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Abstract

Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response
to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper
coupling between sensors, which gather information during motion, and actuators, which control behavior. Because
reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime
different from the resting state. How then can organisms maintain proper information transfer through the pathway while
navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral
feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant.
While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters such
as adaptation rate and adapted activity affect chemotactic performance, especially when considering that the swimming
behavior of the cell determines the input signal. We examine this issue using analytical models and simulations that
incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation. By focusing on how
sensory information carried by the response regulator is best utilized by the motor, we identify an operational regime that
maximizes drift velocity along chemical concentration gradients for a wide range of environments and sensor adaptation
rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run
duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a
bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor
adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal
operational regime in all environments, suggesting that diversity could be beneficial.
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Introduction

Escherichia coli cells navigate their environment by alternating

straight runs with direction-changing tumbles to perform a

random walk. During a run, the flagellar motors spin counter-

clockwise (CCW) and propel the cell at constant speed in one

direction, which changes slowly due to rotational diffusion. Runs

are terminated when one or more motors start rotating clockwise

(CW), which causes the cell to tumble [1–3]. Cells are able to bias

their random walk toward favorable conditions using a two-

component signal transduction pathway that detects changes in

signal intensity during runs and modulates the probability to

tumble accordingly, resulting in extended runs in the desired

direction and net drift velocity in the direction of the gradient [4].

The sensory module of the chemotaxis pathway (Figure 1A)

consists of large clusters of receptor proteins that bind signal

molecules to modulate rapidly (,0.1 s) the activity of an associated

histidine kinase, CheA [5–7]. The high gain of the receptor cluster

is coupled to negative integral feedback control [8–10], mediated

by slow (,1–30 seconds) methylation and demethylation of the

receptors by CheR and CheB, respectively [11–13]. This allows

the receptors to adapt to a constant background signal while

maintaining sensitivity over a wide range of concentrations

[14,15]. For example, when cells are stimulated with a step of

aspartate, the activity of the receptors returns nearly precisely to its

pre-stimulus level after a transient response (Figure 1B first line).

While precise adaptation does not hold when receptors become

saturated, adaptation with a precision above 80% has been

measured for many relevant signals within the micromolar range

[16]. Precise adaptation is an important feature of bacterial

chemotaxis because it provides robustness by implementing a

‘‘maximin’’ strategy that guarantees at least minimum chemotactic

performance in any environmental condition [17].

The activity of the sensory module is relayed through a

diffusible response regulator CheY to the flagellar motors, which

act as the actuator, (Figure 1A). When phosphorylated by CheA,

CheY-P binds to the motor subunit FliM and increases the

probability of the motor to switch from CCW to CW [18]. Fast
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dephosphorylation of CheY-P by the phosphatase CheZ ensures

rapid transfer of information from the sensor to the actuators.

The CW bias of the flagellar motor, which defines the tumbling

probability [2], is a sensitive function of the CheY-P concentration

(Hill coefficient .10, Figure 1A) [19,20]. The capability of the

system to maintain the CheY-P concentration within the tight

dynamic range of the motor CW bias response function (Figure 1A)

is often used to investigate robustness to fluctuations in protein

concentrations and receptor activity [21,22]. An important

underlying assumption is that performance is maximized when

the motor converts small variations in CheY-P into large changes

in CW bias.

However, recent experiments and theory suggest that the

coupling between sensor and actuator is more complex than

previously thought. First, the flagellar motors partially adapt to

persistent stimulus [23,24]. Second, the motor CW bias response

to CheY-P is steeper than previously reported, further restricting

the dynamic range of the motor response to CheY-P fluctuations

[20]. Finally, in exponential ramps of chemoattractant, the CheY-

P concentration reaches a dynamical equilibrium, Ym, hereafter

called operational CheY-P, distinct from the adapted CheY-P

concentration, Y0, that the cell maintains in constant uniform

environments [25,26] (Figure 1B second line). For each of these

three findings, the characterization of the internal dynamics of the

signaling pathway was performed on immobilized cells using

experimentally controlled input signals. However, for cells

swimming freely in chemical gradients, the input signal dynamics

are determined by the chemotactic response of the cell, creating a

feedback of the behavior onto the input signal [27] (Figure 1B

third line). Because of this behavioral feedback, it remains unclear

how the multiple time scales of the system, from signal detection to

motor response, ultimately determine chemotactic drift perfor-

mance.

Here, we use analytical models and stochastic simulations of

individual cells to examine the consequences of these new

observations for our understanding of the bacterial chemotaxis

strategy. Clonal populations of chemotactic E. coli grown in

homogeneous conditions exhibit significant cell-to-cell phenotypic

variability, with adaptation times ranging from 1 to 30 seconds

[28–31], and motor clockwise bias ranging from 0.1 to 0.4 [3,31].

Therefore, we consider how different combinations of adaptation

times and motor clockwise biases, which define a cell’s phenotype,

affect individual cell chemotactic drift velocity in different

environments. In a phenotypically diverse population, different

phenotypes of that population may perform best in different

environments.

Focusing on how information transfer from sensor to actuator

affects chemotactic performance, we analyze the dynamical

relationship between the operational regime of CheY-P, Ym, and

the drift velocity, VD, as a function of the phenotype and gradient

steepness. We show that there is a unique operational regime of

the sensor with respect to the motor that maximizes drift velocity

in the direction of the gradient by maximizing the contrast

between runs up and down the gradient, and not by maximizing

the CW bias response. We characterize the performance trade-off

Figure 1. Dynamical coupling between the sensor and the
actuator in the bacterial chemotaxis system. A. The bacterial
chemotaxis system is composed of a sensor module (receptor-kinase
complexes) and an actuator module (flagellar motors) coupled through
the phosphorylated form of CheY. Both modules are ultra-sensitive and
adapt to their respective input signals. Maintaining the output of the
sensor within the right range relative to the actuator is critical for
chemotaxis performance. B. Diagrams of the CheY-P concentration
response to different signals. First line: when cells are immobilized onto
a slide, a step stimulus of attractant (e.g. methylaspartate) causes a
sudden decrease in CheY-P concentration followed by a slower
adaptation. Because of the negative integral feedback architecture of
the sensor module, CheY-P adapts back to its pre-stimulus level, the
adapted CheY-P concentration, Y0. Second line: when immobilized cells
are exposed to an exponential ramp in time of the same stimulus, the
system, which is log sensing, experiences a constant ‘‘force’’ and adapts
towards an operational CheY-P concentration, Ym, lower than the
adapted level Y0. This deviation of CheY-P activity from Y0 to Ym

changes the coupling between sensor and actuator. Third line: when
cells are swimming in a gradient of attractant, their biased random walk
causes them to climb the gradient. The average drift velocity of the cell
up a chemical gradient affects the average input signal experienced by
the cell. This creates a feedback of the behavior onto the input signal,
which in turn can significantly affect the operating concentration of
CheY-P and thus the coupling between sensor and actuator.
doi:10.1371/journal.pcbi.1003694.g001

