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Abstract

Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with 

overlapping features thereby extracting valuable information. In the olfactory system, it remains 

unknown whether pattern separation acts as a driving force for sensory discrimination and the 

learning thereof. Here we show that overlapping odor-evoked input patterns to the mouse olfactory 

bulb (OB) are dynamically reformatted in the network at the timescale of a single breath, giving 

rise to separated patterns of activity in ensemble of output neurons (mitral/tufted cells; M/T). 

Strikingly, the extent of pattern separation in M/T assemblies predicts behavioral discrimination 

performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB 

interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor 

discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can 

act as a pattern separator facilitating olfactory stimuli distinction, a process that is sculpted by 

synaptic inhibition.
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Introduction

The optimal disambiguation of overlapping sensory stimuli by neuronal networks is an 

essential process to build internal representations of the external world. Along sensory 

pathways, precortical1─5 and cortical5─8 networks have been proposed to drive this 

disambiguation through pattern separation, also known as pattern decorrelation9,10. This 

process is thought to increase the formation of discrete representations and is considered to 

be useful for discrimination and memory storage9─11. Despite these observations, the 

timescales and the behavioral relevance of pattern separation remain elusive.

In the rodent OB, odorants evoke discrete spatiotemporal patterns of activated glomeruli in 

awake mice12,13. The spatial segregation helps separating channels of information and 

thereby increasing contrast between odor-evoked activities. However, similar stimuli such as 

binary mixtures evoke overlapping representations of activated glomeruli14─17. Yet, these 

odorant stimuli are still discriminable by animals14,18─20, indicating that overlapping 

sensory information is further refined along the sensory pathway as observed in the piriform 

cortex (PC)5,21,22. In the zebrafish OB, this refinement, namely pattern separation, acts to 

reduce overlapping odorant-evoked activity patterns in the population of output neurons 

(mitral/tufted cells, M/T)1,2,23. But the existence of a similar process in the mammalian 

olfactory system has not been clearly established. More importantly, the behavioral 

relevance of pattern separation is still debated24 and thus far no studies have addressed this 

question. Therefore it remains unknown whether pattern separation is a driving force for 

sensory discrimination and the learning thereof.

Here we show, using functional imaging, tetrode recordings, optogenetic and 

pharmacogenetic manipulations in awake mice, that pattern separation in the OB plays an 

important role in olfactory discrimination learning. Similar odorant stimuli evoked 

overlapping input patterns of olfactory sensory neuron (OSN) axons that were dynamically 

reformatted in ensembles of OB output neurons (mitral/tufted cells; M/T) at the timescale of 

a single sniff, helping the separation of such overlapping inputs. Strikingly, the extent of 

pattern separation in the OB predicted the mice’ ability to discriminate olfactory stimuli 

during the early learning phase. To further investigate the causality between pattern 

separation and discrimination performance, odor-evoked M/T cells responses were 

modulated by enhancing or suppressing inhibitory interneuron activity in the granule cell 

layer (GCL) using channelrhodopsin (ChR2) photostimulation or a designer receptor 

exclusively activated by designer drugs (hM4Di Gi-DREADD), respectively. Enhancing 

inhibition of M/T cells increased odor-evoked output pattern separation and improved odor 

discrimination learning. In contrast, silencing GCL neurons with Gi-DREADD caused a 

decrease of pattern separation and a deterioration of odor discrimination learning. In 

conclusion, our data indicate that the OB network acts as a pattern separator to facilitate 

olfactory stimuli discriminations, a process that can be controlled by OB GABAergic 

neurons.
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RESULTS

Similar odors evoke correlated input patterns to the OB

To test how efficiently the olfactory system may separate similar odor-evoked 

representations, we aimed at generating a large set of odorant stimuli evoking input patterns 

that vary in similarity. We investigated the complex representation of OB sensory inputs by 

imaging odor-evoked Ca2+ responses in the glomerular layer of awake head-restrained 

transgenic mice expressing the genetically encoded calcium indicator GCaMP3 in olfactory 

sensory neurons13 (OSNs, Fig. 1a and Supplementary Fig. 1). We used two groups of binary 

mixtures – amyl acetate/ethyl butyrate (AA/EB) and ethyl butyrate/3-hexanone (EB/HX) – 

composed of variable relative ratios of individual components mixed either in gaseous or 

liquid phases. The gaseous and liquid mixtures having the same presumed ratios differed 

consistently and could be attributed to the chemical properties of resulting mixtures such as 

relative composition and total concentration. This was highlighted by the analytical studies 

of binary mixtures using gas chromatography combined to flame ionization detection (GC-

FID, see methods and Supplementary Table 1; total FID area concentrations ranged from 

~1000 to 10000). Nevertheless, related mixtures evoked similar spatiotemporal patterns of 

glomerular activity (Fig. 1a,b). To quantify the similarity, we combined the fluorescence 

change of activated glomeruli in a population vector binned over an entire breath and further 

computed the Pearson correlation coefficient between vectors of activity evoked by each 

mixture, either for each mouse or for all animals (yielding similar results; Fig. 1c,d and 

Supplementary Fig. 1). The systematic comparison of all possible mixtures to each other 

was reported in a correlation matrix which revealed that binary mixtures with identical 

components at different ratios (either AA/EB or EB/HX mixtures) evoked highly correlated 

patterns of activity, whereas binary mixtures with different components (AA/EB vs. EB/HX 

mixtures) evoked less correlated patterns (Fig. 1c-e and Supplementary Fig. 1f). This 

observation was consistent throughout the time course of the first breath following odor 

presentation onset (Fig. 1e-f and Supplementary Fig. 1g).

Importantly, input correlation was not correlated to the amplitude of glomerular responses 

(Supplementary Fig. 2). Moreover, the odorant concentration used is the study did not 

saturate OSN response (Supplementary Fig. 3). Finally, input correlation across mixtures 

was similar for weakly and strongly activated glomeruli (Supplementary Fig. 4), indicating 

that strong glomerular responses do not impose the level of input correlation. The 

differences between input representations are therefore neither due to saturation of the 

calcium dye nor due to strongly and potentially saturating OSN responses, which may have 

both compressed the dynamic range of the calcium imaging readout.

Taken together, these data suggest that binary mixtures sharing the same pre-determined 

component ratios evoke highly correlated input patterns to the OB, irrespective of the subtle 

differences caused by gaseous and liquid phase mixing.

OB reformatting of odor representations in a single breath

Despite similarities between odorant-evoked input patterns, trained rodents can discriminate 

monomolecular odorants or mixtures in less than 400 ms, which corresponds to the duration 
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of one or two breaths14,18─20,25─27. The olfactory bulb network may thus process sensory 

inputs in order to separate overlapping information. To test this assumption, single M/T cell 

units (n = 377 cells from 18 mice) were recorded in the OB of awake head-restrained mice 

while presenting various odorants13,28,29 (Fig. 2a). Neurons displayed complex responses to 

odorants such as phasic, tonic, excitatory, inhibitory or bimodal (n = 1248 odor-cell pairs in 

6 mice, Fig. 2b-e and n = 1859 and 1430 odor-cell pairs in 4 and 8 mice, respectively, 

Supplementary Fig. 5a-d; different datasets were used to ascertain the reproducibility of 

population correlation in different animal groups). In order to compare the similarity of 

output patterns evoked by different mixtures, we computed the Pearson correlation between 

population vectors of M/T cell activity averaged over the first breath duration after odor 

onset evoked by different mixtures. Notably, the output correlation matrix differed from the 

one computed at the input level, suggesting that sensory representations are indeed 

reformatted within the OB synaptic pathway (compare Fig. 2f,g to Fig. 1c,d). Some groups 

of mixtures that were correlated at the input level became decorrelated at the output level 

whereas others remained unchanged (compare Fig. 2g to Fig. 1d). Though there was an 

overall reduction of output correlation, few mixtures evoked more correlated patterns at the 

output level than at the input level (points above the diagonal in Fig. 2h), suggesting a non-

linear reduction of input to output correlations over all odors.

We then analyzed the output correlation at a finer time scale. Interestingly, the level of 

correlation between output patterns significantly evolved over the time course of the first and 

subsequent breaths, groups of mixtures becoming significantly decorrelated over time (Fig. 

