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The novel coronavirus disease (COVID-19), has become the most critical global health

challenge in recent history. With SARS-CoV-2 infection, there was an unexpectedly high

and specific prevalence of olfactory and taste disorders (OTDs). These high rates of

hyposmia and hypogeusia, initially reported as up to 89% in European case series,

led to the global inclusion of loss of taste and/or smell as a distinctive feature of

COVID-19. However, there is emerging evidence that there are striking differences

in the rates of OTDs in East Asian countries where the disease first emerged, as

compared to Western countries (15.8 vs. 60.9%, p-value < 0.01). This may be driven by

either variations in SARS-CoV-2 subtypes presenting to different global populations or

genotypic differences in hosts which alter the predisposition of these different populations

to the neuroinvasiveness of SARS-CoV-2. We also found that rates of OTDs were

significantly higher in objective testing for OTDs as compared to subjective testing (73.6

vs. 60.8%, p-value = 0.03), which is the methodology employed by most studies.

Concurrently, it has also become evident that racial minorities across geographically

disparate world populations suffer from disproportionately higher rates of COVID-19

infection and mortality. In this mini review, we aim to delineate and explore the varying

rates of olfactory and taste disorders amongst COVID-19 patients, by focusing on their

underlying geographical, testing, ethnic and socioeconomic differences. We examine the

current literature for evidence of differences in the olfactory and gustatory manifestations

of COVID-19 and discuss current pathophysiological hypotheses for such differences.

Keywords: anosmia, ageusia, olfactory and gustatory dysfunctions, COVID-19, geographical variations, socio-

economic variations, ethnic variations

INTRODUCTION

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant
coronavirus disease 2019 (COVID-19) is the largest pandemic in recent history. As of 24th January
2021, there have been 96, 877, 399 confirmed cases and 2, 098, 879 confirmed deaths in 224
countries and territories, according to the World Health Organization (WHO). The first cases of
COVID-19 were described in Wuhan, China, in late 2019 (1), with initial presenting complaints
related to acute respiratory illnesses (ARI) (2–4). However, as the pandemic developed, relatively
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minor symptoms such as anosmia and ageusia were discovered
to be disproportionately important to the presentation and
understanding of COVID-19 pathophysiology.

Olfactory and taste disorders (OTDs) were first described
in February 2020 by Mao et al. (5) in their retrospective case
series describing neurological manifestations amongst COVID-
19 patients in Wuhan, China. Out of 314 patients, they reported
5.1% hyposmia and 5.6% hypogeusia (5). As the pandemic
spread to Europe, media and anecdotal accounts from medical
practitioners supported such reports of OTDs (6). In early April,
Lechien et al. (7) published a multicentre cross-sectional study
based in several European countries, with 417 patients, of which
85.6 and 88.8% were found to have olfactory dysfunction and
gustatory dysfunction, respectively. Shortly after this, multiple
otolaryngology chapters released statements recommending that
OTDs be considered as symptoms of COVID-19 (8–10). This
was followed by the Centers for Disease Control and Prevention
(CDC), United States of America (USA), and the Ministry of
Health, Singapore adding “loss of smell or taste” to the list
of symptoms of COVID-19 in mid-April. The World Health
Organization and the Department of Health and Social Care,
United Kingdom (UK), officially added “loss of taste or smell”
to their respective list of symptoms of COVID-19 in early May.

Anosmia, ageusia and the entire spectrum of OTDs are of
importance to our understanding of COVID-19 because they
provide an opportunity to learn more about the neurotropic
effects of the SARS-CoV-2 virus and allow us to study
the potential long-term neurological effects that SARS-CoV-2
infection can lead to, even in patients with mild COVID-19
infections. It is interesting to note, that despite the initial surge
of COVID-19 cases in Asia, the literature highlighting OTDs was
primarily based on patients in Europe and the USA.

In this mini review we explore the different possible reasons
behind these geographical differences in OTD rates, such as
the initial stress on Asian healthcare systems, different viral
genotypes and differing pathogenic susceptibility of different
populations. We also examine variations seen in OTD rates
in studies utilizing subjective testing as compared to objective
testing. We describe the differences seen between different ethnic
groups and explore if genetic determinants can account for the
disproportionate affliction of minority races, and other factors
such as comorbidity burden and socio-economic status. We also
highlight developing trends such as the gender differences in
anosmia and ageusia as well as the use of real-time trackers.

