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Abstract
In this study, quantitative structure activity relationship (QSAR) models for the antioxidant

activity of polysaccharides were developed with 50% effective concentration (EC50) as the

dependent variable. To establish optimum QSAR models, multiple linear regressions

(MLR), support vector machines (SVM) and artificial neural networks (ANN) were used,

and 11 molecular descriptors were selected. The optimum QSAR model for predicting EC50

of DPPH-scavenging activity consisted of four major descriptors. MLR model gave EC50 =

0.033Ara-0.041GalA-0.03GlcA-0.025PC+0.484, and MLR fitted the training set with R =

0.807. ANN model gave the improvement of training set (R = 0.96, RMSE = 0.018) and test

set (R = 0.933, RMSE = 0.055) which indicated that it was more accurately than SVM and

MLR models for predicting the DPPH-scavenging activity of polysaccharides. 67 com-

pounds were used for predicting EC50 of the hydroxyl radicals scavenging activity of poly-

saccharides. MLR model gave EC50 = 0.12PC+0.083Fuc+0.013Rha-0.02UA+0.372. A

comparison of results from models indicated that ANN model (R = 0.944, RMSE = 0.119)

was also the best one for predicting the hydroxyl radicals scavenging activity of polysaccha-

rides. MLR and ANN models showed that Ara and GalA appeared critical in determining

EC50 of DPPH-scavenging activity, and Fuc, Rha, uronic acid and protein content had a

great effect on the hydroxyl radicals scavenging activity of polysaccharides. The antioxidant

activity of polysaccharide usually was high in MW range of 4000–100000, and the antioxi-

dant activity could be affected simultaneously by other polysaccharide properties, such as

uronic acid and Ara.

Introduction

In our normal metabolism process, oxygen free radicals and non-oxygen free radicals are con-
tinuously produced, and lower concentrations of free radical can play a crucial role in regular
physiological functions [1–5]. However, many diseases, such as cardiovascular diseases, diabe-
tes, aging and cancer, can be conducted by unregulated overproduction of free radicals [6–8].
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Thus, it is essential to develop natural and effective antioxidants [9]. Previously reports
revealed that many natural polysaccharides possess potent scavenging activities of free radicals
and can be used as potential antioxidants [10–11]. It is always impossible to obtain a large
quantity of experimental data because of a lack of perfect data sites, and so the study on rela-
tionship between bioactivities and the properties of polysaccharides by model forecast
approach was relatively poor [12].

The quantitative structure-activity relationship (QSAR) model, which use relevant molecu-
lar physico-chemical properties to predict important treatment responses, is considered as an
alternative to the experimental evaluation [13]. It has gained increasingly attention, and a vari-
ety of QSARmethods have been developed for water treatment process selection,membrane
separation and adsorption etc [14–15].

To date, QSARmodels for predicting the bioactivities of polysaccharides have seldom been
developed. A study reported the relationship betweenmonosaccharide composition ratio and
macrophage stimulatory activity by model forecast approach [12]. To obtain theoretical sup-
ports for applications of polysaccharides from natural products, the main aim of this work was
to establish reliable soft measurement models to predict performance and study the relation-
ship between polysaccharide properties and antioxidant activities of polysaccharides by QSAR.
In our QSAR studies, multiple linear regression (MLR) method, and the nonlinear methods
including artificial neural network (ANN) and support vector machine (SVM) were used.

Materials and Methods

Data set

The present study showed that the antioxidant activity of polysaccharide has related with
many factors, includingmonosaccharide composition [16], uronic acid (UA), molecular weight
(MW), protein content (PC) and sulfate group content et al [17]. In the data selection, we
chose natural purified polysaccharides without sulfate groups to study QSARmodels for pre-
dicting antioxidant activities of polysaccharides. A various set of polysaccharides and their
antioxidant activities were collected from different published papers [18–45]. Antioxidant
activities of polysaccharides were represented by the 50% effective concentration (EC50). To set
up a more reliable model, we selected 141 compounds. The detailed publication lists with cor-
responding antioxidant activities and compounds were given. The normalization process was
adopted in the distribution of the parameters with 2 as the bottom of the log logarithm, and
MWwas divided by 10000 in the normalization process.

In models, a training data set was applied to develop the model. A test set, which was never
included during their development, was used to validate the predictive power of model [46–
47]. The training set and test set were chosen by random distribution.

Descriptors

The structure of polysaccharide was complex and could be represented by variety of descrip-
tors. However, the major composition of polysaccharide was monosaccharide joined together
by glycosidic bonds, which was essential to their bioactivities, so we usedmonosaccharide
composition as descriptors. The following descriptors of monosaccharide composition were
considered for modeling EC50 values in MLR, ANN and SVM analysis. Descriptors of mono-
saccharide composition: rhamnose (Rha), arabinose (Ara), mannose (Man), glucose (Glc),
galactose (Gal), fucose (Fuc), xylose (Xyl), ribose (Rib), glucuronic acid (GlcA) and galact-
uronic acid (GalA). Usually, gas chromatography (GC) and high-performance liquid chroma-
tography (HPLC) were performed for the identification and quantification of monosaccharide
composition. For HPLC analysis, glucuronic acid (GlcA) and galacturonic acid (GalA) could
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not be identified. Thus, total uronic acid (UA) could be determined by other methods, such as
the sulfuric acid carbazole method, and then UA was also used as a descriptor in our models.
The descriptors of PC and MWwere also adopted in models. STATISTIC.10 method was used
to establish SVM,MLP and ANNmodels, and the picture was drawn by using RStudio (Ver-
sion 0.99.902–2009–2016 RStudio, Inc.).

Linear model generation

There were primarily two different approaches for choosing a descriptor subset in MLR, and
they were filter and wrapper methods. The procedure of filter method was that setting and fil-
tering descriptors were supposed to generate the top priority subset before training. However,
the learning algorithmwas wrapped into the selection procedure in the wrapper method [48].
In MLR, we used wrapper as the target learning algorithm. The training data set was applied
only for selecting descriptor. At first, we employed a two-dimensional research method. It was
a combination of forward and backward search. Then we assessed the selected descriptors on
the target learning algorithm. In the learning process, we used 10 fold cross validation method.
In stepwise MLR analysis, we selected training descriptor sets and then established a linear
model [49].

