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Abstract: Cancer stem cells (CSCs) are thought of as a clinically pertinent subpopulation of
tumors, partly responsible for cancer relapse and metastasis. Research programs aimed at
discovering anti-CSC agents have largely focused on biologics and purely organic molecules.
Recently, we showed that a family of redox-active copper(II) complexes with phenanthroline-based
ligands and nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin, are capable
of potently and selectively killing breast CSCs. Herein we present analogous redox-inactive,
zinc(II)-phenanthroline-indomethacin complexes with the ability to kill breast CSCs and bulk breast
cancer cells with equal potency (in the submicro- or micromolar range). A single dose of the zinc(II)
complexes could theoretically be administered to eliminate whole tumor populations. Excitingly,
some of the zinc(II) complexes decrease the growth and viability of mammospheres to a comparable
or higher degree than salinomycin, a compound known to effectively kill breast CSCs. As far as we are
aware this is the first report to examine the anti-breast CSC activity of zinc(II)-containing compounds.
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1. Introduction

Cancer is one of the most widespread illnesses in the modern world. It is a complex multigenetic
condition associated with the accumulation of irregular cells, resulting from uncontrolled cell
division [1]. A subpopulation of tumors, termed cancer stem cells (CSCs) is linked to metastasis
and cancer relapse, the major causes of cancer associated fatalities [2–4]. CSCs have the ability to
differentiate, self-renew, and form aggressive secondary or tertiary tumors [5,6]. Current cancer
therapies (chemotherapy, radiotherapy, and surgery) are able to eliminate the bulk of cancer cells but
are incapable of removing CSCs [7–11]. Therefore, new generations of cancer treatments must have the
capability of removing entire tumor populations, including CSCs, to have durable clinical outcomes.
There are many academic- and pharmaceutical-led research programs underway with the aim of
developing clinically viable anti-CSC agents, however, most of them have focused on biologics or
purely organic compounds [12]. We and others have recently shown that the diversity and versatility
of metals can be harnessed to develop inorganic compounds with promising anti-CSC activities [13].

Platinum(II) complexes like cisplatin, carboplatin, and oxaliplatin are routinely employed in the
clinic to overcome various cancers, and a lot of effort has been put into shedding light on their cellular
and molecular-level mechanisms of action [14–17]. However, these platinum(II) anticancer agents
are unable to remove CSCs at their therapeutically administered doses [18–20]. Recent efforts have
shown that chemical adducts between carrier/scaffold molecules and bioactive metabolites display
promising anticancer activities, albeit their anti-CSC potencies are unexplored [21–25]. Copper(II)
complexes with phenanthroline ligands and nonsteroidal anti-inflammatory drugs (NSAIDs) such
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as indomethacin have been recently recognized as an effective class of anti-CSCs agents [26,27].
NSAIDs inhibit the inducible cyclooxygenase isoenzyme, COX-2, which is related to CSC renewal and
proliferation [28–30]. The copper(II)-phenanthroline-indomethacin complexes kill breast CSCs in the
micro- and sub-micromolar range, and show up to 3-fold lower potency towards bulk breast cancer
cells [26,27]. Cell-based studies identified that the copper(II)-phenanthroline-indomethacin complexes
prompt CSC death by increasing intracellular ROS levels (presumably via Fenton-like reactions) and
inhibiting COX-2 [26,27]. The effectiveness of the copper(II)-phenanthroline-indomethacin complexes
is believed to be related to the susceptibility of CSCs to variations in intracellular redox levels, and
the relatively high expression of COX-2 in certain CSCs. To investigate whether redox activity is
an indispensable attribute for anti-CSC activity (within this class of metal-phenanthroline-NSAID
complexes), we sought to develop structurally analogous zinc(II) complexes and determine their
CSC potency, given that zinc(II) is redox-inactive under physiological conditions. Herein, we present
the synthesis, characterization, stability studies, and breast CSC toxicity of a family of redox-silent
zinc(II)-phenanthroline-indomethacin complexes.

