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Abstract

Charcot Marie Tooth disease (CMT) has negative functional impact on postural control of

children; however, it has not been widely studied. Stabilometry can provide insights about

postural control and guide preventive interventions in immature perceptual and musculo-

skeletal systems as those seen in children with CMT. This cross-sectional study aimed to

identify and interpret stabilometric variables that reflect the postural control of children with

CMT. 53 subjects (age 6–17) were assigned to one of the two groups: CMT (15 males and

14 females with CMT) or Control (13 males and 11 females healthy). Quiet standing was

tested in different conditions: with open and closed eyes on regular surface (open-regular,

closed-regular) and foam surface (open-foam, closed-foam) using a force platform. The

minimum of 2 and maximum of 3 trials of 30 seconds for each test condition provided

the classical stabilometric variables and Romberg Quotient (RQv). CMT group showed

increase of confidence ellipse area, mean velocity, mediolateral and anteroposterior veloci-

ties associated with decreased mean body oscillation frequency, as the complexity of tasks

increased. CMT postural deficit was identified by greater and faster sway associated with

these lower frequencies, when compared to Control.

Introduction

Adequate static and dynamic balance depend on the normal mechanisms of postural control,

biomechanical factors[1] and neuromuscular factors, including the integration of visual sen-

sory, vestibular and somatosensory information[2]. From childhood to adulthood, postural

control improves with internal and /or external destabilizing forces[3–9]. The critical period

for the development of postural control seems to be between 7 and 11 years of age[4], although
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studies in the literature have described that an adult-like postural control is reached only after

the age of 14 [10–12]

An objective method of analyzing postural control is stabilometry, however the diverse

number of variables and methods used by authors prevent interpretations and comparisons

between studies[13–16] The position and displacement of the center of pressure (CoP), i.e the

point of the reaction force when it is applied to the ground on the support base, allows for

obtaining derivative variables that signal greater or lesser postural stability. For healthy chil-

dren, a review based on 14 studies showed decreased postural sway with increasing age and

increased sway, with the absence of visual feedback[17]. When compared to adults, children

show increase in postural sway velocity and variance[18,19]. However, reference values for sta-

bilometric parameter are not available for most ages. Maturation of bipodal postural control is

expressed as a decrease in CoP amplitude oscillation[4], area of oscillation and the velocity of

CoP with increasing age[4,17,20]. Studies using semi-tandem posture show that postural sta-

bility is achieved between 7 and 10 years of age and remains stable from 10 to 11 years. After

that, it was considered compatible with adults[8].

Pathological conditions in children, especially neuromuscular diseases, such as neuropa-

thies show increased anteroposterior CoP oscillation, while Duchenne muscular dystrophy

shows increased mediolateral oscillation[21]. Hereditary sensory-motor neuropathies

(HSMN), as Charcot-Marie-Tooth (CMT), affect 9.4 to 20 in 100 000 people [22] indepen-

dently of gender. There are reports of greater postural instability on standing position, when

compared to their healthy peers, manifested by greater area of CoP oscillation in adults with

different polyneuropathies[23] and higher CoP velocity in the CMT1A population[24], regard-

less of the visual information. Van der Linden et al.[25] also found an increase in the velocity

of CoP displacement indicating postural instability in adults with CMT1A, however this

impairment was less pronounced, when compared to patients with diabetic neuropathy or

progressive spinal amyotrophic.

Stabilometry can detect subjects with and without balance; however, the literature lacks sta-

bilometric data in HSMN children and adolescents. This gap in the literature limits the design

of important interventions, such as the development of preventive measures for distal deformi-

ties [26] and falls[27]. To date, there are no curative approaches for CMT. Physical therapy is

an alternative that delays functional losses. Approaches such as, balance exercises[28,29],

strength training [30,31] aerobic training[32,33] and orthosis use[34–36] are documented for

the late stages of the disease. We believe that most of those approaches, including balance exer-

cises, could be more effective, when used during childhood.