Artificial neural network and Support vector machines

It was appropriate for artificial neural network (ANN) to model nonlinear relationship. We
can findmany reviews about ANN research and its application in QSAR studies [49–51]. In
this study, we employed multi-layer perceptron (MLP) [52] and three layer reverse Back-Prop-
agation (BP) network. In the back-propagation ANN, we utilized the technique of supervised
learning, and the trained network was trained by minimizing the squared error of the network’s
output. The first step of training model was to confirm the number of layers and neurons in
each player. The second step was to optimize the learning rate as well as momentum parame-
ters. In the input layer, the architecture of the network was composed of eleven neurons, which
were the eleven relative descriptors chosen. In the output layer, there was one neuron, i.e. EC50

values of the antioxidant activity. In all the layers, logistic functionwas applied. In the hidden
layer, through changing the number of neurons, we got the lowest RMSE and highest correla-
tion coefficient.We applied 30% of the training data set for verification. The verificationwas
employed to hinder from the over fitting. All of optimization process were taken with 10 fold
cross validation [53].

Support vector machines (SVM) was originally developed for the classification problem,
and SVM has been used to solve nonlinear regression estimation. Nowadays, SVM has demon-
strated much success in QSAR and quantitative structure-property relationship (QSPR) studies
[54–57]. We selected support vector machine classifier method (epsilon-SVM)which was most
commonly used in QSPR and QSAR studies to optimize the value of kernel parameter g
(gamma) [53].

Validation techniques and model performance evaluation

We used a 10 fold cross validation technique. This procedure divided the data set into 10 folds
or groups, created the model using 9 of the sets, and tested it on the remaining group. When
the procedure was repeated, each of the 10 groups had served as a test group. The root mean
square error (RMSE) was calculated, averaged, and then used to evaluate the predictive perfor-
mance of three models.
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Results and Discussion

Models for the DPPH scavenging activity of polysaccharides

The data was divided into two parts using random classification. One was the training set, the
other was the test set. The entire data set including 74 compounds was divided into two clus-
ters. The test set of 22 compounds was chosen randomly from this cluster, and the remaining
compounds were used as the train set. Compound number 4, 5, 7, 9, 17, 20, 25, 30, 31, 32, 33,
34, 36, 38, 44, 54, 57, 62, 63, 64, 69,73 were selected as the test set, and the rest of the com-
pounds were the train set. The test set and train set were given in Table 1. The data distribution
of parameter was shown in Fig 1, the data distribution was uniform, and no other single vari-
able values was close to EC50 values distribution (-6, 2). The shape of data distribution from
EC50 and Ara was similar, which indicated that there was a certain relation between them. In
addition to MW, other physical quantities were all the components of polysaccharides, so MW
was used to establish the model by itself.

MLR results

In this study, the training data set of 52 compounds was used. A stepwise linear regression
analysis was used to determine the relationship between the dependent variable of EC50 and
the independent variables of uronic acid (UA), protein content (PC) and monosaccharide com-
positions (Rha, Ara, Man, Glc, Gal, Fuc, Xyl, GlcA and GalA). To achieve this goal, regression
analysis was implemented by using the forward stepwise. In stepwise regression procedures,
the first was to choose the most correlated independent variable, and then to select indepen-
dent variable which was most correlated with the remaining variance in the dependent variable.
This procedure was to increase the additional independent variable with R-squared (R2) which
was not changing until a significance of at least 80%. Accordingly, the variables of Ara, GalA,
GlcA and PC were included in the regression model. The relationship between the matrix of
parameters and EC50 was shown in Fig 2. One variable data was used as the abscissa, another
variable data was used as ordinate, and all points had been portrayed by the matrix scatter plot.
From the diagonal we can see that the distribution of the data was all similar in shape. Fig 3
showed the correlation betweenmodel parameters and EC50, and the proportion of Ara, GalA
and GlcA accounted 0.51, 0.39 and 0.35, respectively, which indicated that they had the most
effect on EC50. In Fig 3, we can see that EC50 had a positive correlation with Ara and PC, and it
has negative correlation with GalA and GlcA, which was consistent with the model given in
equation. The regression Eq 1, which could be obtained through the statistical analysis, was as
follows. Because the effect of UA on EC50 was little, UA was not added to the model equation.
The linear model selected four major relevant descriptors, and gave a stable model with
R = 0.807 and RMSE = 0.423.

EC50 ¼ 0:033Ara � 0:041GalA � 0:03GlcA � 0:025PCþ 0:484

R ¼ 0:807 SE ¼ 0:423 F ¼ 21:979 p ¼ 2:82 E� 10 < 0:001
ð1Þ

In the model, R value was 0.807 (p<0.001), fit indicators of the model were acceptable, the
model was coincidedwith the data structure, and Ara, GalA, GlcA, PC and EC50 were signifi-
cant correlation. The predicted EC50 values of the training and test set by using the MLR equa-
tion were given in the Table 2. Predicted values and experimental values of EC50 in two sets of
data were plotted and shown in Fig 4. Most of the data were distributed from 0 to 1.5, and
there were some predicted and negative values existing in the left lower corner. The experimen-
tal values of these negative values were between 0 and 0.2, which could be accepted.
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Table 1. Polysaccharides data set with descriptors and EC50 values of the DPPH scavenging activity.