METHODOLOGY

We performed searches for studies examining olfactory and
gustatory dysfunction amongst COVID-19 patients in databases
such as PubMed, Google Scholar and Web of Science. In
view of the time-sensitive nature of the COVID-19 pandemic,
preprint databases such as Medrxiv and Biorxiv were also
utilized to capture latest developments. Search terms utilized
included “Anosmia in COVID-19,” “Ageusia in COVID-19,”
“Olfactory disorders in COVID-19,” “Gustatory disorders in
COVID-19” and other related search terms. Original studies,

commentaries and review articles were considered during the
literature review. Studies with original data on OTDs were
included for comparison and analysis, with the original reported
rates of OTDs reflected without any secondary analysis. Pooled
averages were calculated for comparison between different
geographical regions. Statistical analysis was carried out by SPSS
version 20.0 (SPSS, IBM Corporation, IL, USA), and Pearsons
Chi-square tests were performed, with p < 0.05 regarded as
statistically significant.

HYPOTHESIZED PATHOPHYSIOLOGICAL
PROCESSES FOR THE DEVELOPMENT OF
ANOSMIA AND AGEUSIA

SARS-CoV-2 is closely related to severe acute respiratory
syndrome coronavirus (SARS-CoV) and the Middle East
respiratory syndrome coronavirus (MERS-CoV) – which have
each caused their own epidemics associated with extrapulmonary
manifestations and high mortality rates (11, 12). The functional
receptor allowing for SARS-CoV-2 entry into host cells is
human angiotensin-converting enzyme 2 (ACE2) (13), and this
viral entry is facilitated by transmembrane protease serine 2
(TMPRSS2), similar to SARS-CoV (14, 15). ACE2 is found in the
human airway epithelia, lung parenchyma, vascular endothelia,
kidney cells and small intestine cells (16, 17).

SARS-CoV-2 is postulated to be able to infect the CNS in a
similar manner to SARS-CoV, via a hematogenous and trans-
neuronal route, with cell entry mediated by ACE2 receptors
(18). SARS-CoV-2 in the bloodstream may interact with ACE2
expressed in the capillary endothelium of cerebral vessels, and
allow viral access to the brain, after which the virus can interact
with ACE2 receptors expressed in neurons (18). Viral interaction
with the olfactory bulb and cortex may lead to neuronal damage
and resultant hyposmia or anosmia (18–21). The trans-neuronal
spread of the virus has also been hypothesized to damage the
peripheral neurons directly (18, 22, 23). However, olfactory
neurons do not express significant levels of ACE2 and TMPRSS2
(24–27) and neuronal damage to the olfactory bulb and cortex
cannot account for case reports of rapid and transient anosmia
(7), in view of such damage requiring significant time for
recovery (27).

Another proposed mechanism for anosmia is damage to
non-neuronal structures that support olfactory function, such
as olfactory epithelium sustentacular cells, microvillar cells,
Bowman’s gland cells, horizontal basal cells and olfactory bulb
pericytes (25). These olfactory epithelium sustentacular cells have
abundant expression of ACE2 and TMPRSS2 (24, 25, 28, 29).
Local infection of these non-neuronal structures is proposed
to cause significant inflammatory responses affecting olfactory
sensory neurons or olfactory bulb neurons, and may even result
in neuronal death (25). Reports of transient anosmia, with rapid
recovery, may then be explained by the faster regeneration rate of
sustentacular cells, as compared to olfactory neurons (20, 27).

Regarding ageusia, ACE2 receptors are known to diffusely
express on the mucous membranes of the oral cavity, with a
high concentration on the tongue (30). It is thought that ACE2
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modulates taste perception, and that SARS-CoV-2 binding to
the receptor may lead to taste dysfunction by damaging the
gustatory cells, even though the exact mechanism is unclear
(31, 32). One proposed mechanism is the binding of SARS-CoV-
2 to sialic acid receptors, an ability it shares with MERS-CoV
(33). This binding of SARS-CoV-2 to sialic acid receptors may
result in the acceleration of degradation of gustatory particles,
resulting in blunting of the patient’s taste (31). Another possibility
is that ageusia happens concomitantly with anosmia due to the
close functional correlations between the olfactory and gustatory
chemosensory systems (34).