3a,b, Supplementary Fig. 5e-h and Supplementary Fig. 6). For some mixtures, decorrelation 

was rapid (e.g. red and blue curves in Fig. 3b,c and Supplementary Fig. 5e,f), which is 

consistent with some mitral cells responding to the early glomerular response (i.e. first 80ms 

in Fig. 1e,f). In contrast, correlation was increasing in the first 120 ms and then decreasing in 

the remaining part of the breath for other mixtures (e.g. cyan and magenta curves in Fig. 

3b,c and Supplementary Fig. 5g,h), which likely relates to the increase of input correlation 

seen in Fig. 1f. Nevertheless, a significant decorrelation was observed for all subgroups of 

mixtures during the first breath (Fig. 3c). A similar decorrelation was observed after 

subtracting baseline firing activity (Fig. 3d,e), indicating that the process is independent 

from sniff-related baseline dynamics and from non-responding cells. Since input correlation 

reached a maximum around 120 ms, we further analyzed the output correlation from this 

time point of the first breath. We observed a significant decorrelation process taking place 

between 126 and 252 ms (Fig. 3e). Furthermore, increasing the temporal resolution by 

averaging mitral/tufted firing over a 21 ms time window revealed that output patterns were 

significantly decorrelated in ~80─100 ms after the peak of input correlation (Fig. 3f and 

Supplementary Fig. 7a).

Interestingly differences in the population firing rate evoked by different mixtures could not 

explain the observed correlation differences (Fig. 4). Furthermore the extent and dynamics 

of pattern correlation for different groups of mixtures depended neither on cell sampling nor 

on single cell response property since similar correlation behavior was observed for 

independently recorded datasets for which neurons displayed dissimilar response profiles 

(compare Figs. 2,3 and Supplementary Fig. 5). The main differences of correlation observed 

for different mixtures might instead be due to the variation of component concentration and 
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absolute number of molecules in the mixtures, as reported by our GC-FID analysis 

(Supplementary Table 1 and see methods). Taken together, these results suggest that a 

reformatting of activity occurs in the OB, which tends to increase the separation of 

representations evoked by similar mixtures over a breathing cycle.

Output pattern similarity predicts learning performances

Does pattern separation taking place over the time course of a breath help animals to 

discriminate related odorants in a behavioral task? To address this question, we trained mice 

on a head-restrained go/no-go operant discrimination paradigm19 and tested eleven pairs of 

odorants that we selected based on the amount of output correlation they elicited (Fig. 5a,b). 

While the extent of input correlation over the first post-odor breath was not a good predictor 

of discrimination performances, we observed in contrast a significant correlation between 

M/T ensemble correlation and discrimination performances during the initial learning phase, 

defined here as the average of the first 300 trials (Fig. 5c─e). Similar results were observed 

when considering the mean and the minimum of the output correlation (Fig. 5d,e) or when 

output correlation was quantified only after the maximum of input correlation had been 

reached (Supplementary Fig. 7b─e). These data suggest that the extent of pattern separation 

in the OB predicts the ability of mice to discriminate between two odorants: the more the 

patterns are separated; the faster the odor discrimination learning takes place.

GABA neurons modulate pattern separation and learning

To further test the causal relationship between pattern separation and odor discriminability, 

we aimed to manipulate the OB outputs using optogenetics. Theoretical works suggest that 

pattern decorrelation may depend on OB inhibitory interneurons23,30─32. Therefore, we 

expressed channelrhodopsin2-YFP (ChR2) in interneurons of the granule cell layer using 

adeno-associated viral (AAV) vectors18 (Fig 6a,b). Immunohistochemical analysis of the 

infected brains revealed an infection exclusively restricted to the GCL in which ~35% of the 

neurons were transfected (Supplementary Fig. 8). We further performed extracellular 

recordings of M/T cells using optrodes (n = 38 cells from 6 mice; Fig 6c,d). 

Photostimulation significantly inhibited 38% of the total odor-M/T cell pairs (n = 228, χ2 

test, P = 0.01). Light-evoked inhibition was cell-specific and M/T cell responses evoked by 

each odorant were not linearly inhibited (Fig. 6e,f). Together, these results suggest that the 

photostimulation triggered a specific modulation of tuning properties rather than an 

unspecific gain control. Though the average population rate was significantly reduced by 

light stimulation either during air or odor presentation (Fig. 6g), photostimulation enhanced 

pattern decorrelation over the breath time course only during the odor epoch for mixtures 

(Fig. 6h). The light-induced decorrelation was visible across the breathing cycle (Fig. 6i). In 

summary, photoactivation of inhibitory neurons in the GC layer modulates individual M/T 

cells activity and promotes pattern decorrelation.

Considering our observations that the extent of pattern separation correlates with odor-

discrimination learning (Fig. 5), one would expect that enhancement of decorrelation should 

improve odor-discrimination performance. To test this hypothesis, we trained two cohorts of 

mice (expressing either enhanced green fluorescence protein [EGFP] or ChR2-YFP in 

neurons of the granule cell layer) on different mixture discrimination tasks. Head-restrained 
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mice were photostimulated using a LED implanted on a cranial window overlaying both 

olfactory bulbs (Fig. 6j, Supplementary Fig. 9a,b and see methods). At high light power, 

animals strongly reduced their licking behavior in an olfactory association task 

(Supplementary Fig. 9c,d), suggesting a global silencing of M/T cells. In order to avoid such 

effect, we gradually reduced the light power until complete recovery of the normal licking 

behavior. This optimized power was then used during odor discrimination tasks. ChR2-

expressing mice learned mixture discriminations faster than control mice but reached similar 

final performance levels (AA/EB and EB/HX mixtures in Fig. 6k). This effect was specific 

to photostimulation since the discrimination performance evolved similarly in both cohorts 

when two other mixtures were subsequently tested in the absence of light stimulation (C+/C

− and AC/LI mixtures in Fig. 6k). Then, in order to reconfirm the photostimulation effect, 

we trained the same mice on yet another binary mixture pair. Again, light stimulation 

significantly enhanced learning performances without altering the final performance levels 

in the ChR2-expressing mice (HO/HA mixtures in Fig. 6k).

We next questioned whether stimulating GCL neurons would have similar impact on simple 

odor discrimination tasks. Interestingly M/T cell correlation for the monomolecular 

compounds present in the mixtures was not affected by ChR2 stimulation (Supplementary 

Fig.10a). Consistent with the electrophysiology, ChR2 stimulation did not affect the learning 

pace for simple odor discrimination task in an additional cohort of mice (Supplementary Fig. 

10b). In contrast, but consistent with our first cohort, learning pace for difficult 

discrimination tasks (mixtures) was improved by photostimulation of GCL neurons 

(Supplementary Fig. 10c). Likewise, photostimulation specifically enhanced reaction times 

for difficult discrimination tasks (Supplementary Fig. 10d). These results confirm that 

pattern separation is a process mainly required to disambiguate overlapping OSN inputs 

representation.

We finally tested whether inhibiting GCL neurons would have an opposite effect on pattern 

separation and odor discrimination learning. We thus tested the effect of silencing the GCL 

population using inhibitory pharmacogenetic manipulation (hM4Di Gi-DREADD cohort). 

We recorded odor-evoked responses of M/T cells before and after DREADD activation by 

clozapine-N-oxide (CNO) injection. CNO injection increased odor-evoked firing rates in 

DREADD infected mice but not in ChR2 expressing mice (used as controls, Fig. 7a,b), 

leading to a specific increase of ensemble correlation in DREADD mice (Fig. 7c). We 

finally tested whether such decrease in pattern separation would affect odor discrimination. 

As predicted, silencing granule cell layer neurons using pharmacogenetics decreased odorant 

discrimination learning pace for complex odors (Fig. 7d).

In conclusion, these results demonstrate that bidirectional manipulation of GABAergic 

neurons of the GCL modulates the decorrelation of overlapping M/T cell activity patterns, 

which controls the ability of animals to learn to discriminate between similar odorants.

DISCUSSION

Our work provides evidence that overlapping glomerular maps evoked by related odorants 

can be separated by the OB network (up to certain level of similarity). This neural 
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reformatting, which occurs during a single sniff, helps to disambiguate similar odorants and 

improves odorant discrimination learning. Finally, pattern separation can be promoted by the 

interplay between M/T cells and GABAergic neurons.