No Namea Rhab Arac Mand Glce Galf Fucg Xylh GlcAi GalAj UAk PCl EC50 Refs

1 S1 (Glu) 0 0 22.13 28.33 13.89 0 31.48 4.03 0 4.03 0 1.104 18

2 S1 (Visco) 0 0 63.01 10.37 16.06 0 4.7 5.87 0 5.87 0 0.794 18

3 GBP50S2 46.7 0 42.2 0 11.1 0 0 0 0 0 0 0.412 19

4 LBP-s80 0 62.9 13.2 2.9 12.5 3.8 4.7 0 0 17.07 0.69 2.97 20

5 LBP-s75 0 56.8 19.2 3.6 10.2 4.9 5.3 0 0 35.69 1.3 1.98 20

6 WB1 0 0 12.5 59.4 9.76 11.7 6.64 0 0 0 0 0.12 21

7 WB2 0 0 7.7 26 24.7 28.4 13.2 0 0 0 0 0.31 21

8 WB3 0 0 9.7 18.6 24.5 29.9 17.3 0 0 0 0 0.21 21

9 IOP40 4.4 4.2 9.8 40 14.5 3.3 9.6 9.7 4.6 5 2.4 0.88 22

10 IOP60 9.7 5.6 8 32.2 12.6 0 22.9 4.7 4.4 2.2 3.2 0.697 22

11 IOP80 11 5.6 9.7 31.3 8.5 0 25.3 2.8 3.9 1.5 4.6 1.19 22

12 FUP-1 0 0 0 9.81 6.78 0 83.41 0 0 0 0 0.47 23

13 CLP-2 3.3 2.1 14.5 48 28 0 4.1 0 0 23.59 1.48 0.86 24

14 CLP-3 0 0 8.6 56 29.4 0 6 0 0 17.06 0.95 1.27 24

15 TYAP-1 0 78.98 0 5.74 10.6 0 4.68 0 0 0 0 3.92 25

16 PV-P1 0 24.2 1.9 8.3 9.7 0 55.9 0.8 3.5 3.4 1.22 0.878 26

17 PV-P2 3.6 15.7 14.4 16 21.6 0 28.7 0.3 5.4 5.7 4.22 0.169 26

18 PV-P3 6.1 16.5 16.1 11.2 13.3 0 36.8 0.2 7.9 8.1 7.09 0.048 26

19 Control-EPS 6.1 14.6 20.4 20.7 24.2 0 14 0 0 0 19.75 2.3 27

20 Control-IPS1 3.1 7.2 28 36.7 19 0 6 0 0 0 17.57 1.08 27

21 Tween 80-IPS1 3.3 2.4 6.9 73.4 11.4 0 2.6 0 0 0 16.72 0.74 27

22 Tween 80-IPS2 1.4 5.2 18.3 60.9 12.1 0 2.1 0 0 0 15.61 0.84 27

23 CPSI 0 0 27 73 0 0 0 0 0 0 0 0.23 28

24 G1 10.9 1.2 6.2 52.5 14.9 0 14.3 0 0 4.2 6.49 0.34 29

25 G2 12.2 0.8 4.9 56 16.2 0 9.9 0 0 7.45 5.11 0.56 29

26 G3 12.2 3.8 3.2 50.2 12.5 0 18.1 0 0 1.92 3.62 0.87 29

27 P1 11.4 30.3 1.5 9.2 44.4 0 3.2 0 0 0 0 0.62 30

28 P2 10.4 22.1 3.1 11.2 53.1 0 0 0 0 0 0 1.07 30

29 CP 1.2 15.6 7.5 28.2 24.7 0 5.4 4.8 12.6 17.4 7.57 0.09 31

30 SCG 0 19.93 4.43 15.37 60.27 0 0 0 0 0 0 0.7 32

31 PNMP2 0 5.78 28.62 14.42 41.57 7.24 2.37 0 0 0 0 0.3297 16

32 PNMP3 0 3.45 26.58 21.55 36.42 8.44 3.56 0 0 0 0 0.1516 16

33 GLP60 0 0 3.2 85.9 8.2 1.5 0 0 0 0 0 0.97 8

34 GLP80 0 0 9.4 79.4 5.4 1.1 0 0 0 0 0 0.72 8

35 GLP 0 0 4.8 86.5 6.1 1.2 0 0 0 0 0 0.9 8

36 LLPs-D 6.83 2.73 9.2 19.23 58.19 0.57 3.25 0 0 0 0 0.38 33

37 LLPs-L 5.03 19.39 6.07 22.82 37.45 7.04 2.21 0 0 0 0 0.99 33

38 SMWP-1 0 0 27 34 11 0 28 0 0 0 0.53 0.13 34

39 EAP40-1 2.63 0 36 46.79 14.58 0 0 0 0 0 0.33 0.28 35

40 EAP60-1 3.37 2.28 2.89 43.61 37.67 0 10.18 0 0 0 0.48 0.52 35

41 CMP-1 4.2 0 0 95.8 0 0 0 0 0 0 0 1.15 36

42 GPA1 0.4 21.2 10.6 13.8 27.5 2.2 0 14.8 9.5 23.04 3.75 0.08 37

43 GPA2 0.8 15.6 8.2 18 21.4 1.6 1.6 18 14.8 32.79 4.38 0.06 37

44 GPA3 3.8 7.5 6.3 34.3 16.3 1.3 3.1 24.3 3.1 27.01 5.53 0.03 37

45 Ac-CP1 2.5 16.4 5.6 17.6 27.5 0 1.8 2.6 26 15.78 7.25 0.06448 38

46 Ac-CP2 2.8 15.3 6 14.3 26.2 0 2 2.9 30.5 25.99 6.93 0.07829 38

47 Ac-CP3 2.2 15.6 5.6 9.8 29.9 0 1.1 3.4 32.4 27.43 7.09 0.07804 38

(Continued )
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Experimental values and predicted points were distributed in two sides of the curve fitting, and
most point of test set distributed among the prediction set, which illustrated that the establish-
ment of training set used for the multiple regression model was very good to predict the
numerical value of test set. The above linear model was applied to predict the 22 test data set,
and these test data were never used in model building. The result showed R = 0.872,
RMSE = 0.361 and p = 1.245E-7, which showed that there was a significant correlation.

Table 1. (Continued)

