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Abstract

The recurrence of influenza A epidemics has originally been explained by a ‘‘continuous antigenic drift’’ scenario. Recently, it
has been shown that if genetic drift is gradual, the evolution of influenza A main antigen, the haemagglutinin, is
punctuated. As a consequence, it has been suggested that influenza A dynamics at the population level should be
approximated by a serial SIR model. Here, simple models are used to test whether a serial SIR model requires gradual
antigenic drift within groups of strains with the same antigenic properties (antigenic clusters). We compare the effect of
status based and history based frameworks and the influence of reduced susceptibility and infectivity assumptions on the
transient dynamics of antigenic clusters. Our results reveal that the replacement of a resident antigenic cluster by a mutant
cluster, as observed in data, is reproduced only by the status based model integrating the reduced infectivity assumption.
This combination of assumptions is useful to overcome the otherwise extremely high model dimensionality of models
incorporating many strains, but relies on a biological hypothesis not obviously satisfied. Our findings finally suggest the
dynamical importance of gradual antigenic drift even in the presence of punctuated immune escape. A more regular
renewal of susceptible pool than the one implemented in a serial SIR model should be part of a minimal theory for
influenza at the population level.
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Introduction

Currently, two subtypes of influenza type A virus (H3N2 and

H1N1) cocirculate in human populations along with the influenza

type B virus. In temperate zones and during inter-pandemic

periods, their dynamics lead to annual epidemics of variable

amplitude caused by alternating types and subtypes [1]. World-

wide, these annual epidemics result in about three to five million

cases of severe illness, and about 250 000 to 500 000 deaths [2].

The recurrence of influenza A epidemics is still not thoroughly

understood despite a large amount of empirical and theoretical

investigations. It has originally been explained by the evolution of

the main surface glycoproteins of the virus (mainly haemaggluti-

nin, HA, but also Neuraminidase, NA) inducing possible

‘‘reinfection’’ of previously infected hosts. This ‘‘continuous

antigenic drift’’ scenario [3] where viruses continuously escape

immunity as mutations accumulate has recently been challenged

by new sequences data and theoretical developments.

From the theoretical side, multi-strains models tracking the

infection history of the hosts have been difficult to use due to the

exponential growth of state variables as the number of strains

increases [4]. Nevertheless, by using a status based approach

combined with the assumption that a previous infection reduces

infectivity and that co-infections are allowed, [5] have produced a

model where the number of state variables grows linearly with the

number of strains. It has thus been possible to study how

immunologically cross-reactive strains sequentially invade a

partially susceptible population. The results of [5] model, using

a linear antigenic space, have shown a self-organisation of the

strains into antigenic clusters. This organisation results in a

punctuated antigenic evolution based on a continuous genetic

change, challenging the idea of a gradual antigenic drift.

From the observational and experimental side, [6] have mapped

the antigenic and genetic evolution of influenza virus from real

data using statistical techniques. They have confirmed the

theoretical results of [5], with antigenic clusters emerging and

replacing each other every 2 to 8 years.

Other theoretical works have enabled to relax the hypothesis of

a linear antigenic space [7,8]. Such a gain in realism has resulted

in an intuitive explosion of strains diversity due to a positive

feedback. As the antigenic diversity of co-circulating strains

increases, the production of further variants is also increased.

The key theoretical question has thus been to explain how the

strain diversity could be restricted to be compatible with the

phylogenetic tree of the glycoprotein HA of the subtype H3N2 [9].

Ferguson et al. (2003) (see also [10,11]) have included in their

model a strain transcendent temporary immunity (previously

suggested by [12]), along with some sources of variability [13].

This approach allows simulating realistic viral evolution at the

sequence level. Nevertheless, it remains difficult to prove

conclusively the physiological support of this non permanent

immunity through appropriate experiments.
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Recently, [14] have been able to reproduce the dynamics of

influenza HA genetic diversity within a high dimensional antigenic

space without invoking the temporary cross-immunity. [14] model

focuses on antigenic clusters resulting from a degenerated genotype

to phenotype map. The authors have considered that the evolution

of the main antigen of influenza A has two principal characteristics:

first, it consists of long periods of stasis where antigenic clusters

globally do not change their antigenic properties but evolve through

neutral or almost neutral mutations; second, these periods are

punctuated by bursts of positive selection which precipitate

antigenic cluster transitions due to rare escape mutations. The

occurrence of new antigenic clusters results in selective sweeps that

restrict strains diversity. [14] model have shown that weak within

cluster selection and the selective sweeps that accompany antigenic

clusters transition are sufficient to recover most of HA interpan-

demic evolutionary dynamics, a finding confirmed by genetic data

analyses [15,16]. [14] results suggest a new starting point for the

investigation of influenza dynamics at the population level.

Here we are interested in the consequences of [14] results at the

population level. Contrary to the classical SIRS model of [3], which

resorts to a gradual antigenic drift, [14] results suggest to focus on a

serial SIR model with discrete R to S transitions provoked by

punctuated evolution (rare immune-escape mutants with strong

antigenic effects). We are interested in contrasting the serial SIR

paradigm and the classical SIRS model of [3]. In particular, we seek

to determine whether a serial SIR model would require gradual

antigenic drift within clusters. As revealed by [14] study, gradual

antigenic drift favours antigenic cluster change by facilitating the

antigenic space exploration and also increases susceptible renewal.