However, features of postural oscillation in children with CMT must be described for defi-

cits that might improve with physical therapy, to be detected and adaptation mechanisms to be

inferred. From the functional point of view, postural control is a prerequisite for most human

daily activities. If the most common CMT types manifest during childhood, and balance may

be impaired, there will be an increased propensity to comorbidities that lead to a sedentary life-

style after sprains[31,37], falls and fractures[38–40] Thus, the present study aimed to identify

and interpret stabilometric variables that assess the static postural control of children and ado-

lescents with HSMN.

Materials and methods

This cross-sectional study was composed of 53 children and adolescents from 6 to 17 years of

age. Of the 53, 29 had hereditary sensory-motor neuropathy (HNSM), specifically Charcot

Marie Tooth (CMT group) and 24 were healthy (Control group) (Table 1). Inclusion criteria

for the CMT group were: a) medical diagnosis, b) independent standing c) independent gait.

Hereditary sensorimotor neuropathy in childhood and stabilometry
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Inclusion criteria for the Control group was age and gender match with CMT. Exclusion crite-

ria for the CMT group were: a) diagnosis under investigation and b) presence of comorbidities

such as diabetes mellitus and hypothyroidism. Exclusion criteria for Control were: a) athletes

b) presence of balance disorders, neurological or psychiatric pathology. Exclusion criteria for

both groups were: a) previous orthopedic surgeries in the lower limbs, b) cognitive inability to

understand and perform the tests and c) presence of respiratory diseases. Participants with

vision impairment corrected by glasses were not excluded.

The CMT group was composed by patients from ANGE—HCFMRP (Ambulatório de Neu-

rogenética do Hospital das Clı́nicas de Ribeirão Preto). The Control group subjects were

recruited from local primary schools, through a written invitation and a questionnaire about

health conditions. The parents or legal guardians of the children and adolescents agreed to

their participation by signing a free informed consent form. The study was approved by the

Ethics Committee of Hospital das Clı́nicas da Faculdade de Medicina de Ribeirão Preto, Uni-

versidade de São Paulo (process number 14904/2014).

We collected anthropometric data (weight and height) and used static balance tests.

Weight of participants was obtained using a digital scale (Welmy W300) and height was

measured using a conventional stadiometer.

Balance tests used a force platform (Bertec—model 4060-08, Bertec Corporation—USA) to

record the center of pressure (CoP) displacement at a sampling frequency of 100 Hz. The test

was performed at a natural upright position (barefoot, arms along the body, natural parallel

position of feet) in four different test conditions, which were randomly assigned. Each test

condition comprised of three trials of 30 seconds[41]: open eyes on regular surface (open-reg-

ular); closed eyes on regular surface (closed-regular); open eyes on foam surface (open-foam);

closed eyes on foam surface (closed-foam). Tests were performed in a quiet environment and

recordings started when participant reached a stable standing position. Participants were

instructed to maintain their natural upright position until the examiner signaled the end of

the test. They made 30-second pauses between trials. For open-eyes conditions, they were

requested to gaze at a target (a black circle, 5 cm in diameter) 2 meters straight ahead from

their support base[42,43]. For closed-eyes condition, participants were requested to stay with

their eyes closed until instructed otherwise by the examiner. The same support base was pro-

vided for all test conditions, with the use of plantar impression over an E.A.V carpet. An ordi-

nary foam block (40x40x10 cm, density of 33 kg/m2) was used on open-foam and closed-foam

trials.

Raw data for CoP and stabilometric parameters were calculated as described by Duarte[44],

using Matlab (13.0) software. The stabilometric analysis included the following spatial series:

95% confidence ellipse area, mean velocity of the center of pressure displacement, mediolateral

and anteroposterior velocity and temporal series: mean frequency, mediolateral and antero-

posterior frequencies. Additionally, the mean CoP displacement velocity was used to calculate

the Romberg Quotient (RQv), which estimates the contribution of vision to the postural stabil-

ity on regular (closed-regular/open-regular x 100) and foam (closed-foam/open-foam x 100)

Table 1. Anthropometric features of CMT group and Control group with results of differences between groups.