No Namea Rhab Arac Mand Glce Galf Fucg Xylh GlcAi GalAj UAk PCl EC50 Refs

48 CP 1.2 15.6 7.5 28.1 24.8 0 5.4 4.8 12.6 16.14 7.57 0.09837 38

49 WFPs 5.2 18.5 3.5 15.9 21.3 0 7.4 3.3 24.9 28.1 0 0.007 39

50 APs-2-1 4.6 8 0 32.3 24.2 0 21.1 0 9.8 9.8 1.9 0.4545 40

51 APs-3-1 1.5 2.8 0 35.1 34 0 16.7 2 7.9 7.9 1.3 0.2243 40

52 PTPS-3 6.82 26.22 13.83 10.23 39.34 3.21 0.35 0 0 40.66 13.27 1.72 41

53 PTPS-5 15.98 20.84 15.29 6.08 40.33 1.68 0.15 0 0 40.44 19.96 1.45 41

54 PSS-EPS 8.2 7.7 24 35.3 15.4 0 9.4 0 0 0 20.19 1.497 42

55 UKLOxa 5.5 10.2 6.1 11.3 28.4 0.3 7.2 26.5 4.5 31 0 0.0546 43

56 UKLK1 3.6 6.1 5.8 10.9 9.4 1.8 5.03 6.5 2.9 9.4 0 0.136 43

57 UKLK4 2.5 6.6 2.6 8.3 6.6 1.1 64.4 7.1 0.8 7.9 0 0.6023 43

58 UKSOxa 5.6 9.9 11.8 18.7 16.9 0.4 9.4 24.3 3 27.3 0 0.0165 43

59 UKSOxa-PG 8.6 15.7 7.1 12.4 26.1 0.5 15.4 10.2 4 14.2 0 0.3751 43

60 UKSK1 3.5 4 1.9 6.2 3.6 0.7 76.5 2.8 0.8 2.6 0 0.177 43

61 UKSK4 3.6 8.7 3.7 8.3 6.2 0.9 66 1.9 0.7 2.6 0 0.0038 43

62 PMBOxa 8.8 11.9 9.5 23.8 18.3 0.7 8.4 16.3 2.3 18.6 0 0.0217 43

63 PMBOxa-PG 6.7 12.4 10.3 26.6 25.5 0.8 6.7 8 3 11 0 0.144 43

64 PMBK1 4.8 13.3 4.8 17.2 13.7 1.5 37.5 5.3 1.9 7.2 0 0.3143 43

65 PMBK4 2.4 18.4 2.3 9.9 8.9 2.6 51.9 3 0.6 3.6 0 0.6547 43

66 AMBOxa 10.9 14.5 4.2 25.9 14.9 0.5 6.1 16.8 6.2 23 0 0.0184 43

67 AMBOxa-PG 17.4 22.6 4 5.9 16.6 0.6 7.1 20.8 5 25.8 0 0.3533 43

68 AMBK1 2 4.6 1.9 32.2 10.7 1.8 44.2 1.5 1.1 2.6 0 0.1093 43

69 AMBK4 3.2 27.2 1.3 17.1 6.5 2.1 40.6 1.3 0.7 2 0 1.4203 43

70 PS1 0.79 0.69 60.51 32.66 2.35 2.98 0 0 0 0 0 1.21 44

71 PS2 10.96 5.81 36.16 26.92 14.55 4.52 1.04 0 0 0 0 0.73 44

72 PS3 48.55 10.73 7.35 11.41 13.85 4.62 3.45 0 0 0 0 0.67 44

73 WKCP-N 0 2.22 0 91.95 5.83 0 0 0 0 0 0 0.61 45

74 WKHP-N 0 12.9 0 73.71 10 0 1.34 2.45 0 3.2 0 1.08 45

aname from reference
brhamnose
carabinose
dmannose
eglucose
f galactose
gfucose
hxylose
iglucuronic acid
jgalacturonic acid
kuronic acid
lprotein content

doi:10.1371/journal.pone.0163536.t001
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Multiple linear regressions (MLR) established the relationship between the dependent variable
of EC50 and the independent variable of polysaccharide properties. The results showed that the
statistics for MLR equation were good, and it also offered some views about the polysaccharide
properties influences on DPPH-scavenging activity of polysaccharides.

Fig 1. Data distribution of parameter.

doi:10.1371/journal.pone.0163536.g001

Fig 2. Correlation between the matrix of parameters and EC50 value of the DPPH scavenging activity.

doi:10.1371/journal.pone.0163536.g002
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ANN results

Polysaccharide properties were considered as the input layer node in neural networks, and
EC50 values of the DPPH-scavenging activity was the output layer node. Numbers of nodes
had a great influence on the test results. The optimization was done with 10 fold cross valida-
tion, and 30% of test data were used for validation. Selected parameters of the number of
neurons in the hidden layer were optimized by changing from 4 to 14, and it was worthy to
mention that the initial value of 7 selected was optimal. The selected network adopted Broy-
den Fletcher Goldfard Shanno (BFGS) algorithm which was still seen as the best Quasi-New-
ton algorithm.When the entire training data was trained in the network with the optimized
parameters, it gave R = 0.96 and RMSE = 0.018. The experimental and predicted values of
EC50 for the train data using the ANNmodel were plotted and shown in Fig 5. The experi-
mental value was abscissa, the point distribution of the prediction value for the y-coordinate
was on both sides of the curve fitting from 0 to 1.5, and the point distribution was uniform
and closed to each other. According to the view of point, the density of horizontal and verti-
cal coordinates and the fitting effect were perfect. The predicted values of EC50 for the train
and test data were given in the Table 2. The test set was used for prediction and gave R =
0.933 and RMSE = 0.055.

SVM results

We selected radial basis function (RBF) kernel for functionmodeling in SVM, the best parame-
ter C, g and ε were selected by using 10 fold cross validation, a SVMmodel was obtained by
training the whole training set, and then the model was used for the test set. By varying the
parameter values in the training set systematically, we optimized SVM parameters, and calcu-
lated RMSE of the model. The parameter value which gave the lowest RMSE was selected. The
regularization parameter C controlled the alternate use betweenmaximizing the margin and
minimizing the training error. If the value of C was too small, then there was not sufficient
stress on fitting the training data. To have a stable learning procedure, a large value of C should
be set up first [57]. To discover an optimal value of C, the RMSE of SVMmodel with different
C values was calculated. Then, this value C = 9 was selected as the optimal value. We achieved
the selected parameters (g = 0.091, ε = 0.1, C = 9) and the final training running in the whole
training set, and EC50 of the DPPH-scavenging activity was predicted. The predicted EC50 on
the basis of this model was plotted and shown in Fig 6 and Table 2. The statistical parameters

Fig 3. Proportion of the parameters effecting on EC50 value of the DPPH scavenging activity.

doi:10.1371/journal.pone.0163536.g003
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Table 2. Experimental and predicted values of EC50 for the DPPH-scavenging activity of polysaccharides using MLR, ANN and SVM models.