Our approach mainly neglects the epidemiological impact of gradual

antigenic drift to disentangle the complex causal links induced by the

interactions between births and deaths processes, gradual antigenic

drift, clusters change, external virus reintroductions and specific

modelling assumptions. Our objective is to use simple and tractable

models to determine to what extent a serial SIR model per se, i.e

neglecting gradual antigenic drift can constitute a minimal model for

influenza A dynamics at the population level.

Our analysis mainly focuses on transient dynamics that appear of

first importance for selective sweeps and antigenic clusters replacement.

To our knowledge, contrary to what has been done for the stationary

dynamics (see [17]), no study has focused on the consequences of these

modelling assumptions on the transient dynamics.

From the methodological side, we start by clarifying the effects of

classical modelling assumptions of multi-strains SIR models on the

invasion and persistence of a new antigenic cluster. History and status

based two-strain models including reduced infectivity and suscepti-

bility assumptions are considered (section Methods). Significance and

choice of biologically relevant numerical values for model parameters

are then discussed. The deterministic framework is first explored

(sections Results). Then, both stochasticity and external reintroduc-

tion of viruses are added in order to test the robustness of the obtained

transient dynamics. Finally we discuss the biological limitations of the

only model able to reproduce observed antigenic cluster replacement

dynamics and, more generally, the ingredients of a minimal theory

for influenza A. Our findings globally suggest the impact of the

modelling assumptions on the outcome of the invasion of a new

antigenic cluster. They also stress the dynamical importance of

gradual antigenic drift in a minimal theory for influenza at the

population level even in the presence of punctuated immune escape.

Methods

In order to explore the behaviour of the serial SIR model as a

minimal theory for influenza, we consider an adaptive dynamics

framework [18]. The resident population is an antigenic cluster of

influenza strains at endemic equilibrium, illustrating the long

period of stasis described by [16]. The immune escape mutation

(as a consequence of a true mutation or a re-assortment [19])

generates a new antigenic cluster called the mutant. We are

interested in the outcome of the invasion of the resident viral

population by the mutant. This framework illustrates the burst of

positive selection proposed by [16].

Different assumptions for the modelling of partial
cross-immunity for co-circulating antigenic clusters;
deterministic framework

We study the outcome of immune escape mutations, by using

two-strain dynamical models applied to the resident and the

mutant antigenic clusters defined here above.

Two main modelling approaches have been used to study

immunologically cross-reactive strains: (i) history based (HB) models

[4] and (ii) status based (SB) models [20]. As stressed by [20] and

[21], in a HB model, all hosts previously infected by a strain i
become partially immune to a second strain j. In SB model, when

a given host gets infected by a strain i, the within-host

immunological dynamics takes place and ‘‘immediately’’ generates

the immunological status (immunised or not) towards strain j [20].

Partial cross immunity can be modelled using two extreme

hypotheses: (i) reduced infectivity (RI) or (ii) reduced susceptibility (RS).

SB models with RI assumption exhibit the attractive mathemat-

ical property of dimensional reduction without loss of information,

containing twice more equations that strains. The tractability of

this kind of models has been exploited in previous works [5,14,22].

To clarify the effect of these various assumptions, we provide a

comparison of both RS and RI cases in both SB and HB models.

Status based model with reduced susceptibility (SBRS)

and co-infections. We introduce the following notations: R1 is

the proportion of hosts with no acquired immunity, Ri is the

proportion of hosts who have acquired immunity to cluster i and

Rij is the proportion of hosts who have acquired immunity to

clusters i and j. Note that we include currently infected hosts (I )

into the R state variables. Partial cross-immunity is modelled by s,

which represents the probability of being immunised against

cluster j when infected by cluster i.

Using these notations and considering that co-infections are

possible during the infectious period and that infections with one

antigenic cluster reduce susceptibility to the other, we can derive

(see for instance [21] or [20] ) equation (1):

_RR1~m{b1R1I1{b2R1I2{mR1

_RR1~(1{s)b1R1I1{b2R1I2{mR1

_RR2~(1{s)b2R1I2{b1R2I1{mR2

_RR12~sb1R1I1zsb2R1I2zb2R1I2zb1R2I1{mR12

_II1~b1R1I1zb1R2I1{nI1{mI1

_II2~b2R1I2zb2R1I2{nI2{mI2

ð1Þ

Parameter interpretation and values are given in Table 1.

Status based model with reduced infectivity (SBRI) and

co-infections. In the case where infection by one antigenic

cluster reduces the infectivity of a subsequent infection by the

other cluster, using the same notation as in (1) and still allowing

coinfections during the infectious period, we obtain:

Simple Models for Infuenza A
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_RR1~m{b1R1I1{b2R1I2{mR1

_RR1~(1{s)b1R1I1{b1R1I1z(1{s)b1R1I1{b2R1I2{mR1

_RR2~(1{s)b2R1I2{b2R2I2z(1{s)b2R2I2{b1R2I1{mR2

_RR12~sb1R1I1zsb2R1I2zsb1R1I1zsb2R2I2zb2R1I2

zb1R2I1{mR12

_II1~b1R1I1zb1R2I1{nI1{mI1

_II2~b2R1I2zb2R1I2{nI2{mI2

ð2Þ

A precise derivation of (2) can be found in the appendix of [21].