Emerging evidence on neuroimaging characteristics of
anosmic patients may also assist to elucidate the definite
pathophysiology of COVID-19 associated OTDs. Magnetic
Resonance Imaging of COVID-19 patients with OTDs have
shown olfactory bulb injury (19) and changes (35–37), suggesting
the viral invasion of these nerve structures with resultant
sensorineural dysfunction. The persistence of OTDs is also
an area of interest, with studies suggesting a persistence of
symptoms in up to 24% of COVID-19 patients (38, 39), and
interesting trends such as younger patients and female patients
having a higher tendency for such persistence (40). It may be
only possible with time to elucidate the exact pathophysiological
elements leading to OTDs in the context of SARS-CoV-2
infection, and histological biopsies of COVID-19 patients are
likely to greatly aid this effort (27).

GEOGRAPHICAL VARIATIONS

Anosmia, ageusia and OTDs amongst COVID-19 patients were
first recognized to be common in Europe, several months
after the first few COVID-19 epicenters in Asia. Asian studies
were consistently publishing lower percentages of patients
presenting with anosmia and ageusia compared to those being
reported in Europe and the USA, with one study reporting
the prevalence of chemosensory dysfunction in Caucasians
to be three times higher than that in Asians (27, 41–44).
Table 1 illustrates the difference in pooled average prevalence
of olfactory disorders, taste disorders and combined olfactory
and/or taste disorders between Eastern andWestern populations,
with a map graphically representing the higher prevalence
of OTDs in Western countries. The pooled average for the
Western population was close to 4 times that of the Eastern
populations (15.8 vs. 60.9%, p-value < 0.01) as seen in Table 1.
Three main reasons have been postulated in the literature with
regards to this difference between Western populations and
Eastern populations.

Firstly, there was the shock element of the initial outbreak. In
the initial stages of the outbreak, when it was first recognized in
Asia, patients who were critically ill would have been prioritized
and hospitalized. Indeed, the literature from the early days
of the pandemic highlighted concerns regarding mortality and
need for intensive care therapy (76, 77), suggesting that the
patients presenting to the healthcare institutions were indeed
more unwell. It has been suggested that minor symptoms such as
anosmia and ageusia may have been overlooked in preliminary

cohorts in the pandemic, both by medical professionals, as well
as patients themselves (7, 43). This could have led to an under-
reporting of actual anosmia and ageusia rates in Asian countries
in the initial stages of the outbreak. However, over time, this has
become a less viable explanation, in view of studies from other
Asian countries also showing significantly lower rates of anosmia
and ageusia as compared to Western nations (40, 45).

The second possible reason is that of differing viral genotypes
in Asia as compared to Europe and the USA. A phylogenetic
analysis of 160 SARS-CoV-2 genomes by Forster et al. (78) found
3 central variants of the virus: Types A, B and C. Types A
and C were found to be more prevalent amongst Europeans
and Americans, compared to Type B which was more prevalent
amongst Asians (78). Types A and C are speculated to have
high pathogenicity for the nasal cavity, hence resulting in the
higher prevalence of olfactory and taste disorders in Western
populations (43, 78). Mutations in the receptor binding domain
(RBD) of the virus spike protein (subunit S1) may also result
in differing viral tropism and infectivity (79). Mutations in the
RBD have been shown to affect its binding to the ACE2 receptor
(80, 81), and these mutations can impact the pathogenicity of
the virus (82). Indeed, early studies probing interactions between
ACE2 coding variants and SARS-CoV-2 virus have pointed to
certain populations having a higher predisposition for SARS-
CoV-2 binding (83). The emergence of new variants such as
the UK variant (84) and South African variant (85) in late 2020
and early 2021 lend further credence to the presence of differing
viral genotypes in distinct geographical territories. These variants
may have differing rates of infectivity of the olfactory epithelium
which may influence the prevalence of OTDs (27).