No Namea Exp MLR SVM ANN

Predict Residue Predict Residue Predict residue

1 S1 (Glu) 1.104 0.361582 0.742418 0.366201 0.737799 0.953944 0.150056

2 S1 (Visco) 0.794 0.305859 0.488141 0.706948 0.087052 0.956870 -0.162870

3 GBP50S2 0.412 0.483627 -0.071627 0.608142 -0.196142 0.376554 0.035446

4 LBP-s80 2.97 2.575070 0.394930 1.958210 1.011790 3.430658 -0.460658

5 LBP-s75 1.98 2.388860 -0.408860 1.868621 0.111379 2.222439 -0.242439

6 WB1 0.12 0.483627 -0.363627 0.367456 -0.247456 0.395514 -0.275514

7 WB2 0.31 0.483630 -0.173630 0.040901 0.269099 0.181648 0.128352

8 WB3 0.21 0.483627 -0.273627 0.013756 0.196244 0.138245 0.071755

9 IOP40 0.88 0.200140 0.679860 0.123591 0.756409 0.508640 0.371360

10 IOP60 0.697 0.425514 0.271486 0.291228 0.405772 0.814391 -0.117391

11 IOP80 1.19 0.537777 0.652223 0.378394 0.811606 0.955650 0.234350

12 FUP-1 0.47 0.483627 -0.013627 0.274257 0.195743 0.145075 0.324925

13 CLP-2 0.86 0.589228 0.270772 0.723493 0.136507 0.863565 -0.003565

14 CLP-3 1.27 0.506954 0.763046 0.649755 0.620245 1.104942 0.165058

15 TYAP-1 3.92 3.088460 0.831540 2.438504 1.481496 3.770749 0.149251

16 PV-P1 0.878 1.145072 -0.267072 0.681146 0.196854 0.592526 0.285474

17 PV-P2 0.169 0.876230 -0.707230 0.577149 -0.408149 0.551492 -0.382492

18 PV-P3 0.048 0.874380 -0.826380 0.516508 -0.468508 0.321103 -0.273103

19 Control-EPS 2.3 1.450109 0.849891 1.258621 1.041379 2.311131 -0.011131

20 Control-IPS1 1.08 1.152520 -0.072520 1.093392 -0.013392 1.781373 -0.701373

21 Tween 80-IPS1 0.74 0.973340 -0.233340 0.935877 -0.195877 0.419414 0.320586

22 Tween 80-IPS2 0.84 1.038431 -0.198431 0.979781 -0.139781 0.776261 0.063739

23 CPSI 0.23 0.483627 -0.253627 0.747002 -0.517002 0.339270 -0.109270

24 G1 0.34 0.682566 -0.342566 0.618879 -0.278879 0.678410 -0.338410

25 G2 0.56 0.635490 -0.075490 0.619038 -0.059038 0.912242 -0.352242

26 G3 0.87 0.697843 0.172157 0.614961 0.255039 0.920268 -0.050268

27 P1 0.62 1.482949 -0.862949 1.139900 -0.519900 0.912532 -0.292532

28 P2 1.07 1.212505 -0.142505 0.991519 0.078481 0.774189 0.295811

29 CP 0.09 0.525923 -0.435923 0.348891 -0.258891 0.112901 -0.022901

30 SCG 0.7 1.140940 -0.440940 1.009837 -0.309837 0.745078 -0.045078

31 PNMP2 0.3297 0.674260 -0.344560 0.595812 -0.266112 0.513151 -0.183451

32 PNMP3 0.1516 0.597410 -0.445810 0.504217 -0.352617 0.423722 -0.272122

33 GLP60 0.97 0.483630 0.486370 0.704868 0.265132 0.650600 0.319400

34 GLP80 0.72 0.483630 0.236370 0.697402 0.022598 0.519819 0.200181

35 GLP 0.9 0.483627 0.416373 0.718195 0.181805 0.627824 0.272176

36 LLPs-D 0.38 0.573660 -0.193660 0.623545 -0.243545 0.573738 -0.193738

37 LLPs-L 0.99 1.123127 -0.133127 0.794887 0.195113 0.608499 0.381501

38 SMWP-1 0.13 0.496640 -0.366640 0.528723 -0.398723 0.605999 -0.475999

39 EAP40-1 0.28 0.491730 -0.211730 0.688481 -0.408481 0.330165 -0.050165

40 EAP60-1 0.52 0.570610 -0.050610 0.593314 -0.073314 0.667831 -0.147831

41 CMP-1 1.15 0.483627 0.666373 0.800434 0.349566 0.948406 0.201594

42 GPA1 0.08 0.440122 -0.360122 0.275073 -0.195073 0.109224 -0.029224

43 GPA2 0.06 -0.041681 0.101681 -0.019261 0.079261 0.043427 0.016573

44 GPA3 0.03 0.004720 0.025280 0.116442 -0.086442 0.087376 -0.057376

45 Ac-CP1 0.06448 0.065797 -0.001317 -0.003399 0.067879 0.022510 0.041970

46 Ac-CP2 0.07829 -0.170541 0.248831 -0.094824 0.173114 0.017536 0.060754

(Continued )

Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides

PLOS ONE | DOI:10.1371/journal.pone.0163536 September 29, 2016 9 / 22



of this model were R = 0.851 and RMSE = 0.151 for the training set, and the test set was used
for prediction and gave R = 0.865 and RMSE = 0.144.

Comparison of MLR, ANN and SVM models

The statistical parameters obtained from the investigative models for train and test set were
shown in Table 3. The error estimates were applied to model performance evaluation, and
RMSE were lower for nonlinearmodels (SVM, ANN) generated by the machine learningmeth-
ods than that by multiple linear regression. The correlation coefficients (R) given by SVM and
ANNmodels were also higher than that by multiple linear regression. The above results indi-
cated that the performances of nonlinear models SVM and ANN were better than that of a lin-
ear MLRmodel for the prediction of DPPH-scavenging activity of polysaccharides. The
comparison of the nonlinear models demonstrated that ANNmodel accurately predicted the
relationship between polysaccharide properties and the DPPH-scavenging activity for the train

Table 2. (Continued)