This model can be further reduced to four equations by defining

S1 and S2 as S1~R1zR2 and S2~R1zR1 respecitively. This

leads to a two-strain version of the model of [5].

History based model. In this framework, notations are

changed to follow the infection history of the hosts. Hosts can be

susceptible to both clusters (proportion SS), susceptible (or

resistant) to one cluster and infectious with the other one (SI
and IS, or RI and IR respectively), infectious with (or resistent to)

both clusters (II or RR respectively) or susceptible to one cluster

and resistant to the other one (SR and RS respectively).

When first immunised by one cluster, hosts can be less infectious

when infected by the second cluster: the infectivity is modulated by

the parameter s and the model is called the history based model

with reduced infectivity (HBRI ). Hosts can also have a reduced

susceptibility towards the second cluster controlled by parameter

x. The model is called the history based model with reduced

susceptibility (HBRS).

This gives rise to the following equations (3), with s,x[ 0,1½ �.

_SSS~m{b1SS(ISzsIIzsIR){b2SS(SIzsIIzsRI){mSS

_IIS~b1SS(ISzsIIzsIR){b2xIS(SIzsIIzsRI){nIS{mIS

_SSI~b2SS(SIzsIIzsRI){b1xSI(ISzsIIzsIR){nSI{mSI

_III~b2xIS(SIzsIIzsRI)zb1xSI(ISzsIIzsIR)

{nII{nII{mII

_RRS~nIS{b2xRS(SIzsIIzsRI){mRS

_SSR~nSI{b1xSR(ISzsIIzsIR){mSR

_IIR~nIIzb1xSR(ISzsIIzsIR){nIR{mIR

_RRI~nIIzb2xRS(SIzsIIzsRI){nRI{mRI

_RRR~nIRznRI{mRR

ð3Þ

As noted by [23], in the case of the RS assumption we can

reduce the dimension of the system by introducing the following

state variables: I1~ISzIIzIR; I2~SIzIIzRI ; R1~SS;

R1~ISzRS and R2~SIzSR.

Another assumption was used by [24]. In [24] model, cross-

protection does not affect susceptibility but reduces transmissibility

by a factor s. Instead of reducing the infectivity of the hosts as for

the previous HBRI model (equation 3), [24] model assumes that

infection by a cross-reactive cluster of partially protected hosts

results in a partition of the infected hosts into a proportion s of

infectious hosts and a proportion 1{sð Þ of non infectious hosts

that nevertheless become immunised to the infecting cluster. This

assumptions lead to equation 4.

_SSS~m{b1SS(ISzIIzIR){b2SS(SIzIIzRI){mSS

_IIS~b1SS(ISzIIzIR){b2IS(SIzIIzRI){nIS{mIS

_SSI~b2SS(SIzIIzRI){b1SI(ISzIIzIR){nSI{mSI

_III~sb2IS(SIzIIzRI)zsb1SI(ISzIIzIR){nII{nII{mII

_RRS~nIS{b2RS(SIzIIzRI){mRS

_SSR~nSI{b1SR(ISzIIzIR){mSR

_IIR~nIIzsb1SR(ISzIIzIR)z(1{s)b2IS(SIzIIzRI)

{nIR{mIR

_RRI~nIIzsb2RS(SIzIIzRI)z(1{s)b1SI(ISzIIzIR)

{nRI{mRI

_RRR~nIRznRIz(1{s)b1SR(ISzIIzIR)

z(1{s)b2RS(SIzIIzRI){mRR

ð4Þ

As originally proposed by [24] the dimension of equation 4

model can be reduced by introducing: zi the proportion of hosts

infectious or immunised by cluster i (e.g z1~ISzIIzRSzIR
zRIzRR), wi the proportion of hosts infectious or immunised by

cross-reactive cluster with cluster i including cluster i itself (e.g

w1~ISzSIzIIzRSzSRzIRzRIzRR) and yi the hosts

infectious by cluster i (e.g y1~ISzIIzIR). In case were the

degree of protection against new infections is the same for all

related strains, [24] model contains only three times more

equation than strains. However, generalisation to several levels

of cross-protection greatly increases the dimensionality [11,25]. As

the model in equation 4 and the HBRI model of equation 3 lead

to similar results, we will only consider the latter one depicted by

equation 3. Our analyses will thus concern four models: SBRS,

SBRI , HBRS and HBRI all summarised in figure 1.

Table 1. Parameter values.

Parameters Theoretical Empirical

m (birth and death rate) 1=70 years{1 [28] 1=70 years{1 [28]

n (recovery rate) 1=8 days{1 [14] 1=2:77 days{1 [30]

R0 (b~R0 mznð Þ) 5 [14] 2:66 [30]

doi:10.1371/journal.pone.0007426.t001

Figure 1. SBRS (left), SBRI (middle) and HB (both HBRS and
HBRI) (right) two antigenic-clusters models. Red (blue) arrows
represent infection by antigenic cluster 1 (2). Only the SBRI model
(middle) is subject to cross-immune boosting (Ri?Rij following
reinfection by strains of cluster i).
doi:10.1371/journal.pone.0007426.g001
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Stochastic models
We implemented stochastic versions of each of these four

models (SBRS, SBRI , HBRS and HBRI ) using Gillespie event-

driven algorithm [26] and the MT19937 random number

generator of Makoto Matsumoto and Takuji Nishimura provided

by the C library GSL [27]. For instance, for the SBRI model, the

differential equation system (2) can be translated into the reaction

scheme described in Supporting Information S1.

