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Abstract

Between November 2010, and May 2011, eleven cases of cholera, unrelated to a concurrent outbreak on the island of
Hispaniola, were recorded, and the causative agent, Vibrio cholerae serogroup O75, was traced to oysters harvested from
Apalachicola Bay, Florida. From the 11 diagnosed cases, eight isolates of V. cholerae were isolated and their genomes were
sequenced. Genomic analysis demonstrated the presence of a suite of mobile elements previously shown to be involved in
the disease process of cholera (ctxAB, VPI-1 and -2, and a VSP-Il like variant) and a phylogenomic analysis showed the
isolates to be sister taxa to toxigenic V. cholerae V51 serogroup O141, a clinical strain isolated 23 years earlier. Toxigenic V.
cholerae O75 has been repeatedly isolated from clinical cases in the southeastern United States and toxigenic V. cholerae
0141 isolates have been isolated globally from clinical cases over several decades. Comparative genomics, phenotypic
analyses, and a Caenorhabditis elegans model of infection for the isolates were conducted. This analysis coupled with
isolation data of V. cholerae O75 and O141 suggests these strains may represent an underappreciated clade of cholera-
causing strains responsible for significant disease burden globally.
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Introduction Epidemic cholera is typically ascribed to V. cholerae serogroup O1
o ) or O139; however, it is now understood that, similar to pathogenic
Vibrio cholerae non-O1/non-O139 are the causative agents of Escherichia coli, a constellation of virulence factors along with host

sporadic, yet significant, gastrointestinal and extraintestinal
infections globally, and it is well established that all strains of

this. sp.ecies are capable of causing human infections that represent It is established that those V. cholerae which acquire and express
a significant global health burden [1,2,3,4,5,6,7]. Infection and genes carried on mobile clements (O-antigens, VPI-1, VPI-2,

subsequent illness caused by these organisms are linked to the CTX®, NAG-ST, etc.) are linked to epidemics of cholera. The
presence of virulence factors in the core backbone of V. cholerae ’ . :

(hemolysins, lipases) or mobile pathogenicity islands (VPIs-1 and -
2, and CTX®) that are frequently found in clinical isolates from
cholera patients suffering severe rice water diarrhea [8,9,10].

immune and nutritional status, are responsible for the severity and
characteristic infections caused by these organisms [8,9,10,11,12].

scenario of mobile genetic element acquisition has been shown to
have occurred within the 7" pandemic and PG-1 and -2 clades
(12), but occurrence and persistence of such genetic constellations
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Accession nos.

Year of
isolation

Geographical origin Source of isolation

Biotype

Strain ID Serogroup/Serotype

Organism

Table 1. Cont.
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NZ_AAMRO00000000

NC_004603/NC_004605

Clinical 1996

Water

Japan

03:K6

RIMD 2210633

12B01

Vibrio parahaemolyticus

Plum Island Estuary,
Massachusetts, USA

Vibrio splendidus

NZ_ACZT00000000

NC_005139/NC_005140

Clinical
Water

Taiwan

biotype 1

YJO16

Vibrio vulnificus
Vibrio sp. RC341

NZ_ADAQ00000000

1998

Chesapeake Bay, USA
Maryland, USA

0153

RC341

Clinical

CIP 101886

Grimontia hollisae

doi:10.1371/journal.pone.0086264.t001
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remains underappreciated in V. ckolerae non-O1/non-O139 (non-
PG) lineages. These elements, among many others, can be laterally
transferred between strains of the same species or distantly related
species in the environment [13,14,15] and give rise to virulent
strains that potentially can cause epidemics. Further, these
elements can be stable in V. cholerae non-O1/non-O139 isolates,
as in strains of the 7 pandemic clade and persist in these
conformations over time, ultimately conserved in the environment.

In developed nations, the leading cause of human disease
caused by vibrios is consumption of raw or undercooked seafood,
namely shellfish. In the United States, seafood-borne vibrioses
have been traced to shellfish harvested from coastal (Atlantic and
Pacific) regions, as far north as Alaska, but by far the majority of
infections occur in the Gulf of Mexico, where the water
temperature is warm, a parameter associated with increased Vibrio
spp. densities as well as increased risk of vibriosis [16,17,18,19,20].
Recent cases of cholera traced to seafood consumption, and many
V. parahaemolyticus infections and deaths caused by V. vulnificus have
been reported in this region.