No Namea Exp MLR SVM ANN

Predict Residue Predict Residue Predict residue

47 Ac-CP3 0.07804 -0.249175 0.327215 -0.117474 0.195514 0.017260 0.060780

48 CP 0.09837 0.525923 -0.427553 0.343823 -0.245453 0.125297 -0.026927

49 WFPs 0.007 -0.019404 0.026404 0.007187 -0.000187 0.016533 -0.009533

50 APs-2-1 0.4545 0.395343 0.059157 0.257761 0.196739 0.074447 0.380053

51 APs-3-1 0.2243 0.225857 -0.001557 0.200810 0.023490 0.147594 0.076706

52 PTPS-3 1.72 1.674231 0.045769 1.524571 0.195429 1.532898 0.187102

53 PTPS-5 1.45 1.661066 -0.211066 1.636562 -0.186562 1.546828 -0.096828

54 PSS-EPS 1.497 1.233340 0.263660 1.142511 0.354489 1.906331 -0.409331

55 UKLOxa 0.0546 -0.165611 0.220211 0.036641 0.017959 0.072630 -0.018030

56 UKLK1 0.136 0.369956 -0.233956 0.332098 -0.196098 0.164552 -0.028552

57 UKLK4 0.6023 0.453730 0.148570 0.185824 0.416476 0.087298 0.515002

58 UKSOxa 0.0165 -0.047842 0.064342 0.094666 -0.078166 0.070345 -0.053845

59 UKSOxa-PG 0.3751 0.529760 -0.154660 0.335927 0.039173 0.159281 0.215819

60 UKSK1 0.177 0.498201 -0.321201 0.232651 -0.055651 0.102440 0.074560

61 UKSK4 0.0038 0.684537 -0.680737 0.368651 -0.364851 0.231762 -0.227962

62 PMBOxa 0.0217 0.288880 -0.267180 0.250147 -0.228447 0.105432 -0.083732

63 PMBOxa-PG 0.144 0.528240 -0.384240 0.417461 -0.273461 0.559193 -0.415193

64 PMBK1 0.3143 0.684450 -0.370150 0.393583 -0.079283 0.306324 0.007976

65 PMBK4 0.6547 0.975208 -0.320508 0.549260 0.105440 0.626754 0.027946

66 AMBOxa 0.0184 0.200785 -0.182385 0.172081 -0.153681 0.053022 -0.034622

67 AMBOxa-PG 0.3533 0.395625 -0.042325 0.279658 0.073642 0.083612 0.269688

68 AMBK1 0.1093 0.545151 -0.435851 0.353599 -0.244299 0.546221 -0.436921

69 AMBK4 1.4203 1.312850 0.107450 0.859646 0.560654 1.691224 -0.270924

70 PS1 1.21 0.506384 0.703616 0.824544 0.385456 1.219299 -0.009299

71 PS2 0.73 0.675246 0.054754 0.649997 0.080003 0.467911 0.262089

72 PS3 0.67 0.837512 -0.167512 0.612208 0.057792 0.702244 -0.032244

73 WKCP-N 0.61 0.556840 0.053160 0.816849 -0.206849 0.776698 -0.166698

74 WKHP-N 1.08 0.834885 0.245115 0.884773 0.195227 1.335107 -0.255107

aname from reference

doi:10.1371/journal.pone.0163536.t002
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data set, and this was obviously evident from a lower RMSE (0.018) and a higher R (0.96)
value. While ANNmodel was also the best one in the prediction of the test set.

Fig 4. A comparison of experimental vs predicted EC50 using MLR method.

doi:10.1371/journal.pone.0163536.g004

Fig 5. A comparison of experimental vs predicted EC50 using ANN method.

doi:10.1371/journal.pone.0163536.g005
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Effect of MW on the scavenging activity of DPPH radical

Molecular weight was seen as an important indicator of the antioxidant activity of polysaccha-
rides [20], so a single study was used to evaluate the relationship of MW and antioxidant activ-
ity of polysaccharides. Due to the relatively large difference in MW of polysaccharide from
2250 to 538500 (Table 4), MWwas normalized before the analysis, the size of MWwas taken
with a base-8 of log, and the data was shown in Table 4 [58–66].

We used EC50 values as the horizontal coordinate and established the correlation between
EC50 and MW. As shown in Fig 7, the value of EC50 decreasedwith the decrease of MW, which
indicated that the smaller MW could have the stronger DPPH free radical scavenging activity.
This result was in accord with those reported in the literature [20, 59]. In Fig 7, it could also be
found that there were some points which did not conform to the rules, such as TYAP-3 and
BSFP-1. BSFP-1 had the smaller MW and a relatively larger EC50 value [60], which may be
because BSFP-1 had no UA. TYAP-3 had larger MW, but its EC50 value was smaller. The rea-
son may be that the content of Ara accounted for 45.82% in TYAP-3 [25]. Fig 7 showed that
when the value of EC50 arranged from 0 to 2, the value of Y axis was 0–5.5, which indicated
that MWwas between 4000 and 100000.

Fig 6. A comparison of experimental vs predicted EC50 using SVM method.

doi:10.1371/journal.pone.0163536.g006

Table 3. Comparison of MLR, ANN and SVM models for the DPPH scavenging activity of

polysaccharides.

Method Parameters Training set Test set

MLR R 0.807 0.872

RMSE 0.423 0.361

ANN R 0.96 0.933

RMSE 0.018 0.055

SVM R 0.851 0.865

RMSE 0.151 0.144

doi:10.1371/journal.pone.0163536.t003
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According to the above results, we could conclude that the antioxidant activity of polysac-
charide usually was higher in MW range of 4000–100000. However, MWwas not the only fac-
tor, and the antioxidant activity could be affected by other polysaccharide properties, such as
UA and Ara.

Table 4. MW and EC50 values of the DPPH scavenging activity.

Namea EC50 Mw Refs Name EC50 Mw Refs Name EC50 Mw Refs

PS 6.20 225000 58 CLP-3 1.27 60143 24 CMP-1 1.15 4300 36

PSPO-1a 1.43 18000 59 TYAP-1 3.92 115000 25 PPM 1.80 22000 64

LBP-80 5.33 70600 20 TYAP-2 4.11 479000 25 PPE 3.06 38000 64

LBP-s75 1.98 71700 20 TYAP-3 2.64 403000 25 GPA1 0.08 19600 37

LBP-s50 4.96 538500 20 PS1-1 6.81 67400 62 GPA2 0.06 10600 37

BSFP-1 7.40 13300 60 PS1-2 4.56 15400 62 GPA3 0.03 6700 37

WB2 0.31 28000 21 PS2-1 2.53 12100 62 AAP-2A 0.15 2252 65

WB3 0.21 19000 21 PNMP1 0.72 28400 16 RNLP I 0.20 14900 66

SP1 3.20 9192 61 PNMP2 0.33 31500 16 WKCP-N 0.61 9600 45

FUP-1 0.47 41000 23 PNMP3 0.15 26100 16 WKHP-N 1.08 113400 45

CLP-1 1.69 78754 24 AAP 3.29 27700 63 WKHP-A 3.34 169600 45

CLP-2 0.86 51257 24 EAP80-2 1.32 65313 35

aname from reference

doi:10.1371/journal.pone.0163536.t004

Fig 7. Correlation scatter plots of EC50 and MW.

doi:10.1371/journal.pone.0163536.g007
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Models for the hydroxyl radicals scavenging activity of polysaccharides

To make relationship models of monosaccharide composition and the hydroxyl radicals scav-
enging activity, the entire data set including 67 compounds was divided into two clusters [67–
82]. The test set and the train set were given in Table 5.