Parameter values
Two sets of parameters were used here. One consists of

parameters mainly used in theoretical papers (e.g. [7,14,28]) and

the other consists of more direct estimates of parameters from

household studies (e.g. [29–31]). They are all defined in Table 1.

For comparison purpose, we have retained the parameters values

of [14] and have provided a sensitivity analysis using the other set

of parameters (results not shown). Parameters s and x (or s and s)

can be related by x~1{s (s~1{s respectively). For the sake of

simplicity, we refer to s only and express x and s with respect to s.

The choice of appropriate values for s was motivated by the

significance of the process captured by the model. We are mainly

interested in antigenic evolution occurring during epidemic influenza

(whether it is punctuated or gradual). As we work at the phenotype level,

our framework can also be used to study pandemic influenza and

antigenic shift (appearance of new influenza subtypes within humans).

The distinction between these three processes (gradual/punctuated

antigenic drift and antigenic shift) is only based on the value of s
(s[ 0,1½ �) taken as a bifurcation parameters. Low s values (s?0) are

related to antigenic shift and s values close to 1 correspond to antigenic drift,

either gradual or punctuated. In order to separate punctuated from

gradual antigenic drift, we use the scale given in [14] and consider that

s values under 0.93 are relevant for punctuated immune escape

(typically 0.8), whereas higher values, closer to 1, are more appropriate

for gradual antigenic drift. Note that comparable values were used in

previous studies focusing on gradual antigenic drift [5,7]

Defining the population size (N) is of tremendous importance when

using stochastic models [32–36]. As we are mainly interested in

replacement dynamics, we need to define a population size where the

resident cluster can persist when alone in order to avoid confusion

between different causes of replacement. According to our simulations

(Supporting Information S1), we choose a population size of 10 million

of individuals to ensure that resident extinctions are not due to endemic

fadeout during the timescale considered (10 years, figure 2). This value

is also used in the deterministic framework to fix a threshold (equal to
1

N
) below which we consider that extinctions occur. Note that this

Critical Community Size (CCS) [37] does not guarantee that the

resident strain could have invaded the population and persist [38].

Results

Invasion condition of the mutant cluster
We start our analysis by examining the dynamical impact of the

four modelling assumptions (SBRS, SBRI , HBRS and HBRI )

corresponding respectively to equations (1), (2) and (3)) thorough

calculation of invasion conditions of the mutant cluster (labelled

cluster 2) within the environment corresponding to the equilibrium

of the resident cluster (labelled cluster 1).

For the SB models, in both SBRI and SBRS versions, the

invasion condition can be deduced from:

dI2

dt

����
R�1,R�

1

~(b2R�1zb2R�1{n{m)I2, ð5Þ

where R�1 and R�1 are equilibrium values of R1 and R1 when only

cluster 1 is present. In both SBRI and SBRS models, R�1~
mzn

b1

.

For R�1, in the SBRS model R�rs
1 ~ 1{sð Þ 1{

mzn

b1

� �
and

R�ri
1 ~

1{sð Þ 1{
mzn

b1

� �

s
b1

mzn
{1

� �
z1

in the SBRI model, that is

R�ri
1 ~

R�rs
1

s
b1

mzn
{1

� �
z1

. If parameters are equal for the two

antigenic clusters (that is b1~b2~b), equation (5) becomes:

dI2

dt

����
R�1,R�

1

~bR�1I2

The mutant can invade (i.e.
dI2

dt

����
R�1,R�

1

w0) as long as sv1

provided that R0~
b

mzn
w1. The invasion fitness of the SBRI

model equals the one of the SBRS model divided by

s
b

mzn
{1

� �
z1. Depending on s, the initial speed of invasion

with the RI assumption can be greatly decreased. RS and RI

assumptions are not without effects on the transient dynamics of

antigenic clusters invasion in SB models.

In the HB framework, the previous approach is not feasible for the

HBRI model. The basic reproduction ratio R0 is calculated in this

case as the dominant eigenvalue of the linear next generation operator

[39]. In both HBRS and HBRI models the dominant eigenvalue is:

Rinv
0 ~

b2SS�zb2sxRS�zb2sxIS�

mzn
:

As for the SB cases, SS�, IS� and RS� are equilibrium values of SS,

IS and RS when only cluster 1 is present and are equal to

SS�~
mzn

b1

, IS�~
m

mzn
{

m

b1

and RS�~
n

mzn
{

n

b1

. If b1~b2,

the invasion is possible (i.e. Rinv
0 w1) as long as sxw0 provided

R0~
b

mzn
w1. Contrary to the SB framework, in a two-cluster HB

model, invasion fitness is the same in both RS and RI cases.

Table 2 provides a comparison of the Rinv
0 for the four models

considered and reveals that the SBRI model differs from the three

others which possess the same Rinv
0 . The SBRI model assumption

appears to reduce the initial speed of invasion of the mutant cluster

by a factor
1

s R0{1ð Þz1
.