Author Summary

The biased random walk is a fundamental strategy used by
many organisms to navigate their environment. Drift along
the desired direction is achieved by reducing the proba-
bility to reorient whenever conditions improve. In the
chemotaxis system of Escherichia coli, this is accomplished
with a sensory module that implements negative integral
feedback control, the output of which is relayed to the
flagellar motors (the actuators) by a response regulator to
control the probability to change direction. The proper
dynamical coupling between sensor and actuator is critical
for the performance of the random walker. Here, we
identify an optimal regime for this coupling that maximiz-
es drift velocity in the direction of the gradient in multiple
environments. Our analysis reveals that feedback of the
behavior onto the system in steep gradients can constrain
individual cell performance, by causing bi-stable behavior
that can trap cells in non-chemotactic states. These
limitations are inherent in the biased random walk strategy
with integral feedback control, but can be alleviated if the
output of the pathway adapts, as recently characterized for
the flagellar motors in Escherichia coli.

Limits of Bacterial Chemotaxis
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faced by individual cells with different combinations of phenotypic

parameters (such as, adapted CheY-P concentration, Y0, receptor

adaptation time, t, and cell resting tumble bias, TB0).

Results

Maximizing contrast in run durations rather than CW bias
response maximizes chemotactic drift velocity

Previous studies have examined how E. coli chemotactic drift

velocity along a one dimensional gradient depends on the

adaptation time [25,32], the shape of the response function of

the sensory module [17,33,34] and also behavioral feedback [27].

Instead, we first focus on how the coupling between the sensors

and actuators by the response regulator CheY-P (Figure 1A) affects

the chemotactic performance of individual cell phenotypes. What

CheY-P concentration maximizes drift velocity of cells navigating

exponential gradients of methyl-aspartate? We examine this

question using stochastic simulations of individual cells and an

analytical model.

Simulations were conducted using a standard model of the

chemotaxis pathway in individual cells [2,15] as described in

Methods. Receptor-kinase complex activity is modeled as an all-

or-none response using quasi-equilibrium dynamics for fast ligand

binding, chemoreceptor conformational changes, and phosphor-

ylation cascade [15]. The slower (de)methylation kinetics follow

simple negative integral feedback dynamics with adaptation rate

t21. The flagellar motor is modeled as an inhomogeneous Poisson

process that switches cell behavior between runs and tumbles with

rates defined as a function of CheY-P concentration that varies in

time, Y(t). The parameters of the motor model are calibrated to

recent experimental measurements [19,20,23,24]. While motor

adaptation [23] is not included at first, its effects are analyzed later

in the paper. During runs, a cell swims with constant speed

v = 20 mm21 in a direction subjected to rotational diffusion

(rotation diffusion constant, Dr = 0.062 rad2 s21 [1]). For simplic-

ity the effects of multiple flagellar motors [2,35] or directional

persistence [1] are not included but discussed in the Discussion

section. Hence, in this model, motor clockwise bias (CW) and

cell tumble bias (TB) are the same. We consider cells containing

only Tar receptors and use methyl-aspartate as the ligand.

Our results readily extend to more complex receptor cluster

configurations.

Three-dimensional trajectories of individual cells were simulat-

ed as described in [2] for various cell phenotypes, which are

characterized by the receptor adaptation times t and adapted

CheY-P concentrations Y0, in gradients of chemoattractant of

different steepness, g. Following previous studies [25–27], we used

exponential gradients (L(x) = L0egx) so that cells experience an

approximately constant ‘‘force’’ from the attractant field, as the

chemotaxis system is a fold-change detector (Eq. (2) below). This

makes it possible to define a steady-state drift velocity, making the

problem analytically tractable. The performance of each cell

phenotype, which is defined by a unique adapted CheY-P

concentration (Y0) and receptor adaptation time (t), in each

Figure 2. Simulated and theoretical drift velocity VD in exponential gradient of aspartate L0egx. A. VD as a function of the adapted CheY-P
concentration Y0, in a shallow gradient (L0 = 200 mM and g21 = 5,000 mm) for cells with adaptation times t = 5 (blue), 10 (green), and 30 seconds (red).
VD is the average velocity of 10,000 identical cells between t = 60 and 300 seconds (dots: stochastic simulations; lines: analytical solution from Eq. (3);
grey: motor CW bias response curve. B. Expected trajectories of CheY-P concentration Y(F(t)) for cells running in one dimension up (green) or down
(red) in a gradient (integration of Eqs. (2) and (5), see Text S1; t = 30 s, g21 = 5,000 mm, Y(Fi) = 2.4 mM and 3 mM). Expected run, l{1

R0 (dotted line), and

tumble, l{1
T0 (dashed line), durations as a function of Y0. Expected run duration along a given direction tR0 = (2Dr+lR0)21 (solid black line) is limited by

rotational diffusion (Dr = 0.062 rad2 s21). Grey: motor CW bias. C. Same as A (t= 10 s) but with the rotational diffusion constant Dr = 0.031 (red), 0.062
(green), and 0.124 (blue) rad2 s21. Dotted lines: expected run duration in a given direction. D. Same as A (t= 10 s) but with the motor switching rate
v = 2.6 (red), 1.3 (green), and 0.65 (blue) s21. Dotted lines: expected run duration in a given direction.
doi:10.1371/journal.pcbi.1003694.g002
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gradient steepness (g) is defined as the drift velocity VD(Y0, t, g)

along the gradient direction calculated by averaging the velocity of

10,000 phenotypically identical cells over 4 minutes (Methods).

The first simulations were done in a relatively shallow

gradient g21 = 5,000 mm, with adaptation times of t = 5, 10, and

30 s, and adapted CheY-P concentrations spanning the range

Y0 = 1–4 mM.

Plotting drift velocity as a function of the adapted CheY-P

concentration reveals that maximal drift velocity is not achieved

for CheY-P concentrations in the linear range of the CW bias

response curve, where fluctuations in CheY-P result in large

changes in clockwise bias (Figure 2A). Instead, it occurs when

adapted CheY-P is at the lower end of this curve (around 2.4 mM

in Figure 2A).

Analytical model of the drift velocity as a function of
CheY-P concentration

To understand the underlying reasons of this result, we derived

an analytical relationship between CheY-P concentration and drift

velocity along a one-dimensional gradient. For simplicity we used

a one-dimensional analytical representation of bacterial chemo-

taxis in two or three dimensions [27,33,34,36,37]. In this

framework, cells either go up or down the gradient or tumble

and the effect of rotational diffusion can be represented as a jump

process between runs up and runs down the gradient with

transition rate (d-1)Dr, where d represents the number of spatial

dimension [36].

