing centrosome (red dots). When interro-
gated by immunofluorescence, the newly formed green dots were
negative for canonical centrosome components such as pericen-
trin, γ-tubulin, C-Nap1, rootletin, SAS-6, and STIL, but positive
for known components of centriolar satellites such as PCM-1,
BBS-4, and CEP290. The resemblance of centrin dots to nor-
mal centriolar satellites extended to their ultrastructural appear-
ance when examined by electron microscopy using nanogold-
conjugated antibodies as tracers, indicating they represent exces-
sive production of centriolar satellites. The appearance of centrin
dots preceded the appearance of newly formed centrosomes. As
expected for a centriolar satellite driven process, chemical inhi-
bition of dynein or interference of dynein/dynacting function by
overexpression of dynamitin, suppressed centrosome amplifica-
tion induced by DNA damage or X-ray irradiation. Moreover,
chemical inhibition of Chk-1 with UCN-01 led to dose-dependent
reduction of centrin dots in A549 and U2OS cells. Similar results
were obtained by siRNA knock-down of Chk-1 (317).

Unless resident centrosomes are non-functional (inactivated)
in transformed/cancer cells arrested in S or G2 phase, the above
two studies suggest that the de novo pathway is active in can-
cer cells despite the presence of resident centrosomes. Indeed,
some observations suggest that not all centrosomes may be func-
tional in cancer cells, as documented by free centrosomes not
associated to spindle poles in some cancer cell lines (318). More-
over, it is formally possible that the Cent2 green dots observed
in Loffler et al. study (317) are templated by resident centrioles.
Recent observations provide an intriguing possible explanation to
this puzzle (319). Treatment of cells with Cdk1 inhibitors (RO-
3306, roscovitine) or Cdk1 knockdown with siRNA, results in
G2 arrest, premature centriole disengagement and chromosome
endoreduplication. Under these conditions premature centriole
disengagement is dependent on both separase and Plk1 acti-
vation. It is well established that centriole disengagement and

displacement is a pre-requisite for growth of new procentrioles
and that a mitotic Plk1 activity is required to render a new cen-
triole competent for procentriole nucleation, thus preventing the
growth of “granddaughter” procentrioles/centrioles. Under these
conditions separase activation obeys to destruction of securin by
activated APC/C, mediated by Plk1 induced loss of early mitotic
inhibitor 1 (Emi1) (320), which normally inhibits the APC/C.
Subsequent inactivation of APC/C upon prolonged arrest trig-
gers reaccumulation of cyclin A (and to some extent cyclin E)
and increased cyclin A-Cdk2 activity, promoting centriole redu-
plication and DNA endoreduplication (319). Similar observations
were made in CHO and U2OS HU-arrested cells suggesting that
this response, which includes oscillation of APC/C activity leading
to first centriole disengagement (high APC/C activity) and subse-
quent replication (low APC/C) may be universal to prolonged S or
G2 arrests (319).

Although numerical abnormalities of centrosomes are the most
common centrosome “cancer phenotype,” qualitative changes fre-
quently co-occur. Qualitative changes are far less well charac-
terized, and little is know about their impact on the fidelity of
chromosome segregation during mitosis. They include abnor-
mally shaped centrioles, excess or deficits in PCM, and acen-
triolar MTOCs (250, 251, 257, 270, 318, 321–325). With the
recent advances in microscopy it is formally possible to study this
phenomena in vivo by multiplexed high-resolution fluorescence
microscopy. Such studies will provide a wealth of new information,
rapidly identifying the critical molecular events, which implicitly
are targets for tumor specific targeted therapies.