We selected five relevant descriptors in MLRmodel, and a stable model EC50 = 0.12PC+-
0.083Fuc+0.013Rha-0.02UA+0.372 (R = 0.664, RMSE = 1.149, F = 8.268, p<5.17E-5) was
given. According to the model, PC, Fuc, Rha and UA had significant correlation with EC50 of
the hydroxyl radicals scavenging activity, and the relevant correlation coefficientwas shown in
Table 6.

The statistical parameters of MLR, ANN and SVMmodels for the train set and the test set
were shown in Table 7. According to a lower RMSE and a higher R value, the results indicated
that nonlinear model ANN was better than models obtained fromMLR and SVM for the pre-
diction of hydroxyl radicals scavenging activity of polysaccharides.

Sensitivity analysis from ANN

According to two ANNmodels, the results of sensitivity analysis were shown in Table 8. The
higher sensitivity coefficient indicated that this descriptor had the more influence upon the
antioxidant activity of polysaccharides. The results indicated that Ara and GalA had a great
effect on DPPH-scavenging activity, and PC, UA and GalA had a great effect on hydroxyl radi-
cals scavenging activity of polysaccharides, which was consistent with the results fromMLR.

Conclusions

To establish quantitative structure-activity relationship (QSAR) models for antioxidant activity
of polysaccharides,MLR, SVM and ANNmethods were used, and polysaccharide properties
(UA, PC, monosaccharide compositions, MW) as descriptors were selected.MLRmodels for
predicting EC50 of DPPH-scavenging activity and hydroxyl radicals scavenging activity of poly-
saccharides consisted of four major descriptors, and the models were EC50 = 0.033Ara-
0.041GalA- 0.03GlcA- 0.025PC +0.484 and EC50 = 0.12PC +0.083Fuc +0.013Rha -0.02UA
+0.372, respectively. A comparison of results frommodels indicated that the ANNmodel with
R = 0.96 and RMSE = 0.018 predictedmore accurately the DPPH-scavenging activity of poly-
saccharides than SVM andMLRmodels. ANNmodel (R = 0.933, RMSE = 0.055) was also the
best one for predicting the hydroxyl radicals scavenging activity of polysaccharides. According
to MLR and ANNmodels, Ara and GalA were most critical in determining the DPPH-scaveng-
ing activity of polysaccharides, and PC, UA and GalA had a great effect on hydroxyl radicals
scavenging activity of polysaccharides. The polysaccharide of MW 4000–100000 usually
owned higher DPPH-scavenging activity, but the antioxidant activity could simultaneously be
affected by other polysaccharide properties. These results may provide some new insights in
the complex study of polysaccharide structure and bioactivities, and we can simply predict the
antioxidant activity of polysaccharide by using the establishedmodels after determining the
monosaccharide composition ratios and MW.

It is worth noting that the highly GalA-containing polysaccharide could exhibit significantly
antioxidant activity, which might be because they owned the functional group–COOH. It has
been reported that the functional groups such as–COOH,CH3CO–and–SHwere generally rec-
ognized as good electron or hydrogen donors that might be related to the antioxidant activity
of polysaccharides [5]. The antioxidant activity of polysaccharide was also found to correlate to
complex structure such as glycosidic linkages, branch ratios, and microstructure etc, polysac-
charide properties is not enough for fine detailed structure of polysaccharide, and the research
on more precise structure-functionrelationships remained to be explored.
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Table 5. Polysaccharides data set with descriptors and their EC50 values of the hydroxyl radicals scavenging activity.