At quasi-steady state (for time scales longer than single run

durations) and with no directional persistence (equal probability to

run up or down the gradient), the drift velocity is proportional to

the cell swimming speed v times the difference between the

expected run durations up StDz1TR and down StD{1TR the

gradient divided by the total time including the time spent

tumbling StTT [36]:

VD~
v

d

St z1j TR{St {1j TR

St z1j TRzSt {1j TRz2StTT

ð1Þ

The only difference between d = 2 or d = 3 dimensions is a

rescaling of the drift velocity and rotational diffusion (factor d in

the equations above; see Text S1).

The expected run duration up or down the gradient is

controlled by the cellular concentration of CheY-P, Y. This

quantity is in turn a function of the free energy difference between

the inactive and active receptor complexes, F, such that F = ln(a/

Y-1), where a is the gain of the phosphorylation cascade. The

receptor activity follows simple spring-like dynamics around the

adapted free energy difference F0 with adaptation time t
(Methods, our Results still hold when considering asymmetric

methylation/demethylation rates, see Text S1 and Figure S1):

dF

dt
~{

1

t
F{F0ð Þzsf ð2Þ

Here s = 61 or 0 for cells running up, down the gradient, or

tumbling, respectively. As the cell moves along a trajectory x(t) it

encounters different concentrations of the ligand L(x(t)).

f ~vNLx ln½(1zL=Ki)=(1zL=Ka)� represents the magnitude of

the change in free energy difference and depends on the local

steepness of the gradient at the cell position. Here, v is the speed of

the cell when it is swimming, N is the gain of the cooperative

receptor system and Ki and Ka are the dissociation constants

between ligand and receptors in the inactive and active

conformation. In general, both s and f change as a function of

time. For ligand concentrations Ki,,L,,Ka we have

f&n N Lx lnL. If in addition, the gradient of ligand is exponential,

L = L0egx, we see that f<vNg becomes constant where g represents

the inverse length scale of the gradient. Therefore, in an

exponential gradient the free energy difference of the receptors,

F, tends to increase at the constant positive rate +vNg when the cell

swims up the gradient and to decrease at the constant negative rate

2vNg when the cell swims down the gradient. This in turn causes

the CheY-P concentration to decrease (increase) when cells swim

up (down) the gradient. The exact CheY-P concentration

trajectories can be calculated by integrating Eq. (2) as a function

of time for different initial condition Fi (Figure 2B), while a cell is

swimming up (s = 1 green curve) or down (s = 21 red curve) a

gradient.

The expected durations of a run, l{1
R (Y ), or a tumble, l{1

T (Y ),

are plotted as a function of CheY-P concentration in Figure 2B

(dashed lines; see definition in Methods). When a cell runs up or

down the gradient, the rates of switching from one state to another

change as a function of time and the direction of motion because

they depend on the CheY-P trajectory. A run up or down the

gradient can also be terminated by random reorientation from

rotational diffusion with rate (d-1)Dr [36]. Altogether, the rate at

which a run is terminated by either rotational diffusion or a tumble

is thus t{1
R ~(d{1)DrzlR(Y (F )).

In a shallow gradient, F deviates little from the adapted value F0

and the adapted value of tR provides a good approximation of the

expected run duration along a direction (black line in Figure 2B):

tR0~tR(F0)~((d{1)DzlR0){1, where lR0~lR(F0). When

swimming up or down the gradient, CheY-P fluctuates

(Figure 2B, green lines for up, red lines for down) and the run

lengths are modulated approximately following tR0 (black line and

red and green circles in Figure 2B). According to equation (1), drift

velocity is largest where the contrast between run duration up and

down the gradient is the largest. Figure 2B reveals that this is the

case where the slope of the expected run length as a function of

CheY-P concentration is largest, which corresponds to the foot of

the motor CW bias curve (Figure 2A) in agreement with the

simulations. In contrast, for higher valued of CheY-P that are

within the dynamic range of the CW bias response function, (e.g.

Y0 = 3 mM in Figure 2B) run durations up and down the gradient

have a smaller contrast and longer tumble duration (dashed line

Figure 2B), resulting in slower drift velocity.

In the limit of shallow gradients, Equation [1] can be linearized

around the adapted values F0 and Y0 to obtain the drift velocity

(Methods and Text S1):

VD~
tR0’

1ztR0=t

v 1{TB0ð Þ
d

ð?

0

e{t=tR0

tR0

fdt&
tR0’

1ztR0=t

1{TB0ð Þv2Ng

d
ð3Þ

Here, TB0~lR0=(lT0zlR0) represents the tumble bias of the cell

as a function of the adapted CheY-P concentration Y0 and the

subscript 0 indicates that the rates lR and lT and tR
’~dtR=dF are

all evaluated at the adapted state. The integral in Eq. (3) is the

time-averaged input over the run durations, which in this

approximation are exponentially distributed with characteristic

time scale tR0. For Ki,,L,,Ka and exponential gradients, the

rate of change of the free energy difference s f&svNg is constant

during a run. Equation (3) indicates that the drift velocity is

proportional to the gradient steepness g and the gain of the

receptor cluster N. From Equation (3) we also obtain the

Limits of Bacterial Chemotaxis
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chemotaxis coefficient of an individual cell phenotype:

x(Y0,t)~VD(Y0,t)=g.

Plotting the drift velocity as a function of Y0 on top of the

simulation results in Figure 2A shows that Equation (3) provides a

good prediction of the drift velocity in shallow gradients and

confirms that maximum velocity is reached for CheY-P values at

the foot of the CW bias response curve.

In this linear regime, the optimal CheY-P concentration is only

weakly dependent on the cell adaptation time and does not depend

on the gradient steepness. The factor tR0
’=(1ztR0=t) in Equation

(3) encapsulates the relationship between drift velocity and the

CheY-P concentration (or free energy difference F). For small

adaptation times, t,,tR0, it increases linearly with adaptation

time and is maximum where the slope d lntR0=dF0 is largest.

For larger adaptation times, t..tR0, this factor becomes

&tR0
’~Y0(Y0=a{1)dtR0=dY . Because the response function

of the motor lR0~lR(Y0) (defined in Methods) is very steep

(dashed line in Figure 2B), the slope dtR0=dY0 (slope of black line

in Figure 2B) changes much faster as a function of Y0 than Y0

(Y0/a-1).

Because rotational diffusion imposes an upper bound on the run

length along a given direction [27,32], it determines, along with

the motor parameters, the optimal range for CheY-P fluctuations.

As rotational diffusion becomes smaller, cells are able to maintain

their original direction for a longer time. The upper bound on the

run length therefore becomes longer (dashed lines in Figure 2C)

and the optimal CheY-P concentration becomes smaller (full lines

in Figure 2C).