2. Results and Discussion

The zinc(II) complexes, 2–5 were synthesized as outlined in Scheme 1. Diaquabis(η2-O,O′-
indomethacin)zinc(II), 1 [31] was reacted with equimolar amounts of the appropriate polypyridyl
ligand (2,2′-bipyridine for 2, 1,10-phenanthroline for 3, 5-methyl-1,10-phenanthroline for 4, or
4,7-diphenyl-1,10-phenanthroline for 5) in acetonitrile. The zinc(II) complexes, 2–5 were obtained in
good yields (70–85%) as yellow or orange solids and were fully characterized by 1H NMR, infrared
spectroscopy, and elemental analysis (Figures S1–S6 in the Supplementary Materials). The coordination
of two indomethacin moieties and one polypridyl ligand to zinc in 2–5 was confirmed by the 2:1,
indomethacin:polypridyl ligand integration ratio in the 1H NMR spectra of 2–5 (Figures S1–S4).
Furthermore, the formation of 2–5 was evidenced by the shift of the aromatic proton signals relative to
1 (Figure S5). According to the IR spectra of 2–5, νasym(CO2) and νsym(CO2) stretching bands were
observed at 1589–1594 cm−1 and 1359–1373 cm−1 (Figure S6). The variation in the νasym(CO2) and
νsym(CO2) stretching bands for 2–5 was 221–234 cm−1, indicative of a monodentate binding mode for
the carboxylate group on indomethacin to the zinc center (as depicted in Scheme 1) [32,33]. This is
comparable to the νasym(CO2) and νsym(CO2) stretching band differences reported for related zinc(II)
complexes containing indomethacin and polypyridyl ligands [34,35]. The high chemical purity of 2–5
was shown by elemental analysis studies.
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Scheme 1. Representation of the synthetic route used to prepare the zinc(II)-phenanthroline complexes
with two indomethacin units, 2–5, from diaquabis(η2-O,O′-indomethacin)zinc(II), 1 in acetonitrile.

The shake-flask method was used to determine the lipophilicity (LogP) of 2–5. This involves
determining the amount of a given compound partitioned between octanol and water using UV-Vis
spectroscopy. The LogP values for 2–5 varied from 0.89 to 1.67 (Table S1). The size of the polypyridyl
ligand has a clear effect on lipophilicity, with LogP values increasing according to the following order;
2 < 3 < 4 < 5. The hydrophobicity of 2–5 implies that the zinc(II) complexes are likely to easily enter cells.
In order to determine the stability of 2 (used as a demonstrative compound of the zinc(II) complexes)
in biologically relevant solutions, UV-Vis spectroscopy studies were performed. The metal-perturbed
π-π* and metal-to-ligand charge-transfer (MLCT) absorption bands of 2 (50 µM) in PBS:DMSO (200:1)
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were constant for 24 h at 37 ◦C (Figure S7), indicative of stability. The same UV-Vis bands associated to
2 (50 µM) in mammary epithelial cell growth medium (MEGM)/DMSO (200:1) remained unaltered
over the course of 24 h at 37 ◦C, suggestive of stability in conditions required for cellular studies
(Figure S8).

The antiproliferative effect of 2–5 against bulk breast cancer cells (HMLER) and breast CSC-like
cells (HMLER-shEcad) was studied using the MTT assay. Dose–response curves (Figure 1A,B) were
used to calculate the IC50 values, which are shown in Table 1. In general, the zinc(II) complexes,
2–5 exhibited equipotency against HMLER and HMLER-shEcad cells, in the micro- or sub-micromolar
range. Therefore, 2–5 have the potential ability to eliminate whole tumor cell populations with a single
micro- or sub-micromolar dose. Clinically approved platinum(II) agents, cisplatin and carboplatin
displayed great toxicity towards CSC-depleted HMLER cells than CSC-enriched HMLER-shEcad cells,
suggestive of non-CSC (bulk cancer cell) selectivity (Table 1) [27]. This is consistent with the tendency
of platinum(II) anticancer agents to encourage CSC enrichment rather than CSC depletion [18].
Notably, the potency of 2–5 against CSC-like HMLER-shEcad cells was up to 6-fold greater than
salinomycin, an anti-breast CSC compound. Previous work has shown that indomethacin is non-toxic
towards bulk cancer cells and CSC-like cells (Table 1) [26]. The current results indicate that the
potency of indomethacin against breast CSC-like cells and bulk breast cancer cells is improved by
chelating it to a zinc(II)-polypyridyl core. The CSC potency of 2–5 is similar to the most effective
copper(II)-phenanthroline-indomethacin complexes previously identified by us [26,27]. This shows
that CSC-potent metal-phenanthroline-NSAID complexes can be developed with redox-inactive metals
such as zinc(II), and implies that redox activity is not essential for anti-CSC activity within this class
of compounds.
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Figure 1. Compound concentration versus percentage cell viability plots for 2–5 against (A) bulk
breast cancer cells (HMLER) and (B) breast CSC-like cells (HMLER-shEcad cells) (72 h incubation).
The difference in potency of 2–5 towards HMLER-shEcad cells and HMLER cells is not significant
(Student t-test, p > 0.05).