No Namea Rhab Arac Mand Glce Galf Fucg Xylh GlcAi GalAj UAk PCl EC50 Refs

1 PS-SI 0 27.3 18.2 9.1 45.4 0 0 0 0 0 0.5 0.21 67

2 CBP-1 0 0 35.9 12.8 51.3 0 0 0 0 0 0 0.638 68

3 GBP50S2 46.7 0 42.2 0 11.1 0 0 0 0 0 0 0.482 19

4 pMTPS-3 0 17.3 41.6 28.3 12.6 0 0 0 0 0 0 1.9 69

5 USEP40-1 7.95 8.42 37.34 17.94 28.36 0 0 0 0 0 0 0.376 70

6 USEP70-1 14.47 7.78 37.27 21.85 18.64 0 0 0 0 0 0 0.524 70

7 IOP40 4.4 4.2 9.8 40 14.5 3.3 9.6 9.7 4.6 5 2.4 0.58 22

8 IOP60 9.7 5.6 8 32.2 12.6 0 22.9 4.7 4.4 2.2 3.2 0.46 22

9 CLP-1 0 3.6 7.9 60.2 26.4 0 1.9 0 0 15.84 1.43 3.68 24

10 CLP-2 3.3 2.1 14.5 48 28 0 4.1 0 0 23.59 1.48 1.29 24

11 CLP-3 0 0 8.6 56 29.4 0 6 0 0 17.06 0.95 2.8 24

12 GPS-2 44.7 20.9 0 3.6 10.8 0 19.9 0 0 0 0 0.069 71

13 P70-1 0 0 56 18 26 0 0 0 0 0 0 0.548 65

14 PS1-1 0 0 89.5 7.3 3.2 0 0 0 0 0 1.67 1.14 62

15 PS1-2 0 0 71.1 3.7 25.2 0 0 0 0 0 1.86 0.48 62

16 PS2-1 0 0 52.7 28 16.9 0 0 0 2.4 0 3.85 0.36 62

17 O.ficus-indica -p 15.3 45.5 0 39.2 0 0 0 0 0 0 0 0.6318 72

18 G1 10.9 1.2 6.2 52.5 14.9 0 14.3 0 0 4.2 6.49 1.88 29

19 G2 12.2 0.8 4.9 56 16.2 0 9.9 0 0 7.45 5.11 1.41 29

20 P1 11.4 30.3 1.5 9.2 44.4 0 3.2 0 0 0 0 2.38 30

21 P2 10.4 22.1 3.1 11.2 53.1 0 0 0 0 0 0 0.98 30

22 CP 1.2 15.6 7.5 28.2 24.7 0 5.4 4.8 12.6 0 7.57 0.37 31

23 SSP II-a 8.94 38.74 0 2.18 31.47 0 0 2.33 16.34 0 0 0.7782 73

24 PNMP2 0 5.78 28.62 14.42 41.57 7.24 2.37 0 0 0 0 0.7117 74

25 PNMP3 0 3.45 26.58 21.55 36.42 8.44 3.56 0 0 0 0 0.4336 74

26 LLPs-D 6.83 2.73 9.2 19.23 58.19 0.57 3.25 0 0 0 0 0.61 33

27 LLPs-L 5.03 19.39 6.07 22.82 37.45 7.04 2.21 0 0 0 0 0.92 33

28 SMWP-1 0 0 27 34 11 0 28 0 0 0 0.53 1.08 34

29 GRMP1 0 0 0 31.5 0 0 68.5 0 0 0 0 0.1472 16

30 EAP40-1 2.63 0 36 46.79 14.58 0 0 0 0 0 0.33 0.95 35

31 EAP60-1 3.37 2.28 2.89 43.61 37.67 0 10.18 0 0 0 0.48 1.49 35

32 EAP80-2 1.22 0 6.73 21.64 55.56 10.39 4.46 0 0 0 0.14 1.84 35

33 PS-2 4.17 17.33 18.65 35.14 19.11 0 5.59 0 0 0 0 0.89 75

34 EUPS-2 8.83 15.77 12.39 43.94 11.15 0 7.92 0 0 0 0 1.36 75

35 CMP-1 4.2 0 0 95.8 0 0 0 0 0 0 0 0.65 36

36 EPS-1 0 0 10.6 84 5.4 0 0 0 0 0 19.86 4.84 76

37 EPS-2 0 0 32.7 57.3 10.9 0 0 0 0 0 20.3 2.69 76

38 IPS-1 0 0 59 8.5 32.6 0 0 0 0 0 33.97 1.32 76

39 IPS-2 0 0 42.2 19.8 38 0 0 0 0 0 20.38 1.58 76

40 IPS-3 0 0 27.2 72.8 0 0 0 0 0 0 1.9 1.91 76

41 PPM 0 0 69.1 7.8 23.1 0 0 0 0 0 0 1.99 64

42 GPA1 0.4 21.2 10.6 13.8 27.5 2.2 0 14.8 9.5 23.04 3.75 0.22 37

43 GPA2 0.8 15.6 8.2 18 21.4 1.6 1.6 18 14.8 32.79 4.38 0.21 37

44 GPA3 3.8 7.5 6.3 34.3 16.3 1.3 3.1 24.3 3.1 27.01 5.53 0.2 37

45 RCP-II 9.8 21.3 0 7.9 33.8 0 9.3 0 17.9 23.6 0 0.96 77

46 AAP-2A 8 25.7 0 49.3 17 0 0 0 0 0 0 0.022 65

47 TPC 0 12.7 0 11.2 5.4 0 33.8 27.1 0 0 0 0.101 78

(Continued )
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Table 5. (Continued)

No Namea Rhab Arac Mand Glce Galf Fucg Xylh GlcAi GalAj UAk PCl EC50 Refs

48 TPC-1 0 21.2 16 26.3 6.4 0 17.3 0 0 30 2.8 0.184 79

49 TPC-2 0 26.4 13.9 37.5 0 0 0 0 0 47.6 3.8 0.158 79

50 TPC-3 0 37.2 0 14.9 8.3 0 23.1 0 0 51.8 4 0.093 79

51 GO-2 24.2 0 0 25.8 0 0 0 50 0 0 0 1.13 80

52 GO-3 24.5 0 0 14.1 0 0 0 61.4 0 0 0 0.93 80

53 GO-4 22.4 0 0 0.7 0 0 0 76.9 0 0 0 0.7 80

54 RNLP I 10.1 51.7 3.5 22.3 8.8 0 3.6 0 0 6.71 0 1.74 66

55 PSCK2-2 4 12.4 43.3 0 0 36.4 0 0 4 24.7 0 1.5 81

56 PSCK2-3 5 11.3 45.7 2.5 0 35.5 0 0 0 6.64 0 4.8 81

57 APs-1-1 1.4 8.1 0 68.2 0 0 22.3 0 0 0 3.1 0.2092 40

58 APs-2-1 4.6 8 0 32.3 24.2 0 21.1 0 9.8 0 1.9 0.1967 40

59 APs-3-1 1.5 2.8 0 35.1 34 0 16.7 2 7.9 0 1.3 0.1715 40

60 WSEPS 0 14.5 0 31.9 40.6 0 0 13 0 0 0 0.07 82

61 CT-EPS 11.4 7.4 19 40 13.5 0 8.7 0 0 0 14.87 1.62 42

62 PSS-EPS 8.2 7.7 24 35.3 15.4 0 9.4 0 0 0 20.19 1.119 42

63 PSS-DEPS 3.3 5.6 25.5 31.5 29.8 0 4.3 0 0 0 26.47 3.522 42

64 CT-IPS 2.1 6.2 18 59.7 9 0 5 0 0 0 25.06 8.828 42

65 PSS-IPS 1.7 6.9 8.6 73.1 5 0 4.7 0 0 0 10.82 0.779 42

66 PS2 10.96 5.81 36.16 26.92 14.55 4.52 1.04 0 0 0 0 0.98 44

67 PS3 48.55 10.73 7.35 11.41 13.85 4.62 3.45 0 0 0 0 0.66 44

aname from reference
brhamnose
carabinose
dmannose
eglucose
f galactose
gfucose
hxylose
iglucuronic acid
jgalacturonic acid
kuronic acid
lprotein content

doi:10.1371/journal.pone.0163536.t005

Table 6. Correlation matrix showing inter-correlation among various parameters and EC50 of the hydroxyl radicals scavenging activity.

EC50 PC Fuc Rha UA

EC50 1.000000

PCa 0.515359 1.000000

Fucb 0.270504 -0.134435 1.000000

Rhac -0.093930 -0.125825 -0.017084 1.000000

UAd -0.126494 -0.028296 0.167403 -0.180576 1.000000

aprotein content
bfucose
crhamnose
duronic acid

doi:10.1371/journal.pone.0163536.t006
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Table 7. Comparison of MLR, ANN and SVM models for the hydroxyl radicals scavenging activity of
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fglucose
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