Changes in the switching frequency of the flagellar motor, v,

(see Methods) also affects the optimal CheY-P concentration. This

becomes apparent when considering that the rate of switching

from run to tumbles scales linearly with the switching rate of the

flagellar motor, v (see Methods). Therefore, the expected run

duration of a cell scales like the inverse of v. The result of this

scaling is that for increasing values of v the inflection point of the

expected run length as a function of CheY-P shifts to lower values

of CheY-P (dashed lines in Figure 2D). Thus, increasing the

switching rate of the flagellar motors tends to decrease the optimal

CheY-P concentration (full lines in Figure 2D). It also increases the

maximum drift velocity that can be reached.

The analytical model of drift velocity in Eq. (3) is different from

previous results [27] in two ways. First, it takes into account both

the adaptation time and the tumbling state of the cell. Taking the

limit t??,TB0&0 in our model we recover the previous results.

Second, in the previous study, the switching rate of the motor lR

was a steep function of kinase activity centered at the adapted

kinase activity level, or equivalently, at the adapted CheY-P

concentration Y0. This means that changing Y0 would also change

the set point of the motor. However, the adapted CheY-P

concentration and the set point of the motor are independent

parameters. For this reason here we focused on the relationship

between the set point of the motor and CheY-P activity. According

to Eq. (3) the flagellar motor has its own sensitivity set point

independent of the adapted CheY-P concentration of the sensory

system Y0 (see definition of lR in Methods; motor adaptation

[23,38] is considered below).

A unique operational CheY-P concentration maximizes
drift velocity for multiple gradients and adaptation times

Experiments have shown that when immobilized cells are

exposed to an exponential ramp of methyl-aspartate, CheY-P

activity reaches a new steady-state, Ym, which is lower than its

adapted activity, Y0, because of the relatively slow adaptation rate

of the system [9,26] (Figure 1B second line). When cells are

swimming in an exponential gradient (Figure 1B third line), we

expected a similar effect to take place because the average drift of

an individual cell up the gradient will cause this cell to experience,

on average, an exponential increase in ligand concentration as it

makes its way up the gradient. While this effect should be minimal

in a shallow gradient, it could become important in steep or

rapidly changing gradients [27,39], especially for cells with longer

adaptation times.

To investigate this issue we simulated cells swimming in a

steeper exponential gradient (g21 = 1,000 mm). After less than one

minute of simulation, cell populations (10,000 replicate trajectories

for each phenotype) reached a constant steady state drift velocity.

We calculated the average ligand concentration that the cells

encountered over time (Figure 3A). This reveals that the swimming

cells experience an average exponential increase in ligand

concentration over time. This average input is similar to the

signal experienced by immobilized cells exposed to temporal

exponential ramps (Figure 1B, second line) [9,26]. However, for

the swimming cells the ramp rate is dynamically determined by the

average drift velocity in the direction of the gradient (Figure 3A).

Thus, for swimming cells the ramp rate depends on the feedback

of the performance onto the input signal (Figure 1B, third line).

Consistent with experimental results obtained with immobilized

cells exposed to exponential ramps [26], the average CheY-P

Figure 3. Feedback of the behavior of cells swimming in
exponential gradients onto the operational CheY-P concentra-
tion. A. Temporal profiles of the average methyl-aspartate concentra-
tion encountered by cells swimming in a steep exponential gradient
(g21 = 1,000 mm). Different phenotypes are considered (solid black:
Y0 = 2.4 mM, t= 10 s, solid gray: Y0 = 2.4 mM, t= 30 s, dotted black:
Y0 = 3 mM, t= 10 s) (the y-axis is on a log scale). B. Corresponding
average CheY-P concentration as a function of time in these same cells
C. Magnitude of the drop in average CheY-P activity (difference
between adapted and operational CheY-P concentrations Ym -Y0) as a
function of the drift velocity. Two different adaptation times are
considered (black: t= 10 s, grey: t= 30 s). The gradient is the same
gradient as in panel A. Dots are averages over 10,000 stochastic
simulations for populations with different adapted CheY-P concentra-
tions (Y0.2.4 mM in both cases). Lines are from Eq. (4). D. Drift velocity
VD as a function of adapted CheY-P concentration, Y0 (filled circles), and
operational CheY-P concentration, Ym (open circles) in stochastic
simulations (average over 10,000 replicates for each circle, t = 10 s).
Ym is instantaneous CheY-P concentration averaged over the popula-
tion while drifting between t = 60 and 300 s). Two exponential
gradients of methyl-aspartate are considered (g21 = 1,000 mm (black),
5,000 mm (grey)). Black arrow: cell population in blue in Figure 4C.
doi:10.1371/journal.pcbi.1003694.g003
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concentration in the swimming cells reaches a stable dynamical

equilibrium, the operational value Ym, after an initial drop from

the adapted CheY-P concentration (Y0) (Figure 3B).

The fact that the operational CheY-P concentration is not the

same as the adapted CheY-P concentration implies that an

optimal choice of adapted CheY-P must take into account this

behavioral feedback. While a phenotype may for example have an

adapted CheY-P concentration equal to the optimal concentration

(,2.4 mM), during chemotaxis this level drops to an operational

level lower than the optimum, hindering its performance

(Figure 3B, solid black line). This effect is intensified when the

adaptation time of the receptor cluster increases (Figure 3B, grey

line). On the other hand, a phenotype with an adapted CheY-P

concentration higher than the optimal concentration can ap-

proach the optimal operational CheY-P concentration as it

reaches its steady-state drift velocity (Figure 3B, dotted line). The

difference between Y0 and Ym grows larger as drift velocity or the

receptor adaptation time increase (Figure 3C).

To determine whether the adapted or the operational CheY-

P concentration is the primary variable that controls the

average drift velocity in exponential gradients, we simulated

cell populations with different adapted CheY-P concentrations

and calculated their respective operational CheY-P concentra-

tions. In a steep gradient (g21 = 1000 mm), the optimal adapted

CheY-P increased to ,2.7 mM compared to ,2.4 mM in a

shallow gradient (Figure 3D). However, the optimal operational

CheY-P concentrations for steep and shallow gradients are

identical (Figure 3D). This suggests that a unique operational

CheY-P concentration maximizes drift velocity in multiple

gradients.

The situation is different when the feedback is strong. In this

case the signaling pathway fluctuates around the operational

values Fm and Ym, rather than the adapted values F0 and Y0.

Therefore, we need to update the analytical model to describe the

drift velocity, VD, as a function of Fm. If we linearize the drift

velocity equation around Fm rather than F0 we obtain an equation

identical to Eq. (3) but with the subscript 0 replaced by m and tRm,

t’Rm, lRm, lTm, and TBm now functions of Fm. Knowing how VD

depends on Fm is not enough to calculate the drift velocity. We also

need an equation that describes how Fm depends on VD. To model

the effect of a constant drift velocity along the chemical gradient

on the activity of the receptor cluster, we can expand Eq. (2)

around Fm and solve for quasi-steady state:

Fm~F0zVD tN
d

dx
ln

1zL x tð Þð Þ=Ki

1zL x tð Þð Þ=Ka

� �
&F0zVD tN g ð4Þ

This expression quantifies the deviation between the operational

free energy difference Fm and the adapted free energy difference F0

as a function of the drift velocity and is consistent with the results

of our simulations (Figure 3C) and [27]. Equation (4) also makes

clear that the strength of the feedback depends on adaptation time,

the receptor cluster gain N, and the steepness of the gradient.