MITOSIS WITH TOO MANY CENTROSOMES: SPINDLE
MULTIPOLARITY AND RECTIFICATION MECHANISMS
Regardless of the mechanism of origin, supernumerary centro-
somes pose the same initial challenge to dividing cells: once two or
more functionally mature centrosomes are present at the G2 phase
of the cell cycle, the potential for multipolar spindles, and chro-
mosome missegregation on the next mitosis is very real. However,
the outcome of multipolar mitoses differs significantly depending
on a number of additional factors (Figure 5). One key factor is
the ploidy of the dividing cell, which influences the success rate
of multipolar mitoses (see above). Additional factors include the
ability of cancer cells with multipolar mitoses to circumvent the
mitotic spindle assembly checkpoint (326); the competence of cell
death execution pathways leading to mitotic (327) or post-mitotic
cell death (328) of cells that cannot self-correct defects to satisfy the
mitotic assembly checkpoint; the ability of the cell to exit mitosis
without experiencing anaphase and cytokinesis – a process that has
been termed “mitotic slippage”; and more importantly, the abil-
ity of the cell to reconfigure the multipolar spindle into a bipolar
spindle before entering anaphase (328, 329) (Figure 5).

Mitoses with multipolar spindles are inherently inefficient,
exhibiting a high rate of intra-mitotic (mitotic catastrophe) (327,
330, 331), post-mitotic cell death (328), or senescence (298), hin-
dering tumor growth and acting as tumor suppressors rather than
tumor promoters (332–334) (Figure 5). Multipolar cells that do
undergo multipolar anaphase, but do not complete mitosis, and
still survive, are likely to become giant multinucleated tumor cells
(Figure 5). A subset of giant tumor cells is commonly present in
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FIGURE 5 | Possible outcomes of multipolar mitoses in cancer. A subset
of cells with multipolar spindles carry mitosis to completion, resulting in
highly aneuploidy cells, some with abnormal centrosome number (A).
Others fail cytokinesis resulting in giant multinucleated polyploid cells,
often with supernumerary centrosomes (B). Some cells exit mitosis in a
process termed “mitotic slippage” and become polyploid cells with
supernumerary centrosomes (F), or apoptose in the subsequent G1 phase
(E). Yet others undergo mitotic catastrophe (death in mitosis) (C). Finally,
most cells with multipolar mitosis, after significant delay, reconfigure their
multipolar spindles into bipolar spindles resulting in (mostly) normal or
abnormal (merothelic, synthelic chromosome) chromosome segregation
(D). The thickness of the arrows in the figure intends to provide an estimate
of the frequency of these events in cancer cells.

cytologically high-grade tumors, but appear to either not divide
at all or divide only sparingly. Rarely, cell with multipolar spin-
dles may divide asymmetrically to produce viable daughter cells,
a phenomenon that has been documented but does not appear
to be prevalent, since the chances of a daughter cell receiving a
full haploid chromosome complement is low. Nevertheless, the
importance of such rare events should not be underestimated
insofar as they may be critical in generating cells with proper-
ties significantly different from the main tumor population, which
underscores, at least partly, the typical punctual evolution of the
tumor genome (335–339).

Since a majority of multipolar mitosis outcomes are detrimen-
tal to cell growth (Figure 5) how might a tumor with supernumer-
ary centrosomes prosper? How do cells with multipolar spindles
solve the mitotic conundrum? Recent long-term in vivo observa-
tions of mitoses with multipolar spindles have revealed important
clues. It turns out that a large proportion of cells with multi-
polar spindles utilize a spindle correction mechanism active in
normal cells (340, 341) (Figure 6). After initially deploying multi-
polar spindles, cells delay metaphase until the extra spindle poles
coalesce to form bipolar spindles, promoting “normal” bipolar
mitoses (332, 341, 342). Multiple centrosomes per spindle poles
were first observed by a number of investigators in mouse neu-
roblastoma cells (321, 323, 325), but their significance remained
enigmatic until Bill Brinkley inferred their potential importance

FIGURE 6 | Multipolar to bipolar spindle reconfiguration in cancer
cells. Cancer cells with supernumerary centrosomes enact multipolar
spindles (A,A’), but after some delay, reconfigure their spindles to bipolar
structures with centrosomes clustered at the poles (B,B’). Abnormal
chromosome attachments acquired during the multipolar stage, such has
synthelic (B) or merothelic (B’), may then lead to monopolar segregation
(C) or lagging (C’) chromosomes, which are usually incorporated into
micronuclei, resulting in aneuploid cells with supernumerary centrosomes
without (D) or with micronuclei (D’).