Finally, differing pathogenic susceptibility, in the form of
genetic variations of host proteins and receptors such as ACE2
and TMPRSS2, may have led to the difference in anosmia and
ageusia rates between different populations. Variations in ACE2
expression in different populations have been reported (86, 87),
with one study finding increased ACE2 expression in tissues
in East Asian populations (88). Variations in TMPRSS2 protein
frequency have also been observed with European populations
having much higher levels of pulmonary expression as compared
to East Asian populations (20). Genetic differences in ACE2
variants, characterized by post-translational modifications such
as glycosylation, may also contribute to the varying susceptibility
of different populations to anosmia (27, 89). Such genetic
differences resulting in differing OTD rates were corroborated
by a Singaporean study, which collected nationality and ethnicity
data, and found that Caucasians were 3.05 times more likely to
have OTDs as compared to Chinese, South East Asian and West
Asian races (51). Further research is required to delineate the
link between ACE2/TMPRSS2 expression and susceptibility to
olfactory and taste disorders.

The high susceptibility to OTDs amongst Western
populations as compared to East Asian populations, raises
the specter of whether these same Western populations are
facing a higher burden of SARS-CoV-2 related peripheral and
central nervous system disorders. The same reasons of possibly
different viral genotypes and differing pathogenic susceptibility
can also be used to explain any corresponding spike in both PNS
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TABLE 1 | Geographical and testing variations.

World Map of the prevalence rates of Olfactory and Taste Disorders globally.

(The intensity of color suggests a higher prevalence of OTDs.)

S/N Author Country Sample

Size

Olfactory and taste

assessment method

Olfactory disorders

only (%)

Taste disorders

only (%)

Any olfactory and/or

taste disorders (%)

Asian (ex-Middle East) studies

1 Mao et al. (5) China 214 Subjective 5.1 5.6 NA

2 Lee et al. (40) Korea 3191 Subjective 4.2 3.1 15.3

3 Wee et al. (45) Singapore 154 Subjective NA NA 22.7

4 Chua et al. (46) Singapore 31 Subjective 22.6 NA NA

5 Qiu et al. (47) China 239 Subjective 20.0 3.0 32.0

6 Kim et al. (48) Korea 172 Subjective 39.5 33.7 NA

7 Komagamine et al. (49) Japan 628 Subjective 10.0 9.1 NA

8 Mishra et al. (50) India 74 Subjective 14.8 NA NA

9 Tham et al. (51) Singapore 1065 Subjective 11.8 4.6 12.6

Pooled averages 8.3 5.1 15.8

Middle Eastern and Western studies

10 Hopkins et al. (6) England 382 Subjective 60.0 88.9 NA

11 Giacomelli et al. (52) Italy 59 Subjective 5.1 10.2 33.9

12 Yan et al. (53) USA 128 Subjective 68.0 71.0 NA

13 Levinson et al. (54) Israel 45 Subjective 35.7 33.3 69.0

14 Menni et al. (55) England 579 Subjective NA NA 59.0

15 Spinato et al. (56) Italy 283 Subjective NA NA 64.4

16 Klopfenstein et al. (57) France 114 Subjective 47.0 40.3 Nil

17 Beltran et al. (58) Spain 79 Subjective 45.2 45.2 39.2

18 Menni et al. (59) England 7178 Subjective NA NA 65.0

19 Zens et al. (60) Germany 65 Subjective 47.6 NA NA

20 Patel et al. (61) England 141 Subjective 56.7 63.1 NA

(Continued)
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TABLE 1 | Continued

S/N Author Country Sample

Size

Olfactory and taste

assessment method

Olfactory disorders

only (%)

Taste disorders

only (%)

Any olfactory and/or

taste disorders (%)