Behavioral feedback strongly affects performance because it moves

Ym away from the optimal operating point relative to the motor.

This, in turn, affects the capability of the motors to best use the

information carried by CheY-P.

By explicitly taking into account the effect of the behavioral

feedback onto the coupling between the operating regime of

CheY-P and the motor, Eqs. (3) (with 0Rm) and (4) extend previous

studies [17,25,27,32–34,36] and reveal new possible dynamical

regimes for the biased random strategy as shown below.

Strong behavioral feedback can push the system through
a bifurcation creating two possible chemotactic states for
some cell phenotype: A fast drift state and a trapped
state

For a given phenotype (Y0, t) and gradient length-scale, the

steady state drift velocity is determined by the intersection of two

curves (Figure 4A). The first curve (solid line in Figure 4A)

describes how the drift velocity depends on the operational CheY-

P concentration, Ym. It is defined by Equation (3) (with 0Rm) and its

profile can be interpreted as follows. For very low values of CheY-

P the cell never tumbles. Thus, the cell diffuses equally in all

directions and the net drift along the gradient is zero. For high

values of CheY-P, the cell tumbles all the time so drift is zero as

well. In between these two extremes, drift velocity is maximized for

a specific value of the operational CheY-P concentration.

However, Ym is not an independent variable. As we showed above

(Eq. (4)), because of the feedback the behavior onto the input,

the operational CheY-P concentration is itself a function

of the drift velocity (which can also be written as:

Ym~a=(1zet N g VD a=Y0{1ð Þ)). This equation defines the

dashed line in Figure 4A, which intersects the horizontal axis at

Y0. Because each line in Figure 4A defines a relationship between

VD and Ym, the intersection between the two lines fully determines

the drift velocity and the operational CheY-P concentration (black

circle in Figure 4A) for a given phenotype and gradient.

Figure 4. Behavioral feedback can create a chemotactic ‘‘trap’’.
A. Analytical drift velocity, VD as a function of Ym (Eq. (3) with 0Rm; solid
line) and feedback of VD on Ym (Eq. (4), dashed line) (t = 5 s,
g21 = 1,000 mm, Y0 = 2.7 mM). Steady state drift velocity (Ym = 2.48 mM,
black circle). B. Same as panel A, but for cells with longer adaptation
time and higher adapted CheY-P (t = 30 s, Y0 = 3.5 mM). VD has three
possible steady states: two stable (Ym2 = 2.1 mM and Ym1 = 3.49 mM
(black dots)), and one unstable (Ym = 2.97 mM, white dot). C. Individual
drift velocities (in the direction of the gradient) and root mean square
displacements (perpendicular to the gradient) of two different
populations of 10,000 simulated cells (blue: t = 10 s, Y0 = 2.6 mM, red:
t = 30 s, Y0 = 3 mM). D. Average VD as a function of Y0 (filled circles) and
Ym (open circles) for cells with a long adaptation time (t = 30 s). Black
arrow: cell population plotted in panel C (red).
doi:10.1371/journal.pcbi.1003694.g004
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When the feedback is weak (tNg small, i.e. short adaptation

time, small gain, or shallow gradient), the operational CheY-P

concentration only exhibits a weak dependency on drift velocity

and there is only one steady-state solution (intersection). There-

fore, an appropriate adapted CheY-P concentration could be

selected to ensure that operational CheY-P concentration is

approximately optimal at all times (Figure 4A).

When the feedback is stronger, drift velocity always acts as a

negative feedback onto the operational CheY-P concentration. In

contrast, the effect of the operational CheY-P concentration onto

drift velocity depends on whether the operational CheY-P

concentration is below or above the CheY-P concentration that

maximizes drift velocity (Figure 4A). Below this concentration, the

system obeys negative feedback dynamics, whereas above it, the

system obeys positive feedback dynamics. This positive feedback

loops combined with the non-linear decrease of the drift velocity as

a function of the operational CheY-P concentration, which arise

from the extreme sensitivity of the flagellar motor, can lead to

bistability [40]. Indeed, for a stronger feedback (steeper gradient or

longer adaptation time) the slope of the feedback curve (dashed

line in Figure 4AB), which is proportional to 1/tNg, decreases.

Thus, for phenotypes with high enough adapted CheY-P

concentration (Y0 is the intersection of the dashed line with the

horizontal axis), the two curves can intersect more than once

(Figure 4B). In this case, a single phenotype can now experience

three different chemotactic states. Two of these states, Ym1 and Ym2

(filled circles in Figure 4B), are stable and are separated by one

unstable state (open circle in Figure 4B). For one of the stable

solution, the drift velocity is nearly zero and Ym1 is high and very

close to the adapted CheY-P concentration. For the other stable

solution, the drift velocity is large and Ym2 is much smaller than the

adapted CheY-P concentration.

This analysis suggests that an individual phenotype might

experience two different chemotactic states with dramatically

different performance: a fast drifting state and a ‘‘trapped’’ state.

To find evidence of these two behaviors, we simulated two cell

phenotypes (10,000 replicates for each phenotype) in a steep

exponential gradient (g21 = 1,000 mm). One phenotype was

predicted to operate closer to the bifurcation than the other (red

and blue dots in Figure 4C, respectively). Although both

phenotypes reached the same average operational CheY-P

(Ym = 2.3 mM), cells with a phenotype closer to the predicted

bifurcation point (Y0 = 3 mM, t = 30 s) exhibited a distribution of

behavior (both drift velocity and diffusion) significantly skewed

toward the ‘‘trapped’’ state (Figure 4C). Closer examination of the

trajectories and CheY-P dynamics of individual cells in this

simulation reveals that individual cells transition stochastically

back and forth between the ‘‘trapped’’ and fast drifting state

(Figure S2). For cases with higher feedback strength cells spend

more and more time within the ‘‘trapped’’ state.

When the feedback is strong and the system becomes multi-

stable, the average includes cells in both the ‘‘trapped’’ and high

drift states. This phenomenon explains the decreased average drift

velocities observed when adaptation time is increased (above

10 seconds) in a relatively steep gradient (g21 = 1,000 mm). It also

explains the resulting shift of the best operational CheY-P

concentration to lower concentrations (from ,2.4 to 2.1 mM in

Figure 4D), since for phenotypes with lower values of the adapted

CheY-P only one stable state exists. Similar results are obtained

when asymmetric methylation/demethylation rates of the recep-

tors are taken into account (Figure S3).