To measure therapeutic potential, the potency of 2–5 towards human embryonic kidney
(HEK 293T) cells was investigated. The potency of 2–5 towards HEK 293T cells is highly dependent
on the polypyridyl ligand and increases in the following order; 2 < 3 < 4 < 5 (Table 1 and Figure S9).
Promisingly the 2,2′-bipyridine- and 1,10-phenanthroline-bearing complexes, 2 and 3 were significantly
less potent toward HEK 293T cells (p < 0.05, up to 17-fold for 2) than HMLER and HMLER-shEcad
cells, demonstrating preferred toxicity towards breast cancer cells (bulk and CSC-like cells) over
healthy cells.

To further probe the anti-CSC potential of the zinc(II) complexes, 2–5, the mammosphere assay
was performed. This assay assesses the aptitude of chemical agents to stop three-dimensional
spheroid formation from breast CSCs in suspension [36]. The method also provides a reliable gauge
of in vivo potential, as spheroids are closer in structure to solid tumors than monolayer systems.
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Treatment of HMLER-shEcad cells in suspension, with 2–5 (at their respective IC20 value for 5 days)
noticeably decreased the number and size of mammospheres formed (Figure 2A,B). Treatment with
salinomycin under identical conditions induced a similar effect (Figure 2A,B). Notably, 4 and 5
reduced mammosphere formation (43–46% decrease in mammospheres formed) to a better degree than
salinomycin (37% decrease in mammospheres formed). Previous work has shown that indomethacin
has a poor mammosphere inhibitory effect [14]. TOX8, a resazurin-based compound was used to
determine mammosphere viability after treatment with 2–5. The zinc(II) complexes, 3–5 displayed
micromolar potency towards mammospheres, with the 4,7-diphenyl-1,10-phenanthroline-bearing
complex, 5 exhibiting 7-fold higher potency than salinomycin under identical conditions (Table 1
and Figure 2C) [37]. The ineffectiveness of 2 against mammospheres (IC50 > 133 µM) (Figure 2C)
was surprising considering its high potency (sub-micromolar) against monolayer cell cultures of
HMLER-shEcad cells (Table 1). The zinc(II) complexes, 3–5 displayed similar mammosphere potency
to analogous copper(II)-phenanthroline-indomethacin complexes [13], indicating that redox activity
may not be vital for anti-CSC activity within this class of metal-phenanthroline-NSAID complexes.

Table 1. IC50 values of 2–5, salinomycin, cisplatin, and carboplatin against HMLER, HMLER-shEcad,
and human embryonic kidney (HEK) 293T cells, and HMLER-shEcad mammospheres. Incubation
times of 72 h or 120 h were used. IC50 values and errors represent the mean value of three independent
experiments and the associated standard deviations, respectively.