CMT group n = 29 Control Group n = 24

Mean (SD) CI 95% Mean (SD) CI 95% p-value

Weight (kg) 48.16 (16.01) 6.84 47.46 (15.25) 6.10 0.45

Height (cm) 150.31(13.70) 5.50 152.33(15.59) 6.24 0.39

SD = standard deviation; CI = Confidence interval

https://doi.org/10.1371/journal.pone.0204949.t001

Hereditary sensorimotor neuropathy in childhood and stabilometry
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surfaces. Due to its good reliability and reproducibility, when compared to other stabilometric

measures [45–47], COP velocity was used to obtain the RQ.

The CoP velocity was normalized according to participant’s height[48] The confidence

ellipse area and frequencies were not normalized, since it was minimally influenced by anthro-

pometric data[42].

We used only valid data, i.e., trials of 30 seconds for each condition in which participants

remained in the position stipulated for the test: relaxed and without making voluntary body

movements (quiet standing). Data analysis were performed using SPSS (version 17.0) consid-

ering the mean of at least 2 trials per condition and adopting 5% level of significance. Shapiro

Wilk test was used to verify the normality of the samples and Student T test was used to verify

anthropometric differences between groups. Stabilometric variables were analyzed using

Friedman test for intragroup comparison, followed by post hoc Wilcoxon signed rank test,

with adjusted p-value corrected by Bonferroni (p = 0.008). Mann-Whitney U- test was used

for intergroup comparison (CMT versus Control).

Results

Table 1 shows Anthropometric data of participants and no statistical differences between

groups.

Stabilometric parameters were evaluated considering intragroup (conditions of test within

each group) and intergroup (CMT versus Control) analyses.

Intragroup analysis

CMT group. Not all participants could perform all test conditions or maintain the 30 sec-

onds of quiet standing needed for recording. We had 26 participants for open-foam and 23 for

closed-foam conditions.

CMT showed lower values of confidence ellipse area for the following: open-regular, when

compared to open and closed-foam, closed-regular when compared to closed-foam and open-

foam (X2 (3) = 38.13 p<0.008). There were no statistically significant differences in confidence

ellipse, when comparing open-regular and closed-regular (Table 2).

The mean velocity and mediolateral velocity increased as the complexity of the task

increased, higher values were seen for: closed-foam when compared to open-foam, open-

foam when compared to closed-regular and closed-regular when compared to open-regular

(X2 (3) = 40.06 p<0.008) (Table 2). Anteroposterior velocity was higher for closed-foam, when

compared to open-foam, open-foam when compared to closed-regular and open-regular.

There were no statistically significant differences for open-regular, when compared to closed-

regular (Table 2).

CMT did not show any significant differences for mean frequency, mediolateral and ante-

roposterior frequencies in the different test conditions (Table 2).

Control group. All participants of this group were able to perform all test conditions. The

Control group showed confidence ellipse area values significantly lower for the following:

open-regular, when compared to open-foam and closed-foam, closed-regular, when compared

to closed-foam and closed-regular, when compared to open-foam (X2 (3) = 65.6, p<0.008,

post hoc Wilcoxon corrected by Bonferroni, adjusted p = 0.008) (Table 3).

There were no significant differences for confidence ellipse area, when comparing open-

regular and closed-regular for this group (Table 3). Mean velocity increased with the complex-

ity of the task and higher values were seen for closed-foam, when compared to open-foam and

open-foam, when compared to closed-regular (X2 (3) = 65.15 1). There were no significant dif-

ferences between open-regular and closed-regular for this group (Table 3).

Hereditary sensorimotor neuropathy in childhood and stabilometry
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Mediolateral velocity increased with the complexity of the task in all the conditions and

higher values were seen for: closed-foam, when compared to open-foam, open-regular and

closed-regular; open-foam, when compared to closed-regular and open-regular and open-reg-

ular, when compared to closed-regular (X2 (3) = 65.50 p<0.008) (Table 3).

Anteroposterior velocity showed a significant increase according to the complexity of the

task with higher values for closed-foam, when compared to open-foam and open-foam, when

compared to closed-regular and open-regular (X2 (3) = 66.60 p<0.008). There was no signifi-

cant difference between open-regular and closed-regular for this group (Table 3).