Motor adaptation partially alleviates the chemotactic
‘‘trap’’

Recent experiments have shown that the number of FliM

monomers in the C-ring of the flagellar motor slowly (,minutes)

adapts as a function of the CW bias, affecting both the steepness

and the half-maximum CheY-P concentration of the CW bias

motor response curve [24]. To examine the effect of motor

adaptation on the relationship between CheY-P concentrations

and drift velocity, we added motor adaptation to our stochastic

model of an individual chemotactic cell by taking into account

recent experimental data [20,23,24] (Methods). The resulting CW

bias response curve of the adapted motor agrees well with both

recent [20] and earlier [19] experimental measurements. In fact, it

matches earlier experiments [19] better than a simple Hill

function, suggesting that in these experiments the individual

motors measured had adapted to the particular concentration of

CheY-P expressed in the corresponding individual cells (Figure 5A;

Methods).

Simulations of cells with motor adaptation in a shallow gradient

(g21 = 5,000 mm) show that motor adaptation changes the shape of

the drift velocity curve as a function of operational CheY-P,

especially at high CheY-P concentrations (compare Figures 5B and

Figure 5. Effect of motor adaptation on drift velocity VD in exponential gradients. A. Motor CW bias response curve as function of CheY-P
concentration when the motor is allowed to adapt (solid line) fitted to data from [19] (circles; derivation in Materials and Methods). B. Average drift
velocity as a function of operational CheY-P concentration Ym, in a shallow gradient. Same adaptation times and gradient steepness as Figure 2A.
Lines: analytical solutions; circles: stochastic simulations (averages between t = 10 and 15 min are used to calculate VD (Ym)). C. Same as Figure 4B but
with motor adaptation. The drift velocity has only one stable steady sate (Ym = 1.6 mM, black dot). Motor adaptation eliminated the other states
present in Fig. 4B.
doi:10.1371/journal.pcbi.1003694.g005
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2A). These results are predicted by the analytical model (Eq. (3)

with 0Rm) once modified to include motor adaptation (Methods;

lines in Figure 5B). Setting the adapted activity of the motor for a

given CheY-P concentration to lower or higher CW biases gives

qualitatively equivalent results (Figure S4 and S5).

How does the motor adaptation affect the bifurcation? In a

steep gradient the behavioral feedback (Eq. (4)) must be taken into

account (Figure 5C dashed line). Comparing Figure 5C and 4B we

see that motor adaptation enable cells with high adapted CheY-P

concentration to avoid the chemotactic trap improving perfor-

mance (see Figure S6). This should provide a selective advantage

because it helps buffer the functional consequences of inevitable

cell-to-cell variability in the adapted CheY-P concentration, by

increasing the range of CheY expression levels that allows effective

chemotaxis.

Motor adaptation also affects the optimal operational CheY-P

concentration (compare Figures 5B and 2A), shifting it to lower

concentrations. When cells are drifting up a gradient, CheY-P

drops to the operational CheY-P, causing the CW bias to drop.

With motor adaptation, the lower operating CW bias causes the

motor to shift its sensitivity to a lower CheY-P concentration. We

see again that maximal performance is reached for Ym at the

bottom of the CW bias response curve of the now adapted motor

(Figure 5A). However, the motor can only compensate partially for

the shift in operational CheY-P concentration.

An individual phenotype faces a performance trade-off in
different gradients

As long as the system does not undergo bifurcation, maximum

drift velocity is achieved by having a long adaptation time while

maintaining the operational concentration of CheY-P in the

optimal range. Therefore, the optimal adapted CheY-P concen-

tration depends on the gradient length-scale and the adaptation

time (Figure 6).

In shallow gradients, the strength of the feedback is small, as is

the difference between operational and adapted CheY-P. Thus, it

is possible to select an adapted CheY-P concentration that will

perform relatively well for multiple adaptation times (Figure 6A

blue line).In steeper gradients, the feedback is stronger (Eq. (4))

and the difference between Ym and Y0 grows larger with adaptation

time. Maintaining the optimal operational CheY-P concentration

requires a higher adapted CheY-P concentration (Figure 5A green

and red). The bifurcation of the system imposes an upper bound

on the range of Y0 beyond which a portion of the cells spend a

significant amount of time trapped into a non-optimal state even

with motor adaptation (Figure 6A dashed lines). Therefore, the

optimal adapted CheY-P concentration is a function of both

receptor adaptation time and gradient length-scale, making it

difficult for a single phenotype to maximize drift velocity in

multiple environments (Figure 6A).

To characterize the resulting performance trade-off and map it

to phenotypic space, we calculated the contours of drift velocity

relative to its maximum in each environment, as a function of

adaptation time t and the adapted cell tumble bias (Figure 6B). In

shallow gradients, cells benefit from a relatively long adaptation

time and a low adapted CW bias. In steep gradients, cells benefit

from a short adaptation time and a higher adapted CW bias. The

best generalist phenotype can achieve at most 60% relative

performance in all three gradients considered here. Motor

adaptation, which was taken into account in generating Figure 6,

alleviates only partially the tradeoff faced by single cells.

Discussion

The adaptive response and feedback control of the receptor

cluster play a critical role in the robustness of the chemotaxis

system [8,10,15,17,33]. However, chemotactic performance also

relies on the optimal operation of the flagellar motors, which

directly control cell behavior. By focusing on how the CheY-P

concentration affects the coupling between sensors and actuators,

we revealed the existence of an operational regime for CheY-P

concentration, which is distinct from the adapted CheY-P

concentration, that maximizes drift velocity in a wide range of

gradient length-scales and receptor adaptation times. Fluctuations

around the best operational CheY-P concentrations maximize the

contrast between run duration up and down the gradients. This

occurs outside the most sensitive region of the CW bias response

curve of the motor. Thus, chemotactic performance relies on

maintaining the operational CheY-P concentration within bounds

[21,22,41] around this optimal value.

The best operational CheY-P concentration is also determined

by the cell rotational diffusion constant Dr, which imposes an

Figure 6. Performance trade-off in bacterial chemotaxis. A. Optimal adapted CheY-P concentrations Y0 (solution of Eqs (4) with 0Rm and (5))
as a function of the chemoreceptor adaptation time in different exponential gradients (g21 = 1,000 (red), 2,000 (green), and 5,000 (blue) mm). Dots
indicate when the maximal theoretical drift velocities cross the bifurcation point (dotted lines represent the inaccessible optimal state). The optimal
operational CheY-P concentration Ym is identical for all gradient length scales (black dashed line). B. Contour plot of drift velocities as a function of
adaptation time and the adapted cell tumble bias in different exponential gradients (same colors as A). 75%, 90%, and 95% contours of the maximal
theoretical drift velocities for each gradient (colors intensities from light to dark). Black dot: the best cell phenotype that achieves equal relative drift
velocities in all three gradients (60% of the maximal VD with t = 7.5 s and TB0 = 0.044).
doi:10.1371/journal.pcbi.1003694.g006
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upper bound on run durations in any particular direction

(Figure 2C) [27,32]. In a more viscous environment or for longer

cells, the lower rotational diffusion will result in a lower optimal

operational CheY-P concentration. For an ellipsoid, rotational

diffusion is inversely proportional the length of the major axis.