Invasion and extinction
Deterministic framework. Figures 2, 3 and Supporting

Information S1, illustrate a comparison of the effect of s on the

invasion dynamics of a new cluster (the resident being at endemic

equilibrium) for the four two-cluster models studied with parameters

set at theoretical values (Table 1). Figure 4 summarises the results of

the transient dynamics of the mutant invasion in terms of clusters

replacement considering a deterministic threshold of
1

N
~10{7 for

extinction as determined by simulations summarized in Supporting

Information S1.
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For s[ 0:8, 0:93½ � (corresponding to [14] scale of rare immune

escape mutations) in figures 2 and 4 antigenic cluster replacements

are possible only for the SBRI model. The three other models exhibit

extinction of both antigenic clusters. For s?1 (corresponding to

gradual antigenic drift) in figures 3 and 4 the SBRI model results in

coexistence of both clusters contrary to the three other models which

predict the replacement. For s?0 (antigenic shifts) in figure 2 and 4

the resident influenza subtype is not sufficiently affected by the

mutant subtype to go extinct and it survives while the mutant

disappears after generating an outbreak. Note that smaller values of

cross-immunity are sufficient for the SBRI model to drive the

resident to extinction (figures 2 and 4).

In all cases, a proper rescaling of the SBRI model with lower s
values as suggested in Table 2 is needed to render it comparable to

the three others models.

Stochastic framework. Simulated trajectories corroborate the

trends provided by deterministic models, especially the particularity of

the SBRI model (figures 5, and Supporting Information S1).

The replacement of antigenic clusters following rare mutations

with strong antigenic effect appears to be realistic only in the case

of the SBRI model (figure 5, red bars and Supporting Information

Figure 2. Transient invasion dynamics for the four two-cluster models studied. The decimal logarithm of the proportion of infectious hosts
for the mutant antigenic cluster (plain lines) and for the resident cluster (dashed lines) is represented as a function of s. Colours correspond to
different partial cross-immunity (s) values: from s~0 (antigenic shift, no cross-immunity) to s~1 (antigenic drift, full cross-immunity). Parameter
values are given in Table 1 (theoretical set). Initial conditions are: I1(0)~I1�~250:4 � 10{6 , I2 0ð Þ~10{6.
doi:10.1371/journal.pone.0007426.g002

Table 2. Invasion R0.

model R0
inv

SBRI 1z 1{sð Þ R0{1ð Þ= s R0{1ð Þz1ð Þ
SBRS 1z 1{sð Þ R0{1ð Þ
HBRI 1zsx R0{1ð Þ
HBRS 1zsx R0{1ð Þ

Comparison between the four two-cluster models (equations (1), (2) and (3)) in
terms of the basic reproduction ratio (Rinv

0 ) of the mutant cluster invading a

resident population at endemic equilibrium.
doi:10.1371/journal.pone.0007426.t002
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S1) for which a set of s values consistent with punctuated immune

escape variability exists. For these s values (s[ 0:8,1½ �), a trade-off

exists between invasion ability (that is risks of initial extinction) and

risk of epidemic fade-outs (as described for the evolution of the

recovery rate by [40]). Figure 5 shows that the proportion of initial

extinctions, previous to an epidemic caused by the mutant,

decreases as long as the degree of immune escape (1{s) increases

(blue colour in panel SBRI of figure 5). At the same time, the

proportion of epidemic fade-outs after replacement increases

(orange colour in panel SBRI of figure 5). Moreover, these results

are consistent with formulas given in Table 2, since the probability

of initial extinctions of the mutant cluster is given by 1
�

Rinv
0 [39].

For the SBRI model, this probability increases linearly with s
(figure 5 SBRI , blue bars) whereas for the three other models

(panel SBRI , HBRI and HBRS of figure 5, blue bars), it remains

uniformly lower and increases as
1

R0z 1{sð Þ 1{R0ð Þ with s.

The time necessary to drive the resident cluster to extinction is

also a decreasing function of the immune escape intensity (red

boxplot in panel SBRI of figure 5). For s?1, transient

coexistence (5 years) of both antigenic clusters is expected before

definitive replacement.

Taken together, the previous results reveal that: (i) antigenic

clusters replacement within a serial SIR model is possible only in the

case of a SBRI model; (ii) antigenic shift results in the extinction of

both subtypes (brown colour figure 5, trajectories in Supporting

Information S1) or of the mutant only (blue colour figure 5).

External re-introductions
Modelling re-introduction. In the real world, populations

are opened to migration and extinct clusters can be re-introduced.

To complement our results we need to evaluate the timescales of

re-invasion. In particular, we focus on: (i) the robustness of the

replacement (i.e. is the resident able to re-establish in the

population due to spatial effects of re-introduction?); (ii) which

cluster re-invades first when both are extinct quasi simultaneously.

Except for initial extinctions, the observed extinctions are

mostly due to deterministic forces of susceptibles depletion and not

to random fluctuations of trajectories evolving close to one

individual (low variances in the box plots of figure 5). Incidentally,

the opportunity of a second epidemic after an epidemic fadeout for

the mutant cluster or, the opportunity of re-invasion of the resident

cluster after having been extinct due to the invasion of the mutant

cluster are mostly governed by the deterministic dynamics of

susceptibles renewal [41].