There was a significant difference in mean velocity between the test conditions for the Con-

trol group (X2 (3) = 9.55 p = 0.023). The post-hoc analysis showed higher mean frequency for

open-regular, when compared to the open-foam and closed-foam conditions (Table 3). The

mediolateral and anteroposterior frequencies did not show significant differences between the

test conditions (Table 3).

Intergroup analysis. U-Mann Whitney showed higher values for confidence ellipse area,

mean velocity, mediolateral and anteroposterior velocity for the CMT group in all test condi-

tions, when compared to the Control group (Fig 1A–1D).

Table 2. Descriptive measures of stabilometric variables of CMT group.

CMT group ^

Variable Condition Median 25 th % 75 th %

Confidence ellipse area (mm2) open-regular 626.870 184.940 949.130

closed-regular 647.078 283.960 861.304

open-foam 1194.034 861.250 1732.904

closed-foam 2963.662 1684.941 4660.876

Normalized total velocity open-regular 0.004 0.003 0.005

closed-regular 0.005 0.004 0.007

open-foam 0.006 0.004 0.006

closed-foam 0.010 0.007 0.013

Normalized mediolateral velocity open-regular 0.003 0.002 0.004

closed-regular 0.003 0.026 0.005

open-foam 0.004 0.003 0.005

closed-foam 0.007 0.005 0.009

Normalized anteroposterior velocity open-regular 0.002 0.001 0.003

closed-regular 0.003 0.002 0.003

open-foam 0.003 0.003 0.005

closed-foam 0.006 0.004 0.008

Total frequency (Hz) open-regular 0.492 0.357 0.537

closed-regular 0.503 0.389 0.554

open-foam 0.433 0.333 0.564

closed-foam 0.398 0.245 0.528

Mediolateral frequency (Hz) open-regular 0.792 0.503 0.858

closed-regular 0.797 0.622 0.875

open-foam 0.792 0.578 0.839

closed-foam 0.785 0.495 0.809

Anteroposterior frequency (Hz) open-regular 0.779 0.579 0.846

closed-regular 0.797 0.604 0.819

open-foam 0.795 0.483 0.868

closed-foam 0.779 0.431 0.836

https://doi.org/10.1371/journal.pone.0204949.t002
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The white columns represent CMT group and the grey columns represent the Control

group. Brackets were used to link conditions that presented significant differences (� p<0.08).

There were no differences between groups for total mean frequency (Fig 1E). Mediolateral

frequency values showed significant difference only for open- foam (U = 188, p = 0.007) and

closed-foam condition (U = 153, p = 0.003), in which CMT group showed decreased values,

when compared to Control (Fig 1F). CMT group showed lower anteroposterior frequency,

when compared to Control in all test conditions (open-regular—U = 218, p = 0.03; closed-reg-

ular—U = 217, p = 0.03; open-foam—U = 216, p = 0.03), except for closed-foam condition

(Fig 1G).

Romberg quotient. Romberg Quotient (QRv) obtained from CoP oscillation velocity on

regular (closed-regular/open-regular) and foam (closed-foam/open-foam) surfaces were not

different between groups (Table 4).

Discussion

The present study aimed to identify and interpret stabilometric variables that assess the static

postural control of children and adolescents with CMT and shows ways of using CoP to

Table 3. Descriptive measures of stabilometric variables of Control group.