Therefore, as cells grow the optimal range will shift to lower

CheY-P concentrations. If the cell maintains a constant amount of

CheY as it grew, the effective concentration of CheY-P would

decrease, resulting in robust chemotactic performance during cell

growth.

The switching frequency of the flagellar motors also affects the

best operational CheY-P concentration. Higher switching fre-

quencies tend to increase drift velocity while shifting the maximum

to smaller CheY-P concentrations (Figure 2D). Therefore, the best

operational CheY-P concentration is further away from the motor

threshold. However, the range of CheY-P concentrations where

the drift velocity is high becomes narrower (because the expected

run length becomes a steeper function of CheY-P). This tends to

increase the performance trade-off between different gradient

length-scales. Thus, while selecting a higher switching frequency

for the flagellar motors may improve performance of some

phenotypes it may be detrimental for the population overall.

Another important consideration is that the switching frequency is

bounded by the speed at which the motor and associated flagella

can switch confirmation [2,42].

Directional persistence (amount by which the swimming

direction of a new run is biased towards the swimming direction

of previous run) has been shown to affect chemotactic perfor-

mance in climbing shallow gradients of attractants [1,43–45].

However, previous modeling and simulations efforts have been

done using cells with non-optimal CheY-P concentrations (usually

at 3 mM). In this regime, cells have a high tumbling rate, short run

lengths, and low drift velocity. Directional persistence effectively

reduces the reorientation rate of cells [45], which is equivalent to

reducing the tumbling rate slightly. Therefore, directional

persistence will shift the optimal CheY-P concentration to higher

concentrations and improve the drift velocity of frequently

tumbling cells [44]. On the other hand, when cells operate at or

close to the optimal CheY-P concentration, the tumbling rate is

low. Therefore, the run length in a given direction is terminated by

rotational diffusion and not by tumbles. For optimal phenotypes,

the relative effect of directional persistence on chemotactic drift is

thus less important.

Previous studies have examined how the adaptation time affects

chemotactic performance [12,25,27,32,46]. However, these stud-

ies only considered single values for the adapted CheY-P

concentration (typically set to a CW bias of 0.5) and concluded

that adaptation time should decrease as gradients get steeper to

keep the operational CheY-P concentration within the dynamic

range of the motor CW bias response. We found that, as long as

the cell can maintain the optimal operational CheY-P concentra-

tion, longer adaptation time is better because it enhances input

signal over the course of a run. However, long adaptation

reinforces the feedback from the cell drift velocity on the system

and can lead to undesirable bistability. Therefore, the bifurcation

boundary imposes an upper limit on adaptation time as a function

of the gradient length-scale. Interestingly, the distribution of

tumble bias typically observed during exponential growth in single

E. coli cells ranges from 0.1 to about 0.4 and not many cells are

found that have higher tumble bias [31]. Selection for cells with

tumble bias below 0.4 is consistent with our finding that the

performance of cells with higher tumble bias will suffer from the

existence of the ‘‘trapped’’ chemotaxis state.

Our results also provide a strong justification for the role of the

recently-discovered flagellar motor adaptation. Indeed, we found

that motor adaptation [23,38] plays a significant role in mitigating

the behavioral feedback for cells with high tumble bias. When such

feedback was included, cells with high tumble bias could escape

the ‘‘trap’’ and gain access to a high drifting state in steep gradient.

Our model also resolved an apparent contradiction between two

sets of experimental measurements of the CW bias response of the

flagellar motor as a function of CheY-P concentration. While one

measurements reported a Hill coefficient of n = 10 [19], newer

experiments reported a Hill coefficient of n = 20 [20]. In this paper

we used the new value n = 20 and showed that the previous

measurements are fitted with the same parameter value if one

makes the reasonable assumption that the motors had had time to

adapt before each individual cell measurement (Figure 5A).

Because the difference between the operational and adapted

CheY-P concentrations depends on the strength of the behavioral

feedback, which itself is proportional to gradient steepness,

different adapted CheY-P concentrations and adaptation times

are required to perform optimally in different gradients. Thus, in

conditions where drift velocity is important, cells are faced with a

performance trade-off. Even though motor adaptation was

included, the best compromising phenotype over the gradient

steepness considered in this study achieved at most 60% of the

theoretical maximal drift velocity in all gradients. The observed

cell-to-cell phenotypic diversity in adaptation time and adapted

tumble bias [29,31] in an isogenic population may resolve the

performance trade-off faced by single cells to improve the chance

of survival of a unique genotype in complex or varying

environments. In addition, the negative correlation between

tumble bias and adaptation time observed by Park et al. in an

isogenic population of E. coli [31], is consistent with our

predictions about the most beneficial way to distribute phenotypes

(Figure 6B).

At its core, the biased random walk relies on the dynamical

control of the probability of reorientation. Overall, our analysis

reveals limits to the use of negative integral feedback to control

such strategy. Because the biased random walk strategy is used by

many organisms, these results will inform our understanding of the

constraints faced by other organisms as well.

Materials and Methods

Model and simulations
We used a standard model of bacterial chemotaxis [15] as

described in [2]. For a cell following the trajectory x(t), the output

of the sensory module, the CheY-P concentration, is

Y tð Þ~a= 1zeFð Þ where the free energy difference

between inactive and active receptor complexes,

F~"0z"1mzN ln (1zL=Ki)=(1zL=Ka)ð Þ, is a function of the

methylation level, m(t) and ligand concentration L(x(t)). With

a = 6 mM, e0 = 6, e1 = 21, N = 6, and Ki = 0.0182 mM, Ka = 3 mM

for methyl-aspartate and Tar receptors in the inactive and active

conformation. When the cell is adapted to its environment,

F0~"0z"1m0~ln a=Y0{1ð Þ. Adaptation mediated by methyla-

tion and demethylation of the receptors follows

dm=dt~{(m{�mm Lð Þ)=t, where m{�mm Lð Þ~(F{F0)="1. The

methylation level m is positive and bounded by the total

number of methylation sites mmax = 48 available in a cooperative

unit of receptors. The resulting adaptation dynamics fits

recent experiments [26]. Cells switch between runs, R, and

tumble, T, with rateslR,T~vexp +G(Y (F))½ �. The motor

is modeled as a bistable system with switching frequency

v = 1.3 s21 (unless otherwise stated) and free energy difference
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G Yð Þ~"2=4{("3=2)(1zK=Y ){1 where e2 and e3are non-

dimensional constants that control the basal rate of switching of

the motor when Y = 0 and the degree of cooperativity of the

motor, respectively. K is the binding constant of CheY-P to FliM at

the base of the motor. With e2 = e3 = 80, and K = 3.06 mM, this

coarse-grained motor model fits well recent experimental mea-

surements of CW bias (Hill coefficient 20) and switching frequency

[20,23,24]. Motor adaptation is considered below.