We will thus use deterministic models to compute the average

time necessary before a recurrent epidemic. A simple way to do

this is to consider a constant amount of infectious individuals

entering the population studied. Classically (e.g. [42,43]) the

following scheme has been used:

Figure 3. Detail of figure 2. Partial cross-immunity (s) values more relevant for gradual antigenic drift (s[ 0:9,1½ �).
doi:10.1371/journal.pone.0007426.g003
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_IIi~b tð ÞSi Iizmpið Þz:::,

where m is the number of infected individuals imported from

outside (generally m*N{1) and pi is the proportion of these

immigrating hosts infected with strain i. Note that we do not

consider infecteds from outer regions in the bookkeeping of Ii.

From Supporting Information S1 we can see that the overall

pattern of transient dynamics is not affected by the modelling of

external re-introductions.

Re-invasion time-scales
Figure 6 reveals that for s values relevant for punctuated

antigenic drift (s?1), successful replacements are robust to the re-

introduction of the resident antigenic cluster (i.e the re-introduc-

tion of the resident cluster does not lead to an epidemic). In the

case of replacements where both clusters go extinct (the resident

being extinct before the mutant) the mutant cluster re-invades first.

This underlines the fact that we face a replacement. The time until

the next epidemic is nevertheless unrealistically high (w5 years) to

be consistent with observed patterns of influenza yearly recurrence

in the absence of antigenic cluster changes.

For antigenic shifts (s?0), when both clusters go extinct,

timescales for a recurrent epidemic are also too long to be relevant

(re-invasion time w10 years, figure 6). In the case where the

invader is able to drive the resident to extinction (that is for the

SBRI model), replacements are not robust to external re-

introduction. The former resident re-appears more than 10 years

before the invader.

Discussion

Punctuated antigenic evolution is being recognised as an

important mechanism of immune escape in various RNA viruses,

but its detection remains difficult and somewhat uncertain [44]. In

this paper we have focused on exploring to what extent the

complex processes shaping influenza dynamics can be approxi-

mated by a minimal serial SIR system, emphasising rare

mutations with strong antigenic effects. According to our results

(figure 2, 3), punctuated immune escape results in a high depletion

of susceptibles in SBRS, HBRS and HBRI models. As a

consequence, recurrent epidemics during consecutive years are

rendered impossible even with reintroductions. However, data

clearly suggest that several recurrent epidemics of the same new

mutant cluster can follow the replacement of the resident cluster

by the new one. For instance, following its invasion, Beijing/1993

(BE93) cluster has provoked epidemics of 1992–1993, 1993–1994,

1994–1995 and 1995–1996 seasons in New York state before

being replaced by Wuhan/1995 (WU95)-like viruses [45]. Such

dynamics can only be reproduced by the SBRI model because it

Figure 4. Extinction times of the resident antigenic cluster (blue) and of the mutant cluster (red) for the four two-cluster models
studied. Parameter values are given in Table 1 (theoretical set). Initial conditions are: I1 0ð Þ~I1�~250:4 � 10{6, I2 0ð Þ~10{6 .
doi:10.1371/journal.pone.0007426.g004
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Figure 5. Outcomes of the transient invasion dynamics based on 1000 realisations of the four two-cluster stochastic models. For
each panel, top graphs represent the proportion of realisations where, after 10 years: both antigenic clusters go extinct, but the mutant goes extinct
first (brown); both antigenic clusters go extinct, but the resident goes extinct first (aborted replacement, orange); the resident cluster only goes
extinct (successful replacement, red); the mutant cluster only goes extinct (blue); no cluster goes extinct (coexistence, green). For each panel, bottom
box plots represent: extinction times of the mutant cluster when only this cluster goes extinct (blue); extinction times of the resident cluster when
only this cluster goes extinct (red); the differences between extinction times of the mutant cluster and the resident when both clusters go extinct
(brown and orange). Initial conditions: one infected individual with the mutant antigenic cluster is introduced in a population where the resident
cluster is at the deterministic endemic equilibrium. The remaining initial conditions are those corresponding to the endemic equilibrium of the
deterministic model and parameter values are given in Table 1 (theoretical set).
doi:10.1371/journal.pone.0007426.g005
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produces comparatively slower invasion dynamics and fewer

susceptible depletion. A minimal serial SIR theory is thus

supported only within the SBRI framework.

In the following, we review the processes that makes the SBRI
model different from HB or SB models with RI assumption. We

then provide elements pointing out that these processes direct

towards a biologically problematic description of cross-immunity.

Finally, we provide arguments supporting the idea already evoked

by [14] that a sequential SIR model requires within antigenic

cluster gradual antigenic drift and that this process should be part

of a minimal theory for influenza dynamics at the population level.

Is the SBRI model particularly appropriate?
One of the important aspects of influenza dynamics is the cross-

immunity represented here by the parameter s which measures

the antigenic distance between two strains, regardless of the

modelling framework. Here, the range of variation of s was the

same for the four models and was chosen according to [14]. This

allowed direct comparison between the four models.