Overlapping OSN inputs can be decorrelated into separated patterns of M/T cell activity in a 

single breath (Figs. 1-3). Though we observed an overall decrease of correlation between 

input and output patterns, some mixtures evoked output patterns that remained highly 

correlated or even exhibited an increase of correlation compared to input patterns (Fig. 2). 

We do not think that the input/output transformation can simply be explained by the use of 

different recording techniques. Indeed, though the differences in sensitivity and temporal 

resolution between the two techniques may limit the direct comparison of correlation at 40 

ms time scale, such limitations are no longer valid when the patterns of activity are averaged 

and compared over the complete breath duration. Furthermore, higher correlation observed 

at the input level for some mixtures cannot be explained by overestimated correlation 

resulting from possible calcium dye saturation for strongly activated glomeruli 

(Supplementary Figs. 2─4). In conclusion, odorant stimuli undergo an input/output 

reformatting in the OB involving a nonlinear reduction of correlation.

While in the past several groups have analyzed coding properties in the rodent olfactory 

bulb, the existence of pattern separation was often eluded, probably because of the use of a 

limited number of related odorant stimuli or the absence of neuronal population analyses. 

Yet, some authors questioned the role of OB (in comparison to the PC) to compute pattern 

separation using odor blends4,5. They reported a drop of correlation when comparing across-

trials correlation vs. across-mixtures correlation, which in fact does not correspond to a 

pattern separation process. In addition, they did not observe any significant decorrelation 

between similar mixtures. In contrast, here we show that decorrelation of similar mixtures 

occurred in the OB with temporal dynamics that varied for different subgroups of mixtures 

(Fig. 3 and Supplementary Fig. 5), probably reflecting temporal patterning of M/T cell 

spiking13,25,28,33. Strikingly, decorrelation occurs in 80-100 ms after the peak of input 

correlation within the first breath after odor onset, providing a relevant timescale for the 

reaction time measured during olfactory-driven behaviors14,25─27 (Supplementary Fig. 10).

In both insects and vertebrates, the anatomical segregation of glomeruli constitutes the first 

step to differentiate channels of information and help animals to discriminate between 

odorants. Though discrimination behavior can be predicted to some extent by the similarity 

of glomerular responses14,34,35, this prediction is not efficient at the early learning phase of 

novel odorants14. Here using a large set of mixtures varying in similarity, we could confirm 

that glomerular input correlation is not a good predictor of discrimination learning for novel 

odorants (Fig. 5). In contrast, initial behavioral performances were clearly predicted by the 

output correlation during the complete breath (Fig. 5). Interestingly, the fast decorrelation 

process taking place following the peak of input correlation also significantly predicts 

behavioral performances (Supplementary Fig. 7). These results support the idea that 

overlapping activity patterns are separated at the level of the OB network. Importantly, 

optogenetic and pharmacogenetic manipulations of the OB network further support this view 

(Figs 6 and 7). It is noteworthy that learning performances for simple odorants were not 

affected by optogenetic manipulations in contrast to the learning of mixtures 
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(Supplementary Fig. 10). In conclusion, while very different glomerular patterns would not 

require further separation in the OB network, as observed in the case of monomolecular 

odorants (Supplementary Fig. 10), our results emphasize the functional relevance of OB-

mediated pattern separation in processing similar odorants.

In summary, as it has been hypothesized by experimental1,36,37 and modelling studies23 for a 

long time but never demonstrated, our work provide evidence for a functional role of pattern 

separation at a pre-cortical level.

Using optogenetic and pharmacogenetic manipulations, we provide evidence that the 

interplay between M/T cells and GCL neurons affects pattern separation (Figs. 6 and 7). 

Interestingly, the odor specificity of evoked inputs matters since ChR2-mediated GC 

recruitment does not linearly reduce the tuning curve of M/T cells but rather changes its 

shape (Fig. 6). These data suggest that GC layer photostimulation preferentially changes the 

odor selectivity rather than the gain, in contrast to other GABAergic interneurons such as 

such as parvalbumin cells of the external plexiform layer38,39.

Consistent with our observations, computational and in vitro works speculated that GC-

dependent gating of M/T cells should enhance channel decorrelation, reduce spiking 

similarities between pairs of M/T cells and further improve pattern separation30,31. 

Supported by recent in vivo work, other models speculated in contrast that periglomerular 

cells (PG) may reduce similarity between odor-evoked M/T cells representations through 

non-topographical contrast enhancement40. GC would hence preferentially modulate fast 

gamma oscillations without substantial change of M/T cells firing rate41. However, our 

optogenetic and pharmacogenetic manipulations of GCL neurons contrasts with this idea, 

showing that those neurons can in fact enhance contrast between related odorants. As 

channel decorrelation or non-topographical contrast enhancement can occur separately from 

pattern separation42, it is possible that they constitute different or complementary 

processes10. Nevertheless, future work will be needed to test the possible contribution of 

other subpopulations of OB interneurons38,43, adult-born interneurons44,45 or other 

mechanisms such as intrinsic biophysical properties46 of M/T cells to pattern separation.

How the GC to M/T cell inhibition is recruited is critical for the control of olfactory 

discrimination behavior. Indeed, the deletion of the AMPA receptor subunit GluA2 in GCs, 

while boosting synaptic Ca2+ influx and thus M/T cell dendrodendritic inhibition, does not 

change odor discrimination learning pace18. In the present work, ChR2-GC layer 

photostimulation may force a more global, but still specific, GABA release mimicking an 

increase of synaptic weight23, favoring pattern decorrelation and improving the learning 

pace. The ChR2 condition might relate to M/T cells inhibition induced by cortical feedback 

projections onto granule cells47,48.

What is the relevance of pattern separation for downstream networks? In the recorded 

neuronal population, pattern separation is mainly processed by M/T cells responding with 

temporal changes of firing (Fig. 2 and Supplementary Fig. 5), possibly enhancing fine 

temporal differences between overlapping odor-evoked patterns. As the PC is able to 
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integrate temporally shifted OB outputs49, pattern separation may broaden the range of PC 

neurons that are sensitive to different temporal integration windows.

While our data showed that pattern separation occurs in the OB, a previous work indicates 

that this process occurs downstream, in the PC5. It is possible that, after an extensive 

training, the PC separates patterns of activity evoked by similar stimuli that the OB fails to 

segregate5. Alternatively, the PC may preferentially process pattern completion5. Indeed, the 

PC, like the hippocampus, is an auto associative area, which is thought to process pattern 

storage and recall11,50. The OB and the dentate gyrus may comparably reduce correlated 

inputs to the PC and CA3 respectively in order to prevent misclassification of patterns and 

facilitate memory formation.

In conclusion, pattern separation might constitute an efficient network feature shared by 

different brain structures to properly identify stimuli eliciting a combinatorial of overlapping 

inputs and thereby promoting better discrimination.

ONLINE METHODS

Animals and initial preparation

Behavior and electrophysiology experiments were performed at the beginning of 

experiments on 8 to 16 week-old male C57BL/6J mice (Janvier, France). Imaging was done 

on 8 week-old Ompcre/+Rosaflox-stop-flox-GCaMP3/+ male mice (i.e. Omptm4(cre)Mom 51; JAX 

006668 and Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze/J 52; JAX 014538, respectively). 

None of the experiments were blind of the genotype. Mice were housed in groups of 3─5 in 

a state of the art animal facility (12hours light/dark cycles). All experiments were done 

during daytime. All experiments were done in accordance with the Swiss Federal Act on 

Animal Protection and Swiss Animal Protection Ordinance. Experiments were approved by 

the University of Geneva and the Geneva state ethics committees (authorizations 

1007/3387/2 and GE/156/14).

Mice were anesthetized with isofluorane (3─4 % induction, 1─2% maintenance). The skin 

overlaying the skull was removed under local anaesthesia using carbostesin (AstraZeneca, 

Zug, Switzerland). A steel head-post was then fixed on the bone by embedding its base in 

dental cement (Omni-Etch Dentin, OmniDent). The rest of the skull was also covered with 

dental cement except the part overlaying the OB. Animals were then put back to their cage 

and allowed to recover for couple of days.

Few days after recovery, mice were trained to be head-restrained. They were placed in a 

plastic tube and head-fixed by screwing the head-post on a custom-made holder fixed on the 

air table (Fig. 2a). Mice were trained to this restraining condition for 2─4 sessions (30─60 

min each) done in 2─3 days.