Control group

Variable Condition Median 25 th % 75 th %

Confidence ellipse area (mm2) open-regular 173.244 98.863 320.463

closed-regular 213.227 142.081 365.485

open-foam 584.758 426.557 1001.000

closed-foam 1447.446 1069.575 2159.138

Normalized total velocity open-regular 0.003 0.002 0.003

closed-regular 0.003 0.002 0.004

open-foam 0.004 0.003 0.005

closed-foam 0.007 0.006 0.008

Normalized mediolateral velocity open-regular 0.002 0.001 0.002

closed-regular 0.002 0.002 0.003

open-foam 0.003 0.002 0.003

closed-foam 0.005 0.004 0.005

Normalized anteroposterior velocity open-regular 0.001 0.001 0.017

closed-regular 0.001 0.001 0.002

open-foam 0.002 0.002 0.003

closed-foam 0.005 0.004 0.005

Total frequency (Hz) open-regular 0.840 0.460 0.565

closed-regular 0.829 0.494 0.562

open-foam 0.830 0.404 0.563

closed-foam 0.827 0.409 0.531

Mediolateral frequency (Hz) open-regular 0.524 0.770 0.859

closed-regular 0.530 0.800 0.873

open-foam 0.509 0.793 0.878

closed-foam 0.480 0.788 0.858

Anteroposterior frequency (Hz) open-regular 0.816 0.780 0.862

closed-regular 0.821 0.785 0.868

open-foam 0.834 0.795 0.872

closed-foam 0.805 0.762 0.848

https://doi.org/10.1371/journal.pone.0204949.t003
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Fig 1. CMT and Control group comparisons of stabilometric variables at all conditions.

https://doi.org/10.1371/journal.pone.0204949.g001
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maintain postural stability, in the presence of distal weakness and somatosensory impairments.

Studies in the literature have shown that stabilometric assessment is capable of distinguishing

poor and appropriate balance in children[9,49–52] and adults[23–25,53,54]. To the extent of

our knowledge, this is the first original study focused on classical stabilometric parameters, in

children and adolescents with CMT. Kaya et al [52]explored only the percentage of oscillation

of CoP in children with Duchenne muscular dystrophy and different polyneuropathic diseases,

while others have studied balance impairment in adults with neuropathies[23–25].

Since postural control is in stage of development in children, we tried to find cues about

how CMT children manage the upright position, while dealing with the disadvantages that the

disease imposes.

Our results show that CMT have an increase in confidence ellipse area and CoP velocity

associated with the decrease of frequency in specific sensory/biomechanical conditions. There

is need for more studies to expand this finding.

Confidence ellipse area and velocity

Impaired static postural control can be inferred by confidence ellipse area and mean velocity,

which was significantly greater and faster in the CMT group, when compared to the Control

group, for all test conditions. Tozza et al [24]did not find increased sway area but found

increased velocity of CoP in adults with CMT. Aside from the differences in methodological

approach to treat CoP data[9,13–15,55–57] theses divergent findings can be due to the fact

that strategies to control CoP might be different in adults, when compared to children. This

might be due to different stages of CMT or postural control due to maturation. As far as the

stage of the disease, it can be assumed that the joint, muscle and somatosensory deficits are

more pronounced in adults, when compared to children. Unlike adults, children have pre-

served plantar flexion strength and distal range of movement. A previous study from our labo-

ratory with CMT children found correlation between balance and joint/ muscle deficits[58,59]

It is possible that children have increased confidence ellipse area and velocity at the expense of

residual triceps surae activity, something that could be investigated by correlating clinical,

kinematic and electromyographic data in future studies. Healthy adults control stance by

increasing the muscular activity of the triceps surae, when under sensory deprivation

on the soles of the feet[60] which could be correlated to children, at the early stages of neuro-

pathic diseases. There are many unanswered questions about how this population manages

sensory-motor deficits inherent to the polyneuropathy in postural development. However, in

general, the greater the area and the greater the velocity, the more the postural instability

[10,14,18,24,47] and this suggests that our neuropathic group (CMT) seems to have difficulties

with postural control. Stabilometric parameters and intragroup differences help clarify this

idea. CMT children showed higher mean velocity in tests using closed eyes, when compared to

tests using open eyes. Curiously, our RQv data did not confirm the differences between CMT

and their controls. This finding corroborates the findings of Tozza et al (2016)[24], that did

not find differences in RQ of CMT and healthy adults.

Table 4. Romberg Quotient (QRv) of CMT group and Control group.