Compound HMLER IC50 (µM) HMLER-shEcad
IC50 (µM)

HEK 293T IC50
(µM)

Mammosphere
IC50 (µM)

2 1.2 ± 0.02 0.7 ± 0.04 20.0 ± 3.9 >133
3 1.1 ± 0.05 1.1 ± 0.08 2.3 ± 0.1 44.1 ± 0.6
4 0.8 ± 0.03 0.7 ± 0.07 0.9 ± 0.2 44.2 ± 1.4
5 0.7 ± 0.03 0.9 ± 0.08 0.3 ± 0.02 2.7 ± 0.03

cisplatin 1 3.4 ± 0.5 4.9 ± 0.4 n.d. n.d.
carboplatin 1 67.3 ± 2.8 72.3 ± 7.9 n.d. n.d.
salinomycin 1 11.4 ± 0.4 4.2 ± 0.3 n.d. 18.5 ± 1.5

1 Taken from reference [26,27,37]. n.d. not determined.
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Figure 2. (A) Representation of the number of mammospheres formed from HMLER-shEcad
cell suspensions treated with 2–5 or salinomycin for 5 days at their respective IC20 values.
Standard deviation was used to calculate the associated errors. (B) Bright-field images (taken using an
inverted microscope) representative of untreated HMLER-shEcad mammospheres and those treated
with 2–5 or salinomycin for 5 days at their respective IC20 values (×20 magnification). (C) Compound
concentration versus percentage mammosphere viability plots for 2–5 against HMLER-shEcad
mammospheres (5 days incubation).

In summary we present a series of zinc(II)-phenanthroline-indomethacin complexes capable of
killing bulk breast cancer cells and breast CSCs indiscriminately in the submicro- and micromolar
range. Three of the zinc(II) complexes, 3–5 also inhibit mammosphere formation and reduce
mammosphere viability to a similar or greater extent than salinomycin. Overall, the CSC
potency of the redox-inactive zinc(II)-phenanthroline-indomethacin complexes is similar to the most
effective redox-active copper(II)-phenanthroline-indomethacin complexes previously identified by us.
This suggests that redox activity is not an essential criterion for anti-CSC activity within this class of
metal-phenanthroline-NSAID complexes. Future studies will aim to elucidate the cellular mechanism
of action of the zinc(II)-phenanthroline-indomethacin complexes, 2–5 in CSCs and determine their
translatable scope.

3. Materials and Methods

3.1. General Procedures

No special conditions (i.e., nonatmospheric conditions) were used to carry out the synthetic
methods reported in this manuscript. A BrukerAvance 400 MHz Ultrashield NMR spectrometer
(Bruker, Billerica, MA, USA) was used to measure the 1H NMR spectra of 1–5. An infrared
(IR) Affinity-1S Shimadzu spectrophotometer (Shimadzu Corporation, Kyoto, Japan) was used
to measure the IR spectra of 2–5. Commercial services at London Metropolitan University
were used to carry out the elemental analysis studies. 2,2′-bipyridine, 1,10-phenanthroline,
5-methyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, and indomethacin were bought from
Sigma Aldrich (St. Louis, MO, USA). Diaquabis(η2-O,O′-indomethacin)zinc(II), 1 was synthesized
following a reported method [31]. For all biophysical and cellular studies, DMSO was used to prepare
a 10 mM solution of 2–5. The solutions were then diluted with the appropriate biological solution to
the working concentration(s).

3.2. Synthesis of Zn(indomethacin)2(2,2′-bipyridine) (2)

To a solution suspension of 1 (500.3 mg, 0.61 mmol) in acetonitrile (25 mL), 2,2′-bipyridine
(96.3 mg, 0.61 mmol) was added and the resulting mixture was stirred at 60 ◦C for 16 h. The mixture
was then cooled to room temperature and the solvent was removed to ca. 10 mL. The concentrated
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solution was cooled to 4 ◦C to yield a precipitate, which as filtered and washed with water (20 mL)
and ethanol (20 mL), to yield 2 as a yellow solid (440.6 mg, 77%); 1H NMR (400 MHz, DMSO-d6) δ 8.65
(d, 2H), 8.51 (d, 2H), 8.14 (t, 2H), 7.64–7.55 (m, 10H), 6.94–6.90 (m, 4H), 6.65 (dd, 2H), 3.66 (s, 6H), 3.45
(s, 4H), 2.10 (s, 6H); IR (solid state, cm−1): 1677, 1654, 1639, 1594, 1560, 1522, 1478, 1459, 1433, 1395,
1373, 1358, 1324, 1290, 1256, 1219, 1181, 1148, 1091, 1069, 1035, 1012, 930, 844, 836, 753, 686, 630, 551;
Anal. Calcd. For C48H38Cl2N4O8Zn·2H2O: C, 59.36; H, 4.36; N, 5.77. Found: C, 59.50; H, 3.25; N, 6.06.