Odor delivery and experimental protocol

All odorants (amyl acetate: AA, ethyl butyrate: EB, 3-hexanone: HX, carvone +: C+, 

carvone −: C−, acetophenone: AC, limonene: LI, heptanal: HA, hexanol: HO) were from 

Sigma-Aldrich. We used the following mixtures: AA/EB 80%/20%, 60%/40%, 40%/60%, 
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20%/80%, EB/HX 80%/20%, 60%/40%, 40%/60%, 20%/80% but also simple component in 

some case such as AA/air 60%/40%, EB/air 60%/40% and HX/air 60%/40%.

4 mL of pure odorant or mixtures of odorants were placed in glass vials. Binary mixtures 

were made by mixing the odorant plumes in gaseous phase or by directly mixing in liquid 

phase. Varying the relative flow of independent stream of odorized air allowed mixing of 

odors in gaseous phase. Unexpectedly, the way mixtures were prepared had an impact on the 

electrophysiology and behavioral read-outs (see next section).

Odorants were delivered for 1.5─2 seconds through a custom made olfactometer as 

described previously13,28,33,53. The odorant onset was set at the end of an inspiration. 

Airflow passed through the vials containing the odorants and was further diluted 20 times 

with clean dry air before being sent to the nose. The total flow was constant (400 sccm, 

Standard Cubic Centimeter per Minute). To maintain a stable odor concentration during the 

entire stimulus application, we ensured that flows were stationary with a 3 s preloading 

before the odorant was delivered to the animal.

Measurement of ratios and concentrations in mixtures

We found in this study that the way mixtures were prepared had a strong impact on the 

electrophysiology and behavioral read-outs. The purpose of this study is not to explain the 

physico-chemical parameters leading to such difference. However, to gain more insight into 

the possible difference in composition of various mixtures, we estimated the composition of 

different mixtures using gas chromatography-flame ionization detector system (GC-FID). 

We observed that the various mixtures were indeed different. We report the quantification 

done with the GC-FID which measures two parameters: the relative ratio between two 

components and the mass of compounds reaching the detector that we can relate to the total 

amount of molecules (Supplementary Table 1). Since we could not sort the correlation 

profile based on only one of these parameters, we decided to keep the mixing procedure with 

theoretical values, which also preserved coherent groups of correlated mixtures. Most likely, 

the combination of monomolecular components identity, relative ratio and total amount of 

molecules (i.e. concentration) is determining the neural responses and correlation behaviors, 

but further experiments are needed to clarify which physico-chemical parameter is critical in 

forming the percepts.

The GC-FID analysis involved two steps:

1. Collection of binary mixture vapors from the output of olfactometer using 

NeedlEx

NeedlEx is a luer lock needle with side hole: inner diameter 0.5 mm, outer 

diameter 0.7 mm and length 85 mm (Shinwa Chemical Industries Ltd, 

Japan). We used the NeedlEx specific for organic solvents, which is 

packed with a layer of a polymer material (a copolymer of methacrylic 

acid and ethylene glycol dimethacrylate). Prior to odorant collection, the 

NeedlEx was conditioned at 200 °C in a gas chromatograph injection port 

(set to 100 kPa of Helium with a 200:1 split) for 1 hour before the very 

first usage of NeedlEx and for 5 minutes before each sample collection by 

Gschwend et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2016 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



keeping the top of the needle open to eliminate all possible contaminants. 

The NeedlEx was protected from contamination by closing both ends 

using Teflon caps when not in use. After conditioning, samples from the 

olfactometer gas flow were collected by actively pumping 50mL of gas 

through the Needlex using a calibrated pump.

2. Analysis of binary mixtures using GC-FID

Sixty samples corresponding to 2s odor presentation were cumulatively 

trapped by Needlex to get a consistent readout from GC-FID analysis. 

Immediately after sampling, the Needlex was transferred to the hot 

injection port of the GC for desorbing the compounds. Desorption time 

was set to 3 minutes. The desorbed vapors were then analyzed by the FID 

connected to the GC. In order to get robust values, we repeated the 

experiment 5─8 times for each mixture. The amount of molecules was 

quantified using the area of the GC-FID peak corrected by their relative 

response factor relative to EB. Response factors relative to EB have been 

determined by injecting mixtures of EB and AA or EB and HX at pre-

determined concentration in the GC-FID.

Flame ionization detector (FID) is a robust and highly linear mass dependent detector widely 

used in gas chromatography. Its response is strongly correlated to the number of carbon 

atoms of organic molecules and the corresponding mass to peak area proportionality 

coefficient is called response factor (RF). However, RF is notably influenced by 

heteroatoms54 and can vary substantially between molecules. Consequently, considering two 

molecules, their FID peak area ratio may not reflect accurately their mass ratio. To correct 

for this difference of RF, one can inject a concentration-controlled mixture of a standard 

together with a molecule of interest. It is known that the ratio of peak area and the ratio of 

mass of compound and standard are proportional. The proportionality coefficient 

corresponds to the ratio of RF and is called the Relative Response Factor (RRF). Applying 

these RRFs to all studied molecules led to accurate relative mass comparisons. In our study, 

we considered one of the three compounds to be the standard (EB) since it was a shared 

component of all mixtures.

The actual amount of molecules has not been determined. The percentage of each 

component in a binary mixture, for example AA-EB mixture, was calculated as following:

After correction using response factors (RRFHX = 0.777 and RRFAA = 0.854), the total 

intensity of the stimuli was calculated by summing the corrected FID areas corresponding to 

the individual components.
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In vivo imaging

On the day of the imaging session, animals were anesthetized with isoflurane and the skin 

atop the olfactory bulb was removed after a topical injection of carbostesin. The skull was 

thinned to allow optimal optical access to the left OB. Imaging started after at least a 30 min 

recovery period following the end of anesthesia. Images were acquired at 25Hz using the 

Micam Ultima system (Brainvision, Tokyo, Japan) mounted on a custom build microscope 

(Navitar 17 mm, bottom lens, Nikon 135mm, upper lens; total magnification 7.9×)12,13. 

Pixel values of collected images were computed as ΔF/F. All odorants were presented 10 

times in a pseudo-randomized order. The first trial was discarded from the analysis due to 

fast sniffing causing motion artefacts in the images. For all experiments, respiration was 

monitored using a bidirectional air flow sensor (AWM2100V, Honeywell, MN) placed in 

front of the mouse nose. The device, though close to one nostril, did not prevent the odorant 

to reach the other nostril (connected to the recorded OB).

For analysis, absolute ΔF/F values were analyzed as a proxy for neural activity in OSN 

terminals. Analysis have been performed either on manually selected regions of interest 

(ROI) or on all pixels covering the OB surface, giving similar results (Supplementary Fig. 

1). For the ROI analysis, ovoid regions displaying sustained increase in fluorescence during 

consecutive breaths following odorant application were manually delineated. All ROI 

activated by at least one mixture (at least 30 ROI per animal, n = 4 animals) were included in 

the analysis. To calculate the correlation between odorant-evoked patterns of glomeruli, 

change in fluorescence was calculated for each ROI either over the first breath after odorant 

application or in consecutive 40ms time windows during the first breath (Fig. 1c─e). 

Vectors of ROI activity were generated for each mixture and used to calculate correlations 

and further create correlation matrices. The correlations were computed either on single 

animal (correlation matrices being then averaged across animals, Fig. 1c─e, Supplementary 

Fig. 1a─d) or by concatenating all ROI coming from different mice (Supplementary Fig. 

1e─g), giving similar results. For the pixel analysis, in each animal, after realigning all 

image series acquired for different mixtures using the resting fluorescence, a ROI 

encompassing the entire dorsal olfactory bulb was drawn. All individual pixels in the ROI 

were used to calculate correlation between patterns of activity evoked by different mixtures 

as mentioned above for the ROI analysis.