21 Luers et al. (62) Germany 72 Subjective 74.0 69.0 68.0

22 Bertlich et al. (63) Germany 47 Subjective 31.9 19.1 NA

23 Haehner et al. (64) Germany 69 Subjective 31.8 NA NA

24 Borobia et al. (65) Spain 2226 Subjective 12.8 NA NA

25 Tudrej et al. (66) France 816 Subjective 19.1 23.0 29.7

26 Qiu et al. (47) Germany 39 Subjective 18.0 3.0 69.0

27 Qiu et al. (47) France 116 Subjective 6.0 NA 49.0

28 Gelardi et al. (67) Italy 72 Subjective 11.0 25.0 47.0

29 Speth et al. (68) Switzerland 103 Subjective 61.2 65.0 NA

30 Carignan et al. (69) Canada 134 Subjective 51.5 63.4 64.9

31 Abalo-Lojo et al. (32) Spain 131 Subjective NA NA 55.0

32 Lee et al. (70) Canada 56 Subjective 42.9 57.1 NA

Pooled averages (Subjective only) 26.1 46.9 60.8

33 Kaye et al. (71) USA 237 Objective 73.0 NA NA

34 Moein et al. (72) Iran 60 Objective 98.0 NA NA

35 Hornuss et al. (73) Germany 45 Objective 40.0 NA NA

36 Lechien et al. (7) Europe 417 Objective 85.6 88.8 NA

37 Vaira et al. (74) Italy 72 Objective 14.4 12.5 73.6

38 Tsivgoulis et al. (75) Greece 22 Objective 72.0 NA NA

Pooled averages (Objective only) 74.2 77.5 73.6

p-values (Subjective vs. objective) <0.01 <0.01 0.03

Pooled averages 33.4 52.3 60.9

p-values (Asian vs. Western) <0.01 <0.01 <0.01

and CNS manifestations in Western populations as compared
to Eastern populations. We should note that directly comparing
prevalence of neurological symptoms between studies has proven
to be difficult, largely due to the heterogenous nature of recorded
neurological symptoms such as headache, giddiness and altered
mental state – especially as they may be manifestations of
systemic disease as well (90, 91). Nevertheless, comparing CNS
syndromes, such as encephalitis, and PNS syndromes, such as
mono or polyneuropathies, reveals no evidence of increased rates
of such syndromes amongst Western populations compared to
Eastern populations thus far (92, 93).

TESTING VARIATIONS

The majority of the literature concerning COVID-19 and OTDs
has been based on patient self-reporting (94). This may inevitably
lead to inconsistences (52, 94), such as recall bias on the part
of the patient, or confirmation bias on the part of the medical
professional. Objective forms of testing have been proposed and
utilized in some studies, such as the University of Pennsylvania
Smell Identification Test (UPSIT), Questionnaire of Olfactory
Disorders–Negative Statements (95, 96), COVID-19 Anosmia
Reporting Tool (71), Sniffin’ sticks test, and Korean version of
Sniffin’ sticks test (KVSS) (97). Broadly, studies utilizing objective
testing for anosmia and ageusia have found a higher prevalence
of olfactory and gustatory disturbances amongst COVID-19
patients (72, 98). Table 1 highlights the differences in OTD rates

between objective and subjective testing, seen in the differing
prevalence rates, in favor of objective testing (60.8 vs. 73.6%,
p-value = 0.03). We can hypothesize that the reasons behind
under-reporting of anosmia or ageusia may be due to difficulties
in perceiving a reduction in sense of smell or taste (99) as
well as difficulties in finding and receiving an appropriate level
of care (100), which may be linked to socio-economic issues,
further elaborated on below. It has to be appreciated however,
that self-reporting of symptoms may often be the only feasible
and practical way of data collection, especially with pandemic
precautions and restrictions (44).

ETHNIC, COMORBIDITY AND
SOCIO-ECONOMIC VARIATIONS

COVID-19 has disproportionately affected racial minorities
across the world, with infection rates and mortality rates two to
three times higher in theseminorities than their proportion in the
population (101–106). Ethnic, socio-economic and comorbidity
variations all have a role in accounting for this higher affliction
rate amongst racial minorities (105).

Variations in OTDs, due to COVID-19, between different
ethnicities residing in the same region, have yet to be described
fully in the literature. We know from pre-COVID studies
that anosmia is more prevalent amongst African-Americans
as compared to Caucasians in the USA (107). Dong et al.

Frontiers in Medicine | www.frontiersin.org 5 April 2021 | Volume 8 | Article 661359

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kumar et al. Variations in COVID-19 Related Anosmia

TABLE 2 | Gender Variations in COVID-19 related olfactory and taste disorders (OTDs) and COVID-19 trackers.

S/N Author Year Summary/Interpretation

Gender Variations in COVID-19 related OTDs

1 Lechien et al. (7) 2020 In a study of 417 mild-to-moderate COVID-19 patients, females were found to be significantly more affected by

olfactory and taste dysfunctions then males. This was attributed to gender-related differences in inflammatory

reaction processes.

2 Hopkins et al. (6) 2020 Online survey of 382 patients reporting self-diagnosed new onset of olfactory and taste dysfunction, of which

74.6% were female. However in view of this being a voluntary online survey, it may simply reflect gender

differences in completing such voluntary online questionnaires rather than gender-related differences in prevalence

of olfactory and taste dysfunction.