CMT (n = 23 ‡) Control (n = 24)

RQv Median Minimum—Maximum Median Minimum—Maximum p-value

closed-regular / open-regular 1,37 0,79–3,22 1,26 0,79–1,63 0,07

closed-foam / open-foam‡ 0,61 0,39–2,68 0,61 0,41–1,00 0,49

‡ For QRv based on closed-foam/open-foam, six participants were excluded of analysis because they did not achieve the minimum time to data collection.

https://doi.org/10.1371/journal.pone.0204949.t004
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CMT showed increased mediolateral velocity according to task complexity, a pattern that

was similar in our healthy children, corroborating other developmental studies of postural

control[17,20]. Anteroposterior velocity was also increased, with the exception of the open-

regular and closed -regular conditions. Also, it is important to note that some children with

CMT could not perform tasks with their eyes closed, on foam or both (closed-foam condi-

tion) suggesting limitation to maintain balance. This was not the case for the control group

in which 100% of participants completed all tests. The difference in COP velocity between

CMT and controls, due to the different sensorial test conditions, suggests that this is not a

problem with postural control development, but differences in the availability of sensory

information available for these two groups. This hypothesis is partially supported by van der

Linden et al (2010)[25] who compared adult subjects with different types of postural instabil-

ity, such as motor (spinal Muscular Atrophy) and sensorimotor deficiency (CMT), and Len-

cioni et al (2015)[54] who studied CMT. In addition, foot type in children may modify the

availability of somatosensory information[61] and this is currently under investigation in

our research group.

It is well-known that sensory conditions affect COP velocities in adults, more pronounced

way in the anteroposterior, when compared to the mediolateral direction[53,62] Our study

showed velocities being affected in both directions for children with CMT, evidenced by a

higher magnitude of responses, when compared to their controls. For conditions with foam

pads, we expected to see a significant reduction in the variability of velocities and area, as seen

in other studies in the literature[18,63]. However, such decrease of variability was not observed

in the CMT group, instead the magnitude of variables and its variability increased for condi-

tions with foam pads, suggesting impaired capacity to control posture under somatosensory

input constraints.

Frequencies

When the frequency of CoP oscillation is analyzed as a whole, children with CMT do not differ

from Control.

However, considering the direction of CoP oscillation, mediolateral frequency was lower in

all conditions for CMT, when compared to Control. The same happened with anteroposterior

frequency, except for closed-foam, suggesting that the constraint imposed by the disease could

not be compensated in this last condition. From the sensory processing standpoint, this cor-

roborates findings in the literature which show that only the vestibular input is available in

closed-foam conditions, which has limited contribution to quiet standing[8].

The CoP frequency reflects the body mass vibration and anteroposterior frequency and is

related to ankle control, which is increased in healthy children, when compared to healthy

adults[64] Mediolateral frequency is related to the loading and unloading mechanism of hip

control[65] While the clinical meaning of frequency remains unclear, it seems that the higher

the frequencies the better the postural control. Reduced mediolateral frequency has been

found in children with Duchenne muscular dystrophy[52]. In the present study mediolateral

frequency on regular surface, in children with CMT, is similar to healthy children and it might

be explained by CMT characteristics (preserved proximal function—hip muscle strength). On

foam surface, CMT showed lower mediolateral frequency, when compared to the Control

group, suggesting the use of increased stiffness strategy[66,67] to deal with the demand of the

task. Moreover, reduced anteroposterior frequency suggests poor management of the upright

position by the ankle joint. The biomechanical demands that foam surfaces put on the subjects

[68,69], the loss of ankle passive and active range of motion observed in HNSM, could partly

explain this finding[58].
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One of the limitations of this study was the low number of participants analyzed at more

challenging test conditions such as, closed-foam and open- foam (n = 23), because children

with CMT did not achieve the 30 seconds needed. Also, our study did not investigate the

spectral frequency bands. This type of analysis could reveal the preponderance of a specific

sensory system in postural control, as shown in other pathological conditions[56,57,70].

Another limitation for studies with CMT subjects, including this one, is the heterogeneity of

CMT impairments and different levels of sensory-motor maturation in children. The last issue

was attenuated by the gender-age pairing between the CMT and the healthy children.

Conclusion

The study shows that low postural control in children with hereditary sensory motor neuropa-

thy can be identified by greater and faster sway, when compared to their controls. Children

with CMT choose to reduce the frequency of body oscillation to deal with their standing posi-

tion, especially when the sensory references are restricted.
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