In vivo electrophysiological recordings and spike sorting

On the day of the experiment, mice were head-restrained and anesthetized with isoflurane 

(3% induction, 0.75─1% maintenance). A 1─2mm window was made by drilling the skull 

above the olfactory bulb and a silicon-based recording electrode 

(A─4×2─Tet─5mm─150─200─312, NeuroNexus Technologies, Ann Arbor, MI, USA) 

was inserted (Fig. 2a). The skull cavity was filled with an ophthalmic gel (Lacryvisc, Alcon) 

to protect the brain from drying. A silver wire contacting the gel was connected to the air 

table to ground the preparation. Electrodes were lowered in the target zone until reaching the 

medial mitral/tufted cell layer (MCL). We waited for the complete recovery of animals from 

anaesthesia. This period lasted for around 45─60 minutes, which also allowed the tissue to 

recover from electrodes penetration. For all experiments, respiration was monitored using a 
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bidirectional air flow sensor (AWM2100V, Honeywell, MN) placed in front of the mouse 

nose.

For the recording during optogenetic manipulation, we used a 32 channels optrode 

(Neuronexus technology, A1×32─Poly3─OA32; Fig. 6). We chose three binary mixtures 

(all mixing done in gaseous phase), AA/EB 60/40 and 40/60, EB/HX 60/40 and 40/60 and 

hexanol/heptanal (HO/HA) 60/40 and 40/60. Before each experiment, the power was set to 

~1─30mW with a photodiode sensor (Thorlabs, Germany) coupled to a power meter 

(PM100D, Thorlabs) and measured at end of a 200 μm fiber optic going out from the 473nm 

laser driver (Shanghai Dream Laser; SDL─473–050MFL; China). We set the maximum 

light intensity that shut down the M/T cells baseline activity. We then gradually reduced the 

light power until recovering partially the spike rate. As the inhibitory effect varied 

depending on the electrode location and ChR2 expression, power varied from 24 to 95 

mW/mm2 (integrated power for 2s at the tip of the 105 μm diameter fiber glued on the 

optrode). Light activation was triggered with the odorant onset that is to say at end of an 

expiration. During odor presentation, transfected neurons of the GCL were photostimulated 

with eighty 5 ms-long pulses at 40 Hz 44. This stimulation ranges in the gamma band and is 

optimal to drive GCs30,55,56.

For the DREADD positive mice, we used the same odors as for the ChR2 positive mice. 10 

trials of the different stimuli were presented pseudorandomly before CNO injection. After 

these trials, CNO was injected (2 mg/kg) 15─30 min before launching the next trials. After 

this period, 10 trials of the different stimuli were again applied pseudorandomly. CNO was 

injected either IP after anesthetizing shortly the mouse with isofluorane or either sub-

cutaneous using a homemade cannula fixed on the skin using superglue. In the latter case, 

CNO was injected while the mouse was awake. We used the exact same procedure for the 

ChR2 positive mice that we used as a control for the DREADD positive mice.

Further details about recording and spike sorting have been described extensively 

elsewhere13,28,33. In brief, wide-band field potentials were amplified (100×) and band-pass 

filtered (0.1 Hz to 9 kHz). All data was digitized at 32556 Hz with the Cheetah Digital Lynx 

system (Neuralynx, Tucson, AZ). Spikes were detected by a threshold on the high-pass 

filtered signal, decomposed in 16 features, and automatically clustered. Individual neurons 

were finally identified if the clusters showed a clean refractory period in their 

autocorrelograms. 78 neurons from 6 mice were isolated for dataset 1 (Supplementary table 

2). 169 isolated neurons were isolated from 4 mice for dataset 2. 130 were isolated from 8 

mice for dataset 3. 38 cells were recorded from 6 ChR2 positive mice (dataset 4). 55 cells 

were recorded from 5 DREADD positive mice (dataset 5). 40 cells were recorded from the 

ChR2-positive mice that were used as a control for the DREADD mice (dataset 6). 39 cells 

were recorded from 7 ChR2-positive mice for monomolecular odorants (dataset 7). The 

number of cells recorded per animal ranged from 1 to 43. Each stimulus was presented 5 

(dataset 3) or 10 (datasets 1, 2, 4, 5, 6 and 7) times. Trials of different odorant stimuli were 

presented in a pseudorandom manner for all datasets except for the DREADD mice and their 

control (datasets 5 and 6) as explained above.
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Electrophysiological data analysis

All subsequent analyses and statistics were done using custom routines written for Matlab 

(MathWorks, Inc., Natick, MA).

Breathing cycle realignment—In order to analyze the consistent neural responses to 

odors across trials, the beginning of each cycle was temporally realigned to each other as 

previously described 28. In brief, all breathing cycles in awake animals were artificially 

matched to the mean breathing duration averaged over all trials: longer cycles were cut and 

shorter ones were prolonged. We observed an average breathing duration of 336 ± 100 ms 

for dataset 1, 296 ± 94 ms for dataset 2, 362 ms ± 179 for the dataset 3, 362 ± 100 ms for the 

ChR2 expressing mice (dataset 4), 334 ± 144 for DREADD expressing mice (dataset 5), 350 

± 145 for ChR2-expressing mice used as control for DREADD (dataset 6) and 308 ± 112 for 

the ChR2-expressing mice tested with simple odors (dataset 7, all values mean ± SD). 

Corresponding spike timings were realigned with the same method. Importantly, relative 

action potential timings in spike trains were not affected by this method.

Statistical analysis of the rate change for single cell responses—Change of 

odor-evoked firing rate over the breathing cycle duration was assessed, relative to baseline, 

by the non-parametric Wilcoxon rank sum (WRS) test repeated in each respiratory cycles 

spanning stimulus presentation and for all cells and stimuli. Three breathing cycles in the 

baseline activity were used as a template. The template was compared subsequently to the 

first three breathing cycles after odor onset. In a particular cycle, a cell was considered as 

responsive if at least one odorant stimulus evoked a significant change in firing in 

comparison to baseline. We set the P-value to 0.05.

For each significant change, a response was considered as excited if the average firing rate 

over the complete breathing cycle was significantly higher from the baseline and inhibited if 

it was significantly lower.

Statistical analysis of the temporal change for single cell responses—Change 

in the spike timing distribution during odor presentation was assessed by comparing the 

spike timing relative to the onset of the inspiration before and after odorant presentation 

using a Kolmogorov-Smirnov (KS) test repeated for each respiratory cycles for all cells and 

stimuli. Three breathing cycles in the baseline activity were used as a template. The template 

was compared each consecutive breathing cycles (3 in total) after the odor onset. In a 

particular cycle, a cell was considered as responsive if at least one odorant stimulus evoked a 

significant change in firing in comparison to baseline. We set the p value to 0.05.

Population vector construction—We pooled all M/T cells recorded in different 

animals. The activity of the 78, 169, 130, 38, 55, 40 and 39 (depending on the data set) 

neurons were organized in 78, 169, 130, 38, 55, 40 and 39 dimensional vectors respectively, 

containing in each dimension the average firing rate of a recorded cell computed over a 

certain time bin. Population vectors were built using 1 and 8 bins per breathing cycles (on 

average, awake: ~42, ~37, ~44, ~36, ~41, ~43ms and ~30 time bins for datasets 1 to 4, 

respectively).
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To test weather noise induced by baseline activity might influence the decorrelation process, 

we normalized the population vector by subtracting it with averaged activity across 6 breaths 

during the baseline before the odor onset.

Correlation matrix—The matrix of correlation was built by computing the Pearson 

coefficient of correlation between pairs of population vectors averaged over the trials evoked 

by two different odors. The dimensions of the matrix correspond to n × n, where n is the 

number of odors. Each square corresponds to the Pearson coefficient of correlation of a 

particular odor against another. The odorants were ranked based on the theoretical ratios of 

components.

For more accurate detection of the minimum (Fig. 5e), correlations were computed on 21 ms 

time windows (i.e. 16 bins).

Head-restrained behavioral paradigm

Mice were trained to discriminate odorants under head-fixed paradigm as described 

previously19. In brief, before each behavioral session, a mouse was head-restrained in a 

plastic tube by screwing the head-post on a custom made holder fixed on a platform (Fig. 5a 

and Supplementary fig. 9). All behavior experiments were performed using a custom built 

olfactometer (similar to the ones used for imaging and electrophysiology), which was 

synchronized to a custom built lickometer. 11 odorant pairs were used for the behavioral 

training, which was selected from the panel of odorants used for the electrophysiology based 

on the level of correlation computed on M/T cell population responses.