3 Tham et al. (51) 2020 Out of 1065 patients with laboratory-confirmed COVID-19, the female gender was found to be significantly

associated with olfactory and taste disorders on multivariate analysis. This was again attributed to gender-related

differences in the inflammatory reaction process.

4 Giacomelli et al. (52) 2020 Cross-sectional survey of 59 COVID-19 positive patients of which females were found to have a higher prevalence

of olfactory and taste disorders as compared to males (52.6% vs. 25%).

5 Foster et al. (120) 2020 Amongst 949 COVID-19 positive patients, anosmia was significantly associated with younger age, higher BMI as

well as female sex. The proportion of females amongst patients with anosmia was significantly higher than that of

patients without anosmia (64.7% vs. 52.8%). Anosmia was found to be an independent positive prognostic factor

of a less severe COVID-19 infection.

7 Talavera et al. (121) 2020 Amongst 576 COVID-19 positive hospitalized patients, anosmia was present in 25.3%. Patients with anosmia

were more frequently female, had less comorbidities such as hypertension and diabetes, and were less likely to be

smokers. Hospitalized COVID-19 patients with anosmia had a lower adjusted mortality rate and a less severe

course of the disease.

Proposed mechanisms for gender differences in COVID-19 related OTDs

8 Lefevre et al. (122) 2019 Higher levels of inflammatory cytokines were recorded in males as compared to both women and patients with

Klinefelter syndrome following whole blood stimulation, even after adjusting for sex steroid levels. This suggests

that males may have a more severe disease process as compared to females.

9 Hewegama et al. (123) 2009 In a comparison study of T-cell gene expression between males and females, females were found to have a higher

expression of inflammatory and cytotoxic effector molecules under conditions of repeated stimulation. The authors

hypothesized that this may contribute to the development and severity of autoimmune diseases in women.

10 Jaillon et al. (124) 2019 Study examining variation in innate immunity, measured by the level of tumor necrosis factor (TNF) in

lipopolysaccharide (LPS)-stimulated whole-blood culture found that females have a nearly 30% lower innate

immune response.

11 Marriot et al. (125) 2006 Review article outlining differences in innate immune responses between males and females, particularly that viral

infections are more severe and require hospitalization more in males than females, corresponding with higher levels

of TNF-α in males than females. Females were also found to mount more effective adaptive immune responses to

viral pathogens. These favorable differences in innate immune responses are a consequence of higher estrogen

levels, which augment immune responses after infection and have been shown to increase resistance to infections.

12 Bwire et al. (126) 2020 Amongst COVID-19 patients, males have been found to have a higher mortality and morbidity. Biological factors

such as genetics and immunology play an important role, but the impact of gender behavior cannot be

discounted. Males were found to have a higher burden of pre-existing conditions such as diabetes, hypertension

and obesity. Males were also found to have higher rates of smoking and alcohol consumption as well as having a

tendency to be less likely to comply with preventive measures such as hand washing, stay home orders and

donning of face masks. These may all have contributed to the higher morbidity and mortality amongst males

compared to females.

13 Kopel et al. (127) 2020 Review article about gender variations in COVID-19 infection. Females are less likely to produce extreme immune

responses as compared to males due to X-chromosome and sex hormone modulated innate and adaptive

immunity differences. This study also explores gender differences in ACE2 receptor highlighting that ACE2

expression is higher in males than females, but also high in pregnant female patients. This suggests that pregnant

female patients may be more susceptible to COVID-19 infection that non-pregnant female patients.

COVID-19 Trackers

14 COVID-19

Symptom Study

Menni et al. (59) Drew

et al. (128)

2020 The COVID-19 Symptom Study (previously known as COVID-19 symptom tracker) is a smartphone-based

application that was launched in the United Kingdom and United States on March 2020. The application captures

self-reported information including age, health risk factors and location. It has registered millions of participants

and studies with this dataset found that the proportion of participants who reported olfactory and taste disorders

was higher in those with a positive COVID-19 test result compared to those with a negative test result.

15 COVID-19 Symptom

Tracker

Zens et al. (60)

2020 The COVID-19 Symptom Tracker is a smartphone-based application, which was designed in Germany and was

launched in Germany on April 2020. It captures self-reported demographic and medical history as well as

prompting users to report symptoms of COVID-19 on a daily basis. This application registered 11,829 participants

who completed the symptom questionnaire at least once, and found that loss of smell was one of the top 5

strongest predictors for COVID-19 infection.