and predicted what indeed has been born out by recent experi-
mental evidence (329). Centrosome coalescence in normal cells
and some cancer cell lines is highly efficient (332, 343, 344) with
cells rarely exhibiting multipolar mitoses even in the presence of
greatly increased number of centrosomes (257). But not all cancers
retain intact the centrosome clustering mechanisms and in some
transformed cell lines (332, 341, 343, 344) and cancer tissue, mul-
tipolar anaphases may still occur. The extent to which multipolar
mitoses contribute to CIN has not yet been determined. What
mediates the metaphase delay needed to reconfigure a multipolar
into bipolar spindle is at present poorly understood. The mitotic
spindle assembly checkpoint (345) does not appear to monitor
the number of spindle poles (346). However, it is possible that
unattached or misattached kinetochores in multipolar spindles
fail to generate the tensile forces that are key to extinguish the
spindle assembly checkpoint (347, 348), delaying anaphase onset.
Time spent in metaphase however is important since reducing it
experimentally reduces centrosome clustering and leads to mul-
tipolar anaphases (340, 345, 349). The forces that contribute to
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centrosome clustering appear to be threefold: inter-centrosomal
interactions, interactions of anti-parallel polar microtubules, and
forces exerted by astral microtubules. Nevertheless, the molecular
mechanisms coordinating these processes in cancer cells are poorly
understood.

The correction mechanism itself seems to be dependent
on kinetochore microtubule dynamics and interaction of
polar microtubule bundles. The minus-end-directed microtubule
motors nuclear mitotic apparatus protein (NuMA) and dynein
have been implicated in this process (341). Two recent screens have
implicated a number of other proteins in the process suggesting
mechanistic possibilities. The first, a screen in non-transformed
cells (Drosophila S2 cells) revealed three main classes of pro-
teins: components of the mitotic spindle assembly checkpoint,
regulators of cortical acto-myosin contractility, and microtubule
associated proteins (MAPs) (340). Also discovered in the screen
was an essential role in centrosome clustering for the non-essential
microtubule minus-end-directed motor non-claret disjunctional
(NCD), a kinesin-14 family member (vertebrate homolog HSET).
Notably, HSET is not only critical for the formation of bipolar
spindles in the absence of centrosomes – through the incorpo-
ration and clustering of MTOCs at spindle poles (318), but is
also critical for the clustering of canonical centrosomes in can-
cer cell lines, but not in non-transformed RPE1 cells (318). A
second genome-wide screen for proteins that participate in cen-
trosome clustering, this time in tumor cells, identified proteins
involved in kinetochore microtubule attachment, sister chromatid
cohesion, members of the augmin complex microtubule for-
mation pathway, and chromosome passenger complexes (CPC:
aurora-B, INCENP, survivin, and borealin) (350). The study
suggested that kinetochore and spindle components generate
the forces necessary to maintain centrosome clustering at the
poles.

THE FATE OF BIPOLAR MITOSES WITH CLUSTERED
CENTROSOMES AT SPINDLE POLES
Nevertheless, not all is well in cells that manage to convert
multipolar to bipolar spindles. Multipolarity, even if transient
(342), may lead to maloriented kinetochores, permitting micro-
tubules from two or more poles to contact and bind the
same kinetochore, leading to multipolar chromosome attach-
ment (Figure 6). Upon resolution of multipolarity, the result-
ing bipolar spindle will contain merothelic or synthelic chro-
mosomes. Merothelic attachments lead to lagging chromosomes
at anaphase (332), resulting in anaphase bridges that interfere
and delay cytokinesis. If the bridge is resolved and cytokine-
sis completed, the lagging chromosome becomes a micronu-
cleus in one of the daughter cells. Alternatively, if the bridge
is not resolved, the outcome is cytokinesis failure and poly-
ploidy (Figure 6). Monothelic or synthelic attachments, which
may also originate in multipolar spindles lead to monopolar seg-
regation (both chromatids to the same daughter). Remarkably,
cells with intact spindle assembly checkpoint may still correct
some of these misattachments – whether merothelic, synthelic or
monothelic – into perfectly amphitelic (bipolar) orientated chro-
mosomes before anaphase onset, resulting in normal chromosome
segregation (340–342).