Our results reveal that the similar dynamics are generated for

significantly higher values of s in the case of the SBRI model than for

the other three models (Table 2). This difference in behaviour is due to

the fact that in the SBRI model, individuals that have been infected

with cluster i can be reinfected by the same cluster. These reinfected

hosts will not be infectious (because of the RI assumption) but may

enhance their immunity to cluster j (figure 1, middle). In equation (2)

repeated infections corresponds to the terms {biRiI
i. s percent of

these hosts acquire immunity to strain j, progressing to the Rij status

whereas the remaining (1{s)biRiI
i hosts keep the Ri status. As noted

by [21], such cross-immune enhancement is impossible in the SBRS
model because by construction of this latter model Ri hosts are no

more susceptible to cluster i and cannot be reinfected.

In the context of influenza, cross-immune enhancement as

provided by the SBRI model appears to contradict established

theory for immunodominance, cross-reactivity and interference

(see [46] for a review). For sequential infections, a key question is

to determine whether a new infecting strain is sufficiently different

from a previously encountered strain to consider that a new

primary response would be mounted by the immune system

instead of a secondary response. In our model, we considered that

independent primary responses were mounted for the different

antigenic clusters. Strains belonging to cluster j, were supposed

sufficiently different from strains belonging to cluster i not to

interact with memory cells supporting immunity toward strains of

cluster i. The reinfection then results in the production of Rij hosts

in both SBRS and SBRI models. For the case of reinfection of Ri

Figure 6. Extinction and re-invasion times for the four two-cluster models in the presence of external reintroductions of infectious
hosts. (+) represent times when a deterministic threshold (equal to 10{7) for extinction is crossed by the trajectories for the resident cluster (blue)
and the mutant (red); (o) correspond to times of the first peak after extinction for the resident cluster (blue) and times of the second peak of the
mutant cluster (red). Parameter values are given in Table 1 (theoretical set), mpi~10{8 . Initial conditions are: I1 0ð Þ~I1�~250:4 � 10{6 , I2 0ð Þ~10{6.
doi:10.1371/journal.pone.0007426.g006
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hosts with closely related strains belonging to cluster i (possible

only for the SBRI model), one can reasonably assumes that such

strains are sufficiently closed to interact with the memory cells

(otherwise they would belong to cluster j). In this case, according to

[46], we can expect a sequential effect called original antigenic sin,

well known for influenza [47–49]. Within original antigenic sin, a

strong response against a previously recognised epitope represses

the response against the changed epitope. As the SBRI model

assumes a strong and immediate response toward the previous

epitope (hosts reinfected with a virus from an identical cluster are

no longer infectious), the rapid response from memory cells may

keep viral load below the threshold required to stimulate naive B

or T cells (other processes are also possible [49]).

Given these mechanisms, the cross-immune enhancement

provided by the SBRI model should be considered as an

overestimation bias of immunity and proper rescaling of s should

be done before using the SBRI model in the context of influenza.

Toward a minimal theory for influenza
Except for the biologically problematic SBRI model, our results

stress that the occurrence of new antigenic clusters resulting from

immune escape mutations rapidly induces important depletion of

susceptibles. This depletion results in an extinction of the invading

antigenic cluster and this phenomenon is robust to reintroductions

(figure 2, 3 and 6). Thereafter, we propose processes that can favour

the replacement of the resident by the mutant as observed in data.

Gradual antigenic drift within antigenic clusters. [28],

have considered a model that incorporates gradual antigenic drift

within antigenic clusters. They have assumed that within cluster

evolution results in a diversity of strains that renders immunity to

an antigenic cluster only partial. Partial immunity has been

modelled by a SIRI model [50], allowing reinfection at a slower

rate. [28] have shown that reinfections define a reinfection

threshold [50,51] that plays a central role in determining the

outcome of the invasion by a new antigenic cluster. Reinfection

determined by gradual antigenic drift therefore appears to be

central for successful antigenic cluster replacement as observed in

data. Contrary to [28] claims that no antigenic cluster replacement

can occur within SIR models, we have shown that this could be

the case with SBRI models. However, since the SBRI model is

biologically problematic, it still remains to be tested whether SIRI
or SIRS models would best describe drifting antigenic cluster.

Contrary to the SIRI model which assumes that strains diversity

within a given antigenic cluster results in partial immunity, the SIRS
model considers that within antigenic clusters evolution results in a

progressive loss of immunity [3]. Our investigation of the transient

dynamics of drifting cross-reactive clusters modelled by SIRS models

as described in figure 7 and section 4 of Supporting Information S1

reveals that small amount of gradual antigenic drift can favour

antigenic replacement over epidemic fadeout (figure 8 and

Supporting Information S1). Within cluster gradual antigenic drift,

whether included in SIRS or SIRI models can therefore turns

epidemics fadeout of the mutant cluster into a successful replacement.

Introducing gradual antigenic drift in a minimal model for influenza

also allows to reduce the high critical community size needed to ensure

the persistence of a resident antigenic cluster. A small rate of gradual

antigenic drift have a dramatic effect on the CCS of a resident

antigenic cluster reducing the CCS from 10 millions to 1–2 millions

(Supporting Information S1). CCS closer to one million renders

stochastic effect (such as noise induced temporal asynchrony [23])

important to consider as they could potentially facilitate coexistence.

These theoretical results corroborate [52], [53] and [54]

analysis of antigenic drift at the population level. [52] have

estimated baseline antigenic drift rate from influenza like illness

data using a model allowing sudden discrete changes and have

shown that it was significantly different from zero. [53], using a

method with a higher power of detection of positive selection than

previous studies, have shown that within antigenic cluster change

could be more important than traditionally (e.g [16]) believed.