(Continued)
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TABLE 2 | Continued

S/N Author Year Summary/Interpretation

16 Google Trends analysis

Walker et al. (129) Cherry

et al. (130)

2020 Analysis of internet search engine interest (Google Trends) for terms relating to olfactory and taste disorders and

then correlating them with region specific COVID-19 data. An analysis of such trends found that there was a

strong correlation between daily search volumes related to anosmia/ageusia and increases in daily COVID-19

cases and deaths in the same geographical region. Tracking of such search interest can assist public health

planning on a regional and/or national level.

17 COVIDCast

Flaxman et al. (131)

2020 COVIDCast is the largest public repository of geographically detailed, real time indicators of COVID-19 activity in

the United States of America run by the Delphi lab at Carnegie Mellon University. It gathers data from Facebook

via national daily surveys as well as de-identified medical insurance claims. It has garnered more than 15 million

responses since starting in April 2020 and has approximately 55,000 participants daily. It does not collect

symptom information related to olfactory and taste disorders.

18 Coronaisrael survey

Rossman et al. (132)

2020 Real-time nationwide survey of coronavirus symptoms via an online survey (https://coronaisrael.org/) which is filled

out anonymously, collecting primarily geographical data. The survey attained a cumulative number of close to

75,000 responses within 10 days. The newer version of this questionnaire included loss of smell and taste as

symptoms of COVID-19 infection. This tracker is a member of the coronavirus census collective.

19 HowWeFeel

Segal et al. (133)

2020 HowWeFeel is a symptom tracker mobile application which administers a 30-second survey on the participants

well-being to collect epidemiological data. This data is anonymous and gathers health and demographic data to

educate the researchers about infection trends in the community. This tracker is member of the coronavirus

census collective.

20 The Sex, Gender and

COVID-19 project

(134)

2020 Live tracking of COVID-19 statistics globally, with a specific focus on sex and gender. As of 24 January 2021, for

every 10 Intensive Care Unit (ICU) admissions amongst females, there are approximately 19 ICU admissions

amongst males. This tracker does not collect data with regards to olfactory and taste disorders.

21 CoEpi (Community

Epidemiology In Action)

(135)

2020 CoEpi is an open-source mobile application that uses Bluetooth proximity data to anonymously track and alert

users who have been in close proximity to symptomatic users. The application captures symptoms related to

COVID-19 and other transmissible illnesses. This tracker has yet to publish data which it has collected.

22 Beat COVID-19 Now

(136)

2020 Beat COVID-19 Now is a symptom tracker mobile application and webpage developed by the Swinburne

University of Technology in Australia and captures self-reported COVID-19 symptom information from users

worldwide. This tracker has yet to publish data which it has collected.

described the prevalence of anosmia amongst African-Americans
as 22.3%, as compared to 10.4% amongst Caucasians, but
were unable to account for this stark racial disparity (107).
As such, it would not be surprising if anosmia rates in
African-American COVID-19 patients were higher than in other
ethnicities. A possible explanation may be in the differences in
ACE2 expression. A reduced molecular expression of ACE2 in
African-descent populations has been described (108), which
should theoretically lead to a lower incidence of COVID-19
in these populations, contrary to reality. Vinciguerra et al.
proposed that whilst this reduced expression of ACE2 can
lead to lower susceptibility to SARS-CoV-2 infection, once
infected, the clinical manifestations may be worse, due to
progression of inflammatory and thrombotic processes as a
result of such reduced ACE2 expression (109). TMPRSS2 may
also play a part in the ethnic variations in anosmia. Ethnic
differences in TMPRSS2 gene-related activity in prostate tissue
have been associated with a higher incidence of prostate cancer
in African-American men, as compared to Caucasian men,
in the USA (110). This ethnic difference was found to be
similar for nasal gene expression of TMPRSS2. In a study
of 305 unique nasal epithelial samples, African-Americans
were found to have statistically significantly higher TMPRSS2
expression as compared to Asian, Latino, mixed race and
Caucasian individuals (111). TMPRSS2 is known to be essential
in SARS-CoV-2 cell entry (15), suggesting a possible reason
behind the higher burden of COVID-19 infection amongst

African-Americans in theUSA, possibly holding true for anosmia
as well.