Habituation task—Beginning 1–3 days after starting the water restriction, animals were 

trained in an associative task using an operant conditioning procedure. In a first pre-training 

session, a water drop (2 μL) was presented to animals (40 trials) 3s after a 200 ms-long 

warning tone (two different frequencies, 5 KHz and 6 KHz, were used on two different 

setups in the same room). The warning tone was used to make the mice alert about the 

following stimuli. During this stage, water was delivered to mice without analyzing their 

licking behavior. During the second stage, following the tone, licking was recorded during 

the baseline (1 s) as well as during the odor presentation (in this experiment, 1% methyl 

benzoate). Odors were presented for 2 s. If animals were not licking during the baseline, we 

implemented the criteria for water delivery based on their licking time during odor 

presentation. The total licking time required during odor presentation to trigger water reward 

was gradually increased in each step from 40 ms up to 240 ms (40 ms – 30 trials, 80 ms – 30 

trials, 120 ms – 30 trials, 160 ms – 50 trials, 240 ms – 50 trials). If animals were licking 

during the baseline before odor presentation, the required licking time kept increasing from 

100% (same amount of licking as during the baseline) up to 200% (100% – 30 trials, 125% 

– 30 trials, 150% – 30 trials, 175% – 50 trials, 200% – 50 trials). Most animals learned this 

task in 2─3 days (4-─6 sessions of 30 min each).

Olfactory discrimination task—The inter-trial interval was constant (13.2 s including 

the preloading of 3.2 s). Mice were trained to discriminate between two odorants, one being 

rewarded (S+) and the other being unrewarded (S─). The criterion to get a water reward 
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was a 80 ms total lick time in three out of four 500 ms time bins during the 2 s odor 

presentation. If mice licked before odorant presentation, they had to lick double amount of 

time during the odor presentation to get water reward. Trials were counted as correct if the 

animals met the criteria mentioned above for rewarded trials. For unrewarded trials, the 

criterion for a correct trial was a maximum 80 ms lick time in one out of four time bin of 

500 ms during the 2 s odor presentation. If mice licked during the baseline of an unrewarded 

trial, the trial was counted as correct, if the total licking time during 2 s odor presentation did 

not exceed 25% of their baseline licking. Generally most of the mice did not lick for 

unrewarded trials and they consistently licked for rewarded trials after the task acquisition. 

No punishment was given to the mice for incorrect trials.

Odors were presented in a pseudo-randomized order (no more than 2 successive 

presentations of the same odor, equal numbers within each block of 20 trials, ensuring 

different order of presentations for S+ and S─ trials within each 20 trial blocks). No 

intrinsic preference toward any of the odors was observed. Bias caused by odor preferences 

was generally avoided by assigning the same odor as S+ or S─ stimulus for the same 

number of animals within the experimental group. A total of 80─160 trials per session per 

animal and a total of 150─300 trials per day per animal were performed in order to keep 

animal motivated. Motivation was checked by monitoring the licking. Mice stopped licking 

when they lost motivation, in which case the session was interrupted. No animals were 

excluded for failing to acquire the task. Reaction times were calculated as previously 

described 19.

The following sequence of tasks were done (Fig. 5): AA vs. EB (2 days), break (19 days), 

AA60/EB40 vs. AA40/EB40 in air (2 days), break (55 days), HX vs. EB (2 days), break (4 

days), HX60/EB40 vs. HX40/EB60 in air (3days), break (4 days), HX60/EB40 vs. HX40/

EB60 in liquid (2days), break (6 days), HX60/EB40 vs. AA60/EB40 in air (2days), break 

(90 days), HX80/EB20 vs. HX20/EB80 in air (2 days), break (81 days), AA80/EB20 vs. 

AA20/EB80 in air (2days), break (1 day), HX80/EB20 vs. AA80/EB20 in air (1 day), break 

(2 days), HX40/EB60 vs. AA60/EB40 in air (2 days), break (1 day), AA60/EB40 vs. AA40/

EB60 in liquid (2 days).

AAV injection

The skin atop the skull was removed. Using a biopsy punch of 2.5 mm diameter (Harris, 

Uni-Core, Canada), a piece of bone was removed above the surface of both OBs. While 

removing the piece of bone, the skull was maintained wet to prevent the dura from sticking 

to the bone.

Virus injections were done in the granule cell layer of the olfactory bulb following the 

method described previously18. In order to avoid contamination in other cell types or brain 

regions, we restrained the injection site in the anterior portion of the OB and at an 

intermediate depth. The zero point was set with respect to the center of the dorsal surface of 

the OB (see 18). Starting from this point, four injections were done in the following order: 

(1) AP: +500 μm, DV: −1000 μm; (2) +300 μm, DV: −1300 μm; (3) +100 μm; DV: −1400 

μm; (4) +100 μm; DV: −2000 μm. 100─150 μL of AAV1─ACAGW─ChR2─Venus, 

AAV5─EF1─eGFP.WRPE.RBG or rAAV2─hSyn─HA─hM4D(Gi)─IRES─mCitrine 
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(University of North Carolina vector core facility) were injected by keeping the injection 

time around 2─3 min. We waited at least 5 min before removing the injection pipette in 

order to avoid diffusion of the virus toward the surface.

Optogenetic and pharmacogenetic manipulation of behavior

Cranial window implantation—The skull surrounding the hole was thinned to fit a cover 

glass. A drop of dexamethasone, a glucocorticoid steroid, was applied on the surface of the 

dura to minimize possible inflammation. After few minutes, the dexamethasone was cleaned 

with cortex buffer (containing in mM 125 NaCl, 10 glucose, 10 HEPES, 5 KCl, 2 CaCl2, 2 

MgCl2). A drop of clean cortex buffer was put on the OB surface before placing the cover 

glass. A 3mm diameter cover glass was fitted in the hole on top of OB. Excessive cortex 

buffer was dried around the window until the surrounding bone was completely dry. The 

edge of the window was sealed with dental cement (Palladur mixed with Palapress vario, 

Pala). Once the window was fixed, we implanted the head-post as previously 

described13,18,28. A delay of at least 3 weeks was respected in order to obtain an optimal 

ChR2 expression. After this period, we checked the transparency of the cranial windows and 

a ~2mm diameter blue LED (blue LED, NFSB036BT) with the connector (ED8250-ND, 

connector strip header 50POS .050, Millmax) was implanted on top of the window with 

dental cement (Palladur mixed with Palapress vario, Pala). The LED illuminated a surface of 

~5.3 mm2 covering both bulbs.

Settings of LED power—During the optogenetic behavior experiments, the implanted 

LEDs were driven with a high power LED driver (LEDD1B, T-Cube LED Driver 1200 mA, 

ThorLabs). The goal of the experiment was to evaluate whether the photoactivation of GCL 

neurons could enhance odorant discrimination. However, overstimulation of the inhibitory 

network may shut down the M/T cells activity. As the degree of ChR2 infection could vary 

between different animals, the maximum power needed to shut down OB activity may also 

vary. For this reason, we set a maximum light power that would be optimal for each mouse. 

We pre-trained the animals until they learned to lick sufficiently during odorant 

application19. We then photo-activated the network during odor application using a light 

power that blocked the licking behavior (Supplementary Fig. 9). The maximum power 

needed to shut down the odor-evoked licking behavior was 23 mW (7.3 mW/mm2) for 

ChR2-expressing mice. Finally, we applied the same sequence of blocks by gradually 

reducing the light power for each individual mouse until they showed a similar licking 

pattern as observed without light stimulation. This power varied for individual mice and was 

used for the stimulation of granule cells during the go/no-go discrimination tasks.

Light driven discrimination behavior paradigm—During optogenetic behavior 

experiments, we monitored the breathing cycles using an air flow sensor (AWM2100V, 

Honeywell, MN) coupled with a home-made amplifier in order to precisely set odorant and 

light onset based on the respiratory time course. The odorant onset began at the end of the 

mouse inspiration and lasted for 2 seconds. The light onset started at the beginning of 

inspiration along with odorant trigger. We used 80 pulses of 5ms at a frequency of 40hz. As 

mentioned in the previous section, the power was individually set for each mouse. The 

discrimination training was carried out as described previously.
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Injection of clozapine-N-oxide (CNO)—CNO diluted in saline was prepared freshly 

every day. After isoflurane anesthesia, each mouse (DREADD and ChR2 expressing mice) 

was injected with 2 mg/kg 15─20 minutes before the animal started the discrimination 

paradigm. Mice performed the task for a maximum of 60─75 min after the injection.