Gradual antigenic drift should thus be part of a minimal model

for influenza A along with punctuated immune escape.

Functional constraints. Functional constraints are well

established for influenza A [19,22,45]. For instance, it has been

established that cooperative activities of both HA and NA are

critical for influenza virus infection and release [55]. Functional

constraints can induce a fitness cost associated to an antigenic

escape mutation. Lower fitness of the mutant cluster could be

beneficial for the replacement dynamics as by decreasing the

strength of the initial invasion, functional constraints could also

decrease the risk of epidemic fadeout and long refractory periods

that follow high depletion of susceptibles. A simple way to

handle functional constraints is to consider a relation between the

mutant cluster transmission rates (bmut) and its ability to escape

previous immunity (governed by s). Without loss of generality,

functional constraint can be introduced by lowering bmut

(assuming bmut~abres with
1

Rres
0

ƒaƒ1) to ensure that

1ƒRmut
0 ƒRres

0 . Using section Results results we can calculate

the threshold value of s, equal to s�, necessary for the antigenic

cluster invasion. In case of both HB and SBRS models, the

threshold is defined by sv

aRres
0 {1

a Rres
0 {1

� �. Functional constraints can

explain why immune escape mutations do not generate unrealistic

high epidemics (Supporting Information S1). To compare our

results to [14] model, we have neglected such constraint but they

should be considered in further investigations. Such inclusion

would need to incorporate compensatory mutations [19] to restore

original function and re-increase the impaired bmut.

Multiple infections before acquiring immunity. As we

have shown through simulations (figures 2, 4 and 5), subtype

replacement (as a consequence of antigenic shifts) appears impossible

except in the case of the questionable SBRI model. This is contrary to

Figure 7. An history based model for drifting co-circulating cross-
reactive antigenic clusters. The viruses are supposed to contain two
antigens: a conserved antigen, shared by strains of the resident and the
mutant antigenic cluster and a specific antigen, specifying each cluster.
Naive hosts acquire immunity to both conserved and specific part (RCi)
resulting in full protection toward strains of cluster i. Within cluster
antigenic drift affects only the specific antigen resulting in RCi?RC

transitions at a rate governed by parameter c. The shared conserved
antigen confers partial protection reducing the probability of reinfection
by a factor 1{s. Red (blue) arrows represent infection by cluster 1 (2).
Black arrows represent within cluster antigenic evolution. A full description
of the assumptions leading to this model is provided in section 4 of
Supporting Information S1. These hypotheses also enable to recover the
model of [28] and therefore render the two frameworks (SIRI and SIRS
within cluster antigenic drift description) readily comparable.
doi:10.1371/journal.pone.0007426.g007
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what have been observed during previous 1957’s Asian flu and 1968’s

Hong Kong flu pandemics [56]. This lack of realism was reported by

[7] in case of history based models and had been partially solved by

including temporary cross-immunity [12]. However, other proposals

that temporary cross-immunity could also be relevant. For instance, by

using data of the first introduction of H3N2 type A influenza on the

island of Tristan da Cunha in 1971, [57] show that two epidemics

separated by 20 days only have affected the population and most of the

hosts have been infected twice. This is different from the conventional

knowledge of influenza immunology and suggests that multiple

infection could be necessary before developing long term immunity.

This creates far more susceptible individuals than expected from our

models and greatly favours the persistence of the new subtype. It

remains to be tested whether the persistence of the new subtype is

sufficient to drive the resident subtype to extinction. Concerning

epidemic influenza, the need to incorporate multiple infection before

the acquisition of immunity deserves further attention.

As a last point, [58] have reopened a theory on influenza antigenic

evolution dominant in 1960 [59]. Within this theory, the virus

population is characterised by a limited set of antigenic types, all of

which may be continuously (re-)generated from preexisting strains.

[58] have shown that sampling from a population where a limited set

of antigenic types describe complex dynamics can reproduce the

specific patterns of antigenic cluster succession revealed by [6]

analysis. This view offers an alternative explanation to the sequential

antigenic drift scenario examined in this paper. Recent data, analysed

by phylogenetic and coalescent based approaches, strongly suggest

that influenza A dynamics is part of a source-sink system where the

source could be a reservoir of a limited set of antigenic types [45,60–

65]. However, it remains to be seen to what extent restriction of viral

genetic diversity could be achieved by [58] model. This model

strongly depends on antigenic recycling to justify the low dimension-

ality of the phenotype space, but antigenic recycling does not seem to

be supported by current data [11,25].

In conclusion, our findings finally suggest the importance of

gradual antigenic drift for epidemic dynamics even in the presence

of punctuated immune escape. Our results indicate that status based

model with reduced infectivity assumption can have profound

consequences on the transient dynamics of strains invasion. In case

of influenza, this model should be used with caution as it includes

biologically unsupported processes that can induce serious bias.

Supporting Information

Supporting Information S1 Influenza A gradual and epochal

evolution: insights from simple models - 1. Reaction scheme for

the SBRI model 2. Critical community size for influenza 3.

Complementary results for the theoretical parameters set 4. A

model for within cluster antigenic drift 5. Functional constraints

Found at: doi:10.1371/journal.pone.0007426.s001 (3.19 MB

PDF)
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