Comorbidity burden has been positively correlated with the
severity of COVID-19 and mortality (112). This is of particular
interest when analysing the impact of COVID-19 on minority
races, as comorbidity burdens in ethnic minorities have been
found to be higher (101, 105, 113, 114). Several comorbidities
such as cardiovascular disease, diabetes, chronic kidney disease
and chronic obstructive pulmonary disease have been reported
in higher percentages amongst COVID-19 mortality statistics
(115). The impact of comorbidities are further highlighted when
considering that mortality rates amongst African-American and
Caucasian patients in the USA are not significantly different
when comorbidities are corrected for (116). However, anosmia
tends to affect individuals with fewer comorbidities, except for
asthma, which was found to be of a high proportion in patients
presenting with anosmia (7, 57). This could possibly be due
to anosmia being the only symptom in mild and moderate
COVID-19 infections, which tend to occur more often in patients
with no or low comorbidity burdens (7). This implies that
COVID-19 patients with only isolated OTDs may have a milder
disease process.

Possibly the most important piece in explaining the higher
proportion of racial minorities being infected with COVID-
19 is the socio-economic aspect of the disease. Poverty has
been associated with a higher risk of intensive care unit
admissions in the USA (117), and a large study in Brazil
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found that patients from lower socio-economic regions had a
higher mortality rate (102). Patients in lower socio-economic
regions also have more comorbidities, suggesting that structural
health disparities and poor access to healthcare result in
poorly controlled chronic diseases (102, 103). People from
lower socio-economic classes were also unable to comply
with pandemic measures such as social distancing or working
from home, due to their crowded living conditions or the
blue-collar occupations that many hold (101, 105, 115).
In Scotland, COVID-19 patients living in areas with the
greatest socio-economic deprivation had a higher frequency
of critical care admission and a higher adjusted 30-day
mortality, with healthcare facilities in areas with higher socio-
economic deprivation also operating at higher occupancy rates
(118). The relationship between OTDs and socio-economic
status alludes to the differing access to healthcare between
different socio-economic groups. A pre-COVID-19 study in
South Korea found that high-income population groups had
a 1.4 times higher incidence of anosmia as compared to low-
income population groups (119). The authors attributed this
to the accessibility of medical care to patients with different
income levels, and concluded that anosmia can be frequently
underestimated by the elderly and low-income due to their
economic situation, which hinders them from seeking medical
care (119). We can hypothesize that the incidence of OTDs in
lower socio-economic groups may be higher in the COVID-
19 outbreak, but may not be reflected in the data due to
socio-economic factors that hinder their access to healthcare.
Future studies on the prevalence of OTDs in different socio-
economic groups affected by COVID-19 will help to corroborate
this hypothesis.

In addition to the inequalities described above, there may be
emerging evidence that gender distinguishes both susceptibility
to COVID-19 and associated complications such as anosmia
and ageusia (Table 2); further study is required to explain such
differences. The ability for public health and research groups to
mobilize the efforts of its “citizen scientist” community during
this pandemic has also been key to illustrating emerging or
unusual trends, such as OTDs, in the form of trackers (Table 2).
Despite the limitations of these trackers, they provide both

helpful and near real-time updates of disease prevalence as
well as gauge societal attitudes toward such group efforts in
global health.

CONCLUSION

Anosmia and ageusia have become well-recognized symptoms
of this current pandemic. Much has changed since the original
case reports about olfactory and taste disorders, but there are
still many questions that remain unanswered regarding how
biological and societal factors influence the impact of SARS-
CoV-2. In this mini review, we categorize and collate current
available literature in order to describe the differences in OTDs
seen in different geographical regions as well as amongst different
ethnicities and socio-economic conditions. We believe our study
to be the first mini review to compare and contrast the variously
reported global variations in OTDs. Concurrently, we have
provided an up-to-date report on the disproportionate influence
of ethnic, comorbidity and socio-economic factors toward
such variations. Understanding such inequalities may highlight
areas of consideration for allocation of resources and focused
attention. Further research is also required to elucidate the exact
pathophysiological mechanisms underpinning the phenomena
of anosmia and ageusia in COVID-19 and account for other
variations, such as the importance of gender toward the clinical
phenotype of disease.
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