3.3. Synthesis of Zn(indomethacin)2(1,10-phenanthroline) (3)

To a solution suspension of 1 (500.3 mg, 0.61 mmol) in acetonitrile (40 mL), 1,10-phenanthroline
(115.4 mg, 0.64 mmol) was added and the resulting mixture was stirred at 60 ◦C for 16 h. The mixture
was then cooled to room temperature and the solvent was removed to ca. 10 mL. The concentrated
solution was cooled to 4 ◦C to yield a precipitate, which as filtered and washed with water (20 mL)
and ethanol (20 mL), to yield 3 as a yellow solid (423.9 mg, 72%); 1H NMR (400 MHz, DMSO-d6) δ
8.91 (bs, 2H), 8.75 (d, 2H), 8.13 (s, 2H), 7.88 (dd, 2H), 7.60 (s, 8H), 6.87–6.85 (m, 4H), 6.60 (dd, 2H), 3.59
(s, 6H), 3.40 (s, 4H), 2.05 (s, 6H); IR (solid state, cm−1): 1672, 1623, 1593, 1559, 1525, 1480, 1457, 1431,
1404, 1371, 1359, 1325, 1292, 1258, 1231, 1220, 1182, 1148, 1145, 1092, 1077, 1039, 1013, 926, 855, 847, 787,
757, 727, 693, 670, 629, 550; Anal. Calcd. For C50H38Cl2N4O8Zn: C, 62.61; H, 3.99; N, 5.84. Found: C,
62.47; H, 3.84; N, 5.96.

3.4. Synthesis of Zn(indomethacin)2(5-methyl-1,10-phenanthroline) (4)

To a solution suspension of 1 (500.3 mg, 0.61 mmol) in acetonitrile (25 mL), 5-methyl-1,
10-phenanthroline (153.6 mg, 0.79 mmol) was added and the resulting mixture was stirred at 60 ◦C for
16 h. The mixture was then cooled to room temperature and the solvent was removed to ca. 10 mL.
The concentrated solution was cooled to 4 ◦C to yield a precipitate, which as filtered and washed with
water (20 mL) and ethanol (20 mL), to yield 4 as a yellow solid (418.2 mg, 70%); 1H NMR (400 MHz,
DMSO-d6) δ 8.91–8.80 (m, 3H), 8.66 (d, 1H), 7.98 (s, 1H), 7.93–7.85 (m, 2H), 7.61 (s, 8H), 6.88–6.82
(m, 4H), 6.61 (dd, 2H), 3.58 (s, 6H), 3.39 (s, 4H), 2.78 (s, 3H), 2.05 (s, 6H); IR (solid state, cm−1): 1675,
1634, 1589, 1563, 1522, 1477, 1455, 1432, 1395, 1369, 1357, 1320, 1290, 1256, 1223, 1178, 1148, 1092, 1069,
1032, 1017, 994, 923, 837, 800, 759, 729, 669, 553; Anal. Calcd. For C51H40Cl2N4O8Zn·H2O: C, 61.80; H,
4.27; N, 5.65. Found: C, 61.43; H, 4.39; N, 5.76.