Immunohistochemistry and quantification

Animals were anaesthetized by intraperitoneal injection of urethane 20% in 0.9% NaCl and 

perfused transcardially with 40 ml of saline followed by 100 ml of 4% paraformaldehyde 

(PFA) in 0.1M phosphate buffer at 4°C (PBS, pH 7.3). The brains were then removed and 

fixed overnight in 4% PFA. After embedding brains in 4% agarose, 40 μm coronal slices 

were cut with a vibratome (Leica VT S1000) and collected in PBS (0.1 M). For 

immunostaining, we first rinsed in TBST (Tris-buffered saline with tween) and TBSTT 

(Tris-buffered saline with tween and triton). We incubated the slices with 10% bovine serum 

for 1h at room temperature and then with the primary antibodies overnight at 4°C. We used a 

rabbit anti-GFP antibody29 (1:1000, Invitrogen A11122), a mouse anti-Reelin antibody29 

(1:1000, Abcam 78540) and a mouse anti-NeuN antibody29 (1:500, Millipore MAB377). 

The day after, slices were rinsed with TBST and incubated with Alexa 488 anti-rabbit IgG29 

(1:200, Invitrogen, A21206) and Alexa 546 anti-mouse IgG29 (1:200, Invitrogen, A21123) 

for 1h at room temperature. Slices were counterstained with Hoechst 154 (1:5000, 

Invitrogen, H3570) and mounted with Vectashield (Vectors Laboratories).

Images were acquired with a confocal laser scanning microscope (Zeiss LSM 510META and 

Leica SPM5) with a 40× or 63× oil-immersion objectives. Fluorescent channels were 

acquired sequentially to separate wavelength and minimize possible cross-talk. In the MCL 

and GL, all slices were visually inspected in order to find GFP/mCitrine positive neurons. 

Since we could not find any, only few slices were scanned for illustration. In the GCL, 

counting was done manually with ImageJ on 75 and 42 representative regions of 26 and 22 

slices in the anterior, medial and posterior part of the OB for ChR2 and Gi-DREADD 

infected mice, respectively (n = 6 animals for each group; Supplementary Fig. 8). In total, 

~25000 cells were analyzed.

Statistics

All analyses were performed using Matlab (MathWorks, Inc., Natick, MA), Origin pro, 

Statistica or Prism. In this study, we used ANOVA and post-hoc tests, χ2 test and different 

non-parametric tests (see text and legends). All tests were 2-sided. Shapiro-Wilk test was 

used to assess normality of the data. For all parametric ANOVA, homogeneity of variance 

was tested using Levene’s test or a test of sphericity (for one-way repeated measures 

ANOVA). No statistical methods were used to predetermine sample sizes, but our sample 

sizes were similar to those reported in previous publications13,19,28,29. Data collection and 

animal assignation to the various experimental groups were randomized.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Binary mixtures evoke correlated input patterns to the mouse olfactory bulb. (a) Glomeruli 

maps evoked by different binary mixtures in the same awake head-restrained mouse (EB: 

ethyl butyrate, AA: amyl acetate, HX: 3-Hexanone; numbers indicate relative ratio of the 

components [in %] mixed in gaseous phase, see Supplementary Table 1). The fluorescence 

from the calcium indicator GCaMP3 genetically expressed in olfactory sensory neurons was 

monitored on the dorsal surface of the olfactory bulb. Change in fluorescence (ΔF/F) was 

averaged over 1.5 s odor application (single trial response). Dashed lines indicate three 

regions of interest (ROIs) activated by the mixtures. (b) Calcium dynamics in sensory 

neuron terminals from the glomeruli ROIs drawn in a (single trial, gray boxes: odor 

presentation). Fluctuation of fluorescence corresponds to different breaths during odor 

application (see resp.: respiration traces; black bars indicate duration of inspirations). (c) 

Average matrix of input similarity computed for all possible mixtures tested. For each mouse 

and for each pair of mixtures, Pearson correlation coefficient is computed using two vectors 

of glomeruli ROI representing calcium changes (ΔF/F, averaged on the first breath) evoked 

by the two mixtures (note that the matrix is symmetric). The matrix represents the average of 

correlation matrices computed over the 1st breathing cycle for each mouse (n = 4). The 

components and theoretical ratios used in different mixtures are indicated. Plain lines 

separate mixtures having different components (AA/EB vs EB/HX). Dashed lines separate 

mixtures having the same components but with differing mixing procedures (i.e. either in 

gaseous or in liquid phase). (d) Bar graph showing the average correlation for different 
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subgroups of mixtures as represented by the color code on the left schematic matrix (data 

presented as mean ± sem, n = 4 mice, each circle represents the value for a given animal). 

For clarity, few subgroups of mixtures have been omitted. Mixtures evoked similar patterns 

though mixtures having different components were less correlated (Friedman ANOVA χ2 = 

10, P = 0.04, post-hoc Wilcoxon paired test: all P > 0.068). (e) Correlation matrices 

computed over 40 ms time window across the first breath after odor onset (few matrices 

have been ommitted for clarity). (f) Evolution of the correlation averaged over all odor pairs 

during the last pre-odor breath and the first breath after odor onset (data presented as mean ± 

sem; Wilcoxon paired test, at least *P < 10−5). During the first breath, after correlation 

reached a maximum (~120ms), it remained stable over time (Friedman ANOVA χ2 = 13.2, P 
= 0.15).
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Figure 2. 
Input/output reformatting of odor-evoked representations in the OB. (a) Schema of the 

recording procedure. Tetrode recordings of OB output neurons (i.e. mitral/tufted cells, M/T) 

are done in awake head-restrained mice while presenting odorant mixtures and monitoring 

breathing. (b) Raster plots and peristimulus time histograms (PSTHs, thick line: mean, gray 

surface: sem) showing the response of two cells to different mixtures (green boxes indicate 

odor application; 10 trials are shown for each odor/cell). (c) Examples of PSTHs (left 

panels) and corresponding spike distributions (right panels) computed over different 

breathing cycles for two different cells during baseline (grey lines, three breaths before odor 

onset averaged) and 1st cycle after odor onset (colored lines). Colored surfaces represent 

standard deviation. Neurons 3 and 4 are excited and inhibited, respectively. (d) Percentage of 

responsive odor-breath pairs for the neurons recorded in the first dataset (same odors as in 

e). (e) Percentage of responsive cell-breath pairs for each odor. Neurons displaying an 

increase in firing rate (averaged on the entire breath), a decrease in firing rate or only a 

change of spike distribution (temporal change) between baseline and odor epochs are 

presented in red, blue and black, respectively. (f) Matrix of output patterns similarity 

computed for all possible mixtures tested. For each pair of mixtures, pearson correlation 

coefficient is computed using two vectors of ouput neurons firing rate averaged over the 1st 

breath after odorant onset evoked by the two mixtures (78 neurons combined). (g) Bar graph 
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showing the average correlation computed over the first breath after odor onset for selected 

subgroups of mixtures (same groups as in Fig. 1d, same color code as in f; data are presented 

as mean ± sem; Mann-Whitney test; each circle represents a correlation value between pairs 

of mixtures). (h) Relationship between inputs and outputs correlations for all tested odor 

pairs. Each point represents the input/output correlations for a given mixture pair (1st 

dataset, 112 pairs of mixtures). Output correlations are significantly reduced in comparison 

to input correlations (Kolmogorov-Smirnov KS test). The histogram (top right) shows the 

distribution of difference between input and output correlations evoked by the same mixture 

pair. The distribution is skewed toward positive values, indicating more decorrelated values 

for the output patterns.
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Figure 3. 
Odor-specific separation of output patterns over a single breath. (a) Temporal evolution of 

the correlations for all possible pairs of mixtures during different breathing cycles after odor 

onset. Correlation matrices are computed using vectors of firing rate averaged over 

consecutive 42 ms time windows. (b) Average correlation for different subgroups of 

mixtures plotted over time (grey boxes indicate odor application; thick line: mean, colored 

surface: sem; dashed lines indicate inspiration onset). Mixtures sharing components and 

having different components are shown on the top and bottom plots, respectively. The color 
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codes correspond to the different groups shown on the schematic matrix. For clarity, few 

subgroups of mixtures are not plotted. Note that correlations significantly change over the 

time course of the breaths (for each subgroup of mixtures: Friedman ANOVA computed on 

the first breath, P = 0.0007). (c) Amplitude and first breath timing of the maximum and 

minimum of correlation computed for different subgroups of mixtures. Note a significant 

decorrelation for all groups (Wilcoxon paired test, at least *P < 0.0022). (d) Temporal 

evolution of the correlations in the first breath for the same data but corrected for the 

baseline firing. For each time window, the activity of each cell during the odor period was 

corrected by subtracting its baseline breath activity (averaged over 6 breath pre-odor onset). 