Linear expansion
Eq. (2) follows by taking the time derivative of F and using the

relations from the previous section. Integration of Eq. (2) gives:

F t,s,Fið Þ~F0z(Fi{F0)e{t=tzse{t=t t
0 eu=tf uð Þdu. The expected

duration of a run along the direction s = 61 is determined by the

integral of the rate t{1
R of terminating a run along the direction s

by tumbling or because of rotational diffusion:

St +1,Fij T~

ð?
0

e
{
Ð t

0
t{1
R

F u,+1,Fið Þð Þdu
dt ð5Þ

Because the average cell drift velocity in the direction of the gradient

is determined by the contrast between expected run durations up and

down the gradient (Equation (1)), the quantity of interest to calculate

from Equation (5) is St z1,Fij T{St {1,Fij T. In a shallow gradient,

the deviations from the adapted free energy difference F0 are small.

Considering only first order deviations DF~F{F0around F0 the

change in free energy DF=F0j jas a response to changes in ligand

concentration is small and the inverse of the rate of run termination can

be approximated by tR(F )&tR0zt’R0DF where the mean run

duration along a direction tR0~tR(Y (F0))~ d{1ð ÞDrzlR0ð Þ{1

and the gaintR0
’~dtR=dF are evaluated at F0. Similar linear

expansions are carried out for lR and lT. Linear expansion of

the free energy difference in Eq. (5) and integration by part

gives Stjs,FiRT%tR0 1{lR0
’ ?

0 e{t=tR0DF ! tjs,Fið Þdt
� �

zO DF2
� �

.

For tumble, St FiTj T&
Ð?
0

e{lT0t
Ð?
0

lR0e{tR=tR0 dtRdtzO DFð Þ~

tR0lR0=lT0zO DFð Þ. Inserting in Eq. (1) and using the solution F(t, s,

Fi) we obtain the drift velocity to first order in DF (Eq. (3)).

Motor adaptation
The number of FliM molecules in the motor, n, is modeled as a

binding and unbinding process with CW bias dependent

rates [38]: dn=dt~kon 1{CWð Þ= 1zDn=(n2{n)ð Þ{koff CW=
1zDn=(n{n1)ð Þ.The constants kon and koff define the rate of

adaptation of the motor. n1 and n2 are the minimum and

maximum FliM ring size that a motor can accommodate. Dn is an

effective half max parameter that guarantees that the effective

rates of unbinding and binding to the motor go to zero when n

approaches n1 or n2. When n changes it affects the steepness of the

motor CW bias response, CW~1=(1ze2G), which in our case is

controlled by e3 (see above). We used a simple linear relationship

"3~"3,1 n{n0ð Þz"3,0 where e3,1 is the slope and n0 and e3,0 are

the pre-stimuli level of the number of FliM and motor steepness,

respectively. kon = 0.025 s21, n1 = 34, n2 = 44 from [24]. We

choose e3,0 = 80, n0 = 36 to match the Hill coefficient of 20

measured for individual motor response curves [20], and fit

Dn = 4.16, e3,1 = 1.96 to reproduce [19] (Figure 5B inset).

koff = 0.0063 s21 controls the CW bias that the motor adapts to

(0.2 in this case, typical for wild type population of E. coli selected

for swimming on agar plates [31]). At steady state, dn/dt = 0

defines CW(n(e3)) (Eq. [S20] in Text S1). On the other hand,

assuming quasi-equilibrium between the motor and operational

CheY-P concentration Ym, we have CW (Ym,"3)~1
�

(1ze2G(Ym ,"3)).

Solving the two equations gives e3 as a function of Ym from which we

can calculate the drift velocity as Eq. (4) with motor adaptation

(Figure 5).

Supporting Information

Figure S1 Effect of asymmetric methylation/demethylation

rates on drift velocity VD in exponential gradient. Simulated drift

velocity VD (average velocity of 10,000 cells between t = 60 and

300 s) as a function of operational CheY-P concentration Ym in a

shallow gradient (L0 = 200 mM and g21 = 5,000 mm) for cells with

methylation rates VR = 0.1 s21 (red), 0.2 s21 (green), and 0.4 s21

(blue).

(PDF)

Figure S2 A simulated cell can transition in and out of the non-

chemotactic state to reach the high drift velocity state

when swimming in a steep gradient of methyl-aspartate

(g21 = 1,000 mm) illustrating the bi-stable behavior of this cell

phenotype (Y0 = 3.0 mM and t = 30 s). A. Single cell drift velocity

as a function of its operational CheY-P concentration. When the

cell escapes the ‘‘trapped’’ chemotactic state, characterized by a

high CheY-P concentration, the behavioral feedback maintains an

optimal CheY-P concentration and a high drift velocity. B. Cell

position along the gradient as a function of its operational CheY-P

concentration. The cell can escape the low drift velocity state and

maintain a low CheY-P concentration when running up the

gradient. On the other hand, the cell can return to the ‘‘trapped’’

state after a long run down the gradient. The CheY-P

concentration and drift velocity were calculated over a

moving average window of 10 seconds. The time progression

along the trajectory is indicated by the color of the stroke from

blue to red.

(PDF)

Figure S3 Effect of asymmetric methylation/demethylation

rates on drift velocity VD in steep exponential gradient. VD from

stochastic simulations (methylation rate VR = 0.1 s21) as a function

of Y0 (filled circles) and Ym (open circles) in exponential gradient of

methyl-aspartate (g21 = 1,000 mm).

(PDF)

Figure S4 Drift velocity as a function of operational CheY-P

when the rate of binding between FliM and the motor is

koff = 0.025 s21. Circles are from simulations. Lines are from

analytical solution. Everything is the same as in Figure 5A. The

only difference is the value of koff.

(PDF)

Figure S5 Drift velocity as a function of operational CheY-P

when the rate of binding between FliM and the motor is

koff = 0.0013 s21. In this case, the motor does not adapt fast

enough to reach quasi-steady state. The analytical solution (lines)

makes the approximation that the system is at steady state.

(PDF)

Figure S6 Scatter plot of individual drift velocities (in the

direction of the gradient) and root mean square displacements

(perpendicular to the gradient) of 10,000 simulated cells with

motor adaptation (black) and without motor adaptation (red), with

adaptation time t = 30 s adapted CheY-P concentration

Y0 = 3.5 mM, gradient length scale g21 = 1,000 mm.

(PDF)

Text S1 Detailed derivation of the analytical model.

(PDF)
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