NOT ALL FORMS OF ANEUPLOIDY ARE CAUSED BY
CENTROSOME ABNORMALITIES
Two forms of cancer aneuploidy are readily distinguishable in clin-
ical cancer karyotypes: stable aneuploidy and unstable or dynamic
aneuploidy. In the former, all cells in a cancer growth share gains
and/or losses of the same normal or structurally abnormal chro-
mosome(s), whereas in the latter, cancer cells have more extensive
gains and losses of chromosomes, only some of which are shared
by most of the cells in the tumor, while others are shared only
by subsets of cells. Whereas the former is thought to results from
rare and transient mitotic chromosome missegregation events in
a founder cancer cell, the latter is due to frequent and continu-
ous mitotic chromosome missegregation and is a symptom of an
intrinsically defective chromosome segregation machinery (278).
Unstable aneuploidy, which is also known as CIN (251, 351), is
the more common of the two, and is pervasive in carcinoma, some
forms of sarcoma, and a subset of hematopoietic and lymphoid
cancers (251, 352) [reviewed in Ref. (16, 353)]. CIN is multifac-
torial and may result not only from centrosome dysfunction (250,
251), but also from defects in kinetochore microtubule attachment
and dynamics (354, 355), spindle assembly checkpoint (356, 357),
chromosome replication/condensation/cohesion (358), cytokine-
sis failure (291, 359, 360), or dysfunction of checkpoints that
coordinate the DNA replication, and centrosome cycles (361).

CENTROSOME ABNORMALITIES PROVIDE A POTENTIAL
MECHANISTIC LINK BETWEEN NUMERICAL AND
STRUCTURAL CHROMOSOME ABNORMALITIES
In CIN, numerical (nCIN) and structural (sCIN) chromosome
abnormalities nearly always co-exist [reviewed in Ref. (362–365)].
nCIN includes a spectrum of gain and losses of chromosomes
fragments from kilobases to megabases, whole arms or even
entire chromosomes. sCIN include translocations, inversions, end-
fusions, and a number of more complex rearrangements. With the
exception of break-fusion-bridge (BFB) cycles (366) (Figure 7),
until recently it was thought that nCIN and sCIN, despite their
frequent coexistence, were largely mechanistically unrelated. Sev-
eral recent whole-genome sequencing studies of cancer tissue have
uncovered new mechanistic links between nCIN, sCIN, and cen-
trosomes (Figure 7). Grouped under the term chromoanagenesis
(chromosome rebirth) (367), the first class of sCIN consists of
a handful of apparently random chromosome loci per genome
with highly complex structural (and copy number) sequence alter-
ations including sequence duplications, deletions, scrambling, and
polarity reversals, as if the segment had been broken in hundreds
of fragments and rejoined more or less randomly (Figure 7).
This phenomenon has been termed chromothripsis (chromosome
shattering) (368). Chromothripsis has been postulated to occur as
a single, punctual, massive event, rather than sequentially, as is
seen with BFB cycles. Two possible causative mechanisms have
been thus far delineated, both of which are enabled by chromo-
some missegregation events triggered by abnormal centrosome
function in mitosis. Chromothripsis involves premature mitotic
entry of a chromosome contained in a micronucleus that resulted
from a chromosome missegregation event in the previous mitosis
(368, 369). Mitotic entry, before completion of DNA replication
in the micronucleus, leads to failure of micronucleus envelope
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FIGURE 7 | Chromoanagenesis in cancer. Complex structural
chromosome rearrangements in cancer, involve stepwise or punctual
chromosome restructuring. It includes stepwise classic intra or
inter-chromosomal break-fusion-bridge cycles (A); chromothripsis
(B), which are punctual localized highly complex chromosome
fragmentation (1) and rejoining (2) events, and chromoplexy (C), in which
complex linked translocation events involving multiple chromosomes
presumably occur simultaneously. 1 through 6 (black typeface) and 1
through 5 (orange typeface) represent two such linked “chained” events.