(e) Temporal evolution of the correlation computed on 42 ms time windows and averaged 

across all mixtures for the raw and corrected data. For clarity, many significant comparisons 

have been omitted (Wilcoxon paired test, at least *P < 0.001). (f) Same analysis as in e but 

for correlation computed on 21 ms time windows. Data presented as mean ± sem
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Figure 4. 
Population firing rate does not predict output correlations. (a) Temporal evolution of the 

population firing rate for all possible pairs of mixtures during different breathing cycles after 

odor onset. Each pixel represents the averaged population firing rate evoked by two 

mixtures. The organization of the matrices is similar to the one of correlation matrices (see 

Fig. 2). (b) Output correlation plotted as a function of the population firing rate (averaged 

over the entire breath) for all possible mixture pairs. Scatter plots for the first two breaths 

after odor onset are shown. (c) Odor-evoked population firing rate averaged over all cells (n 
= 78) is not different between subgroups of mixtures. Data are presented as box plots (25th 

and 75th percentiles) showing the mean in white. Whiskers represent the 10th and 90th 

percentiles.
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Figure 5. 
OB output but not input patterns correlation predicts odor discrimination performances. (a) 

Schema of odor discrimination tasks performed in head-restrained mice. Mice are trained to 

discriminate between two odors, one rewarded (S+) and one unrewarded (S−). For each task, 

the selection of S+ and S− odors is balanced across animals. (b) Average discrimination 

performances for different pairs of odorants (n = 18 mice for AA/EB 60/40 vs AA/EB 40/60 

in gaseous phase and EB/HX 60/40 vs EB/HX 40/60 in gaseous phase, n = 12 mice for all 

other tasks). Odor pairs are organized according to their input correlation (lowest correlation 

in the left). (c-e) The discrimination performance averaged over 300 trials is plotted as a 

function of the mean input pattern correlation (c), the mean output pattern correlation (d, 
correlation values computed for the 1st odor cycle from datasets 1 to 3 are averaged, error 

bars represent sem) or the minimum output correlation (e) for several odor pairs (same color 

code as in b; correlation values computed for the 1st odor cycle from datasets 1 to 3 have 

been averaged, error bars represent sem). Linear regressions are indicated in dashed lines. 

Data are presented as mean ± sem.
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Figure 6. 
Optogenetic stimulation of granule cell layer neurons enhances pattern separation and 

improves odor discrimination learning. (a) Schema of the virus injection procedure in the 

granule cell layer (GCL). EPL: external plexiform layer, MCL: mitral cell layer, GL: 

glomerular layer. (b) Specific ChR2-YFP expression in neurons of the GCL (left and top 

right images). White arrows point to GC apical dendrites (bottom right image). (c) 

Schematic of the recording strategy. An optrode is lowered into the MCL and surrounding 

ChR2-expressing cells are stimulated with 473nm light. (d) PSTHs of odor-evoked response 
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for two cells in presence or absence of light stimulation (green boxes indicate odor 

application and light stimulation). (e) Odor tuning curves with (blue) and without (black) 

photostimulation for three M/T cells. For each neuron, the stimuli are sorted based on 

decreasing odor-evoked firing rates computed on the 1st breath after odor onset in absence of 

photostimulation. The same order is maintained to plot the curve during photostimulation. 

Note that photostimulation does not trigger the same effect for all tested odors. (f) The 

population tuning curve represents the average of the tuning curves computed for all 

recorded neurons (n = 38). (g) Effect of GCL photostimulation (i.e. light on vs. light off) on 

the mean population firing rate computed on 228 odor-cell pairs (from n = 7 mice) during 

baseline (3 breaths are averaged; Wilcoxon paired test *P = 0.002) and odor application 

(Wilcoxon paired test *P = 0.031). Data are presented as box plots (25th and 75th 

percentiles) showing the mean in white. Whiskers represent the 10th and 90th percentiles. 

Odors used (mixed in gaseous phase): AA/EB 60/40, AA/EB 40/60, EB/HX 60/40, EB/HX 

40/60, carvone+/carvone− 60/40, C+/C− 40/60, AC/LI 60/40 vs. AC/LI 40/60 and HO/HA 

60/40 vs HO/HA 40/60. (h) Effect of GCL photostimulation on the mean population 

correlation (averaged across the pairs taken from 6 odors) during baseline (air, 3 breaths 

were averaged; Wilcoxon paired test P = 0.23) and odor application (Wilcoxon paired test *P 
= 0.0054 and 0.0001). Data are presented as box plots (25th and 75th percentiles) showing 

the mean in white. Whiskers represent the 10th and 90th percentiles. (i) Correlation averaged 

over the 1st and 2nd half of the 1st breath after odor onset with and without photostimulation 

(significant decrease between first and second part of the cycle, Wilcoxon paired test P = 

0.01). Photostimulation evoked a significant decrease of the correlation in both halves of the 

breath (Wilcoxon paired test, 1st part: P = 0.016; 2nd part P = 0.026). Data are presented as 

box plots (25th and 75th percentiles) showing the mean in white. Whiskers represent the 10th 

and 90th percentiles. (j) Schema of a 473nm LED implanted on top of a cranial window 

overlaying the dorsal OB used for optogenetic stimulation during odor discrimination 

behavior. (k) Discrimination performances for different groups of mice, which received 

injection of AAV (expression of either ChR2 or EGFP) in the GCL. Performances of ChR2-

expressing mice (blue lines, n = 7) is specifically improved by photostimulation in 

comparison to EGFP expressing mice (black lines, n = 7; Light ON: repeated measures 

ANOVA, F = 8.3, P = 0.015, post-hoc Fischer test at least *P < 0.034; Light OFF: repeated 

measures ANOVA, F = 3.7, P = 0.08). Blue boxes indicate light ON episodes. The odor pairs 

used were (all gas mixes): AA/EB 60/40 vs. AA/EB 40/60, EB/HX 60/40 vs. EB/HX 40/60, 

C+/C− 60/40 vs. C+/C− 40/60, AC/LI 60/40 vs. AC/LI 40/60 and HO/HA 60/40 vs HO/HA 

40/60.
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Figure 7. 
Pharmacogenetic inhibition of granule cell layer neurons decreases pattern separation and 

deteriorates odor discrimination learning. (a) PSTHs of odor-evoked responses before (black 
lines) and after CNO injection (blue and red lines) for four cells recorded in mice either 

infected with AAV-ChR2 or AAV-Gi-DREADD. Green boxes indicate odor application. 

Odors used: AA/EB 40/60 for M/T cells 1 and 2, AA/EB 60/40 for M/T cell 3 and HX/EB 

40/60 for M/T cells 4 (all gas mixes). (b) Effect of CNO injection on odor-evoked firing 

(normalized to the pre-CNO control period) in ChR2- and Gi-DREADD- expressing mice (n 
= 40 cells recorded from 4 ChR2 mice and 55 cells recorded from 5 Gi-DREADD mice, 

population vectors computed for 6 different odorants, Mann-Whitney test P = 0.0051). Data 

are presented as box plots (25th and 75th percentiles) showing the mean in white. Whiskers 

represent the 10th and 90th percentiles. (c) Effect of CNO injection on the mean population 

correlation (normalized to its value in pre-CNO control condition and averaged across all 

pairs taken from 6 odors) in ChR2- and Gi-DREADD- expressing mice (Mann-Whitney test 

P = 0.0055). (d) CNO injection (2mg/kg; all groups injected) decreased learning 

performances in Gi-DREADD-expressing mice in comparison to ChR2- expressing mice (n 
= 9 mice in each group; repeated measures ANOVA F = 6.32 P = 0.023, post-hoc LSD test at 

least *P < 0.045). Odor pair used: AC/LI 60/40 vs. AC/LI 40/60 (gas mixes).
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