3.5. Synthesis of Zn(indomethacin)2(4,7-diphenyl-1,10-phenanthroline) (5)

To a solution suspension of 1 (500.3 mg, 0.61 mmol) in acetonitrile (25 mL), 4,7-diphenyl-1,
10-phenanthroline (205.9 mg, 0.62 mmol) was added and the resulting mixture was stirred at 60 ◦C for
16 h. The mixture was then cooled to room temperature and the solvent was removed to ca. 10 mL.
The concentrated solution was cooled to 4 ◦C to yield a precipitate, which as filtered and washed with
water (20 mL) and ethanol (20 mL), to yield 5 as a orange solid (579.9 mg, 85%); 1H NMR (400 MHz,
DMSO-d6) δ 8.98 (bs, 2H), 8.05 (bs, 2H), 7.87 (bs, 2H), 7.63–7.58 (m, 18H), 6.94 (bs, 2H), 6.89 (d, 2H),
6.63 (d, 2H), 3.61 (s, 6H), 3.53 (bs, 4H), 2.13 (s, 6H); IR (solid state, cm−1): 1683, 1671, 1593, 1562, 1523,
1476, 1456, 1433, 1398, 1359, 1320, 1289, 1261, 1222, 1183, 1144, 1093, 1070, 1039, 1015, 996, 929, 843, 832,
757, 707, 668, 632, 550; Anal. Calcd. For C62H46Cl2N4O8Zn: C, 67.01; H, 4.17; N, 5.04. Found: C, 66.98;
H, 4.17; N, 5.16.

3.6. Determination of the LogP Values

The shake-flask method in combination with UV-Vis spectroscopy was used to determine
the LogP values of 2–5. Briefly, to a suspension of water (500 µL) and octanol (500 µL), 2–5 was
added, giving a final concentration of 100 µM. The mixture was shaken for 24 h (room temperature).
Using centrifugation, the water and octanol layers were separated and the concentration of 2–5 in each
layer was determined using UV-Vis spectroscopy.
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3.7. Cell Lines and Cell Culture Conditions

HEK 293T human embryonic kidney cells purchased from American Type Culture Collection
(ATCC, Manassas, VA, USA) were grown in DMEM (Dulbecco’s Modified Eagle’s Medium) with
FBS (fetal bovine serum, 10%), and penicillin/streptomycin (1%). Human mammary epithelial
CSC-depleted HMLER and human mammary epithelial CSC-enriched HMLER-shEcad cells were
obtained from Prof. R.A. Weinberg (Whitehead Institute, MIT). These cells were grown in
MEGM (Mammary Epithelial Cell Growth Medium) with BPE, hydrocortisone, hEGF, insulin, and
gentamicin/amphotericin-B. All of the cells used in this study were cultured at 37 ◦C within a
humidified incubator with a CO2 controller to maintin CO2 levels at 5%.

3.8. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) Assay

On day 1, 5000 cells (of the appropriate cell line) were plated in each well of a 96-well plate.
The cells were then left to attach to the bottom of the wells overnight. On day 2, the compounds
of interest were added (at different concentrations, 0.2–100 µM). The cells were incubated with the
compounds for 72 h. The volume of each well at this stage was 200 µL. If DMSO was used to
aid solubilization of the compounds, then the same amount of DMSO was also present in control
wells. On day 5, a solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
(4 mg/mL) predissolved in PBS was added to each well of the 96-well plate (20 µL). After a further
4 h incubation, the media/MTT solution was removed and the resultant purple formazan crystals
were dissolved in DMSO (200 µL). The absorption of each well was measured using a plate reader at
550 nm. The absorption values were normalised according to the control wells and dose—response
curves were plotted to determine the IC50 values. Three independent experiments were carried out,
with each concentration having six repeats (n = 18).

3.9. Mammosphere Assay

On day 1, 5000 HMLER-shEcad cells were seeded into each well of a 96-well ultralow-attachment
plate. The culture media used was MEGM with B27 (Invitrogen), 20 ng/mL EGF, and 4 µg/mL heparin
(Sigma). Compounds of interest were added to the HMLER-shEcad cells at various concentrations
(0–133 µM), and the suspensions were incubated for 5 days. On day 6, the mammospheres were
imaged and counted using a standard microscope. Afterwhich, TOX8 (Sigma) (20 µL) was added
to each well and incubated for 16 h. On day 7, the solutions in each well were transferred to a
black 96-well plate and the fluorescence was measured using a plate reader, 590 nm (λex = 560 nm).
The arbitrary fluorescence values were normalised with respect to control wells (containing DMSO),
and dose–response curves were plotted to determine the IC50 values. Three independent experiments
were carried out, with each concentration having three repeats (n = 6).

Supplementary Materials: The following are available online, Figures S1–S9.
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