breakdown, mitotic transit with random segregation to daugh-
ter cells, and random reassembly of the incompletely replicated
chromosome fragments within the micronucleus during the sub-
sequent interphase (368, 369). Chromothripsis [reviewed in (362,
363, 370)] appears to be common in carcinoma and neural tumors
(369, 371) and is the mechanism most likely to operate in micronu-
clei. Micronuclei in cancer are frequent and may have many ori-
gins, one of the most important of which appears to be merotelic
chromosome orientation at metaphase. A merothelic chromo-
some is one in which one of its two kinetochores is simultaneously
attached by microtubules to the two spindle poles. Merothelic
chromosomes often lag at the center of the dividing cell at anaphase
and are usually not incorporated within the two groups of chro-
mosomes at the poles in telophase before reassembly of the nuclear
envelope at the end of mitosis, becoming independent “micronu-
clei.” Notably, a transient state of mitotic spindle multipolarity
in cells with supernumerary centrosomes is thought to be the
most important cause of merothelic chromosome attachment

and micronuclei formation (355) (vide infra), again implicating
centrosome dysfunction in the cause of sCIN.

A second class of distinct “genome level” structural abnormal-
ity in cancer gleaned from whole-genome sequences has been
recently delineated in prostate cancer (335). Termed chromo-
plexy (chromosome restructuring), in this phenomenon numer-
ous inter- and intra-chromosome translocations and deletion
of genetic material arise in a highly interdependent manner
(335) (Figure 7). These “chained rearrangements,” numbering
from 3 to over 40, involved up to 6 chromosomes simultane-
ously, exhibited precise joints or large deletions at the joints,
and occurred in the majority of prostate cancers studied. More-
over, greater than 60% of the tumors contained more than
one chained rearrangements (335, 339). Statistical analyses indi-
cated these rearrangements were unlikely to occur independently,
suggesting again a single, punctual, massive genome-scrambling
event (339). The cause(s) and mechanism(s) of chromoplexy, and
whether centrosomes participate in its pathogenesis, are currently
unknown.

SUMMARY
A significant body of evidence implicating centrosome dysfunc-
tion on CIN has accumulated in the past 20 years. Centrosome
defects are ubiquitous in cancer and are associated with dynamic
CIN due to chromosome missegregation during mitosis. Sur-
prisingly, centrosome dysfunction also participates in promot-
ing structural CIN by a number of mechanisms, principally by
initiating micronucleus formation through merothelic chromo-
some attachments, chromosome breakage at centromeres, and
DNA damage on miss attached chromosome. The combination of
structural and numerical chromosome abnormalities triggered by
centrosome dysfunction, ultimately leads to gene reshuffling and
reprograming of the cancer genome. Reprograming results pri-
marily from four related events associated with gene reshuffling:
deregulation of gene expression resulting from gene reposition-
ing, which changes both the regulatory element landscape and
chromatin regulatory domains; gene dosage changes resulting
from numerical changes of part or whole chromosomes; gene
mutations (gene fusion, inversions, indels, etc.) resulting from
chromosome domain repositioning; and changes in the feasibil-
ity and probability of oncogene gain or tumor suppressor gene
loss by dissociating genes from neighboring genes that normally
exert opposite selection pressure. Importantly, cancer cells have
developed mechanisms to cope with altered centrosome func-
tion, primarily by reconfiguring multipolar spindles into bipolar
spindles prior to anaphase. The intricate molecular defects of cen-
trosome dysfunction in cancer provide a unique opportunity for
hyper-targeted therapies, which not only interfere with a specific
molecule also present in normal cells, but also with a process
specifically deranged in cancer, on principle avoiding harm to
normal cells. Technical advances in microscopy, fluorescent pro-
tein technology and high throughput screening will permit a more
rigorous examination of centrosome defects and their functional
consequences in short-term cultures of human cancer samples
and immortalized “non-transformed” human cells. Only through
this exercise will we fully understand the magnitude and the criti-
cal differences in centrosome biology between normal and cancer
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tissue permitting us to develop smart therapies to combat “the
emperor of all maladies.”
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