V. cholerae O75 serogroup strains have been reported to cause
sporadic shellfish-borne cholera cases in the southeastern United
States [21,22]. Outbreaks caused by these strains are not
continuous as outbreaks in developing nations because sanitation
in the United States is such that untreated human waste is not
typically discharged into water used for drinking, recreation, or
harvesting of seafood and water used for consumption or for
household use is typically treated to remove bacterial pathogens.
Further, V. cholerae O75 strains have been isolated from
environmental waters in the southeastern United States in the
absence of reported cholera cases [21]. Here we present results of
analysis of eight clinically recovered V. cholerae O75 isolates from
an indigenous US Gulf Coast cholera outbreak that occurred in,
2010, and during March and April, 2011 [22].

Materials and Methods

Clinical V. cholerae isolates that were epidemiologically linked to
consumption of oysters harvested from the Apalachicola Bay, FL
were obtained from the Florida Department of Health Bureau of
Public Health Laboratories in Jacksonville, FL. The genomes
described in this study were either obtained from the NCBI
Genbank database or, in the case of strains CP1110, 1111, 1112,
1113, 1114, 1115, 1116 and 1117, were sequenced using the
Genome Analyzer IIx system (Illumina, Inc., San Diego, CA)
according to the manufacturer’s methods. Raw reads of these
genomes were assembled with CLC Genomics Workbench.
Genome-to-genome comparisons, identification and characteriza-
tion of molecular genetic elements (MGEs), as well as core genome
phylogenetics were performed by using methods described
previously [12]. Genomes of V. cholerae strains CP1110 to
CP1117 were annotated using Rapid Annotation using Subsystem
Technology [23]. For in silico genomic island BLASTN and
phylogenetic analyses the RAST-annotated ORFs of V. cholerae
CP1110 were used as a reference. PCR analyses of virulence
factors not resolved by genome sequencing (rstR alleles, nanH, and
¢txB biotype) were done using the methods of Choi et al. [24],
Vora et al. [25], and Nusrin et al. [26]. Phenotypic assays
(proteolysis, hemolysis, biofilm formation, and motility) were
conducted following methods standardized for V. cholerae [27].
Hemolysis, biofilm formation, motility, and proteolysis assays were
done in nine replicates. BBIOLOG phenotypic microarrays (PMI,
PM2A, PM9, and PM10) were conducted in duplicate following
the manufacturer’s instructions (BIOLOG, Hayward, CA). Sub-
strate metabolism was scored by dividing the area under the curve

April 2014 | Volume 9 | Issue 4 | e86264
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Figure 1. Neighbour-joining tree inferring phylogenetic relationships of 84 V. cholerae genomes based on 995 orthologous protein-
coding genes (954,646 bp). V. cholerae FL Group is labelled in red and V. cholerae V51 is labelled in blue. Haiti non-O1/non-0139 clinical groups-1
and -2 are further defined by Hasan et al. [6]. Numbers at nodes represent bootstrap values. Nucleotide substitution model is the Kimura-2-parameter.

Bar length =0.002 nucleotide substitutions per site.
doi:10.1371/journal.pone.0086264.g001

by the background values. Scores >2 were considered positive for
metabolism of that substrate.

For the Caenorhabditis elegans model, SS104 glp-4 (bn2) temper-
ature sensitive sterile strain was acquired from the Caenorhabditis
Genetics Center (CGC). SS104 worms were maintained at 16°C,
and experiments were performed at 25°C. Worms were cultured
in C. elegans habitation media (CeHM) in tissue culture flasks on a
platform shaker [28]. Adult nematodes were bleached (0.5 M
NaOH, 1% Hypochlorite) to collect eggs, which were incubated in
M9 media for 24 hours to bring them to synchronized LI stage,
and then transferred to CeHM. L4 stage worms were transferred
to assay plates for survival experiments. Pathogen lawns for
survival assays along with control bacteria E. coli OP50 were
prepared by inoculating Nematode Growth Medium (NGM), in 6-
cm Petri dishes, with 50 pl of an overnight V. cholerae culture.

PLOS ONE | www.plosone.org

Plates were incubated overnight at room temperature before
worms were added. Temperature sensitive sterile worms (SS104
glp-#(bn2)) strain, obtained from Caenorhabditis Genetics Center
were transferred to NGM plates containing V. cholerae wild type
strains E7946, CP1112, CP1114, CP1115 or E. coi OP 50
bacterial lawns and incubated at 25°C with ~20-30 L4 stage
worms added to each plate. Animals were scored every 24 h for
survival. Animals were considered dead when they no longer
responded to a gentle prod with a platinum wire. C. elegans survival
was plotted using Kaplan-Meier survival curves and analyzed by
log rank test using GraphPad Prism (GraphPad Software, Inc., La
Jolla, CA). Survival curves resulting in p values of <0.05 relative to
control were considered significantly different [29]. Strains and
genomes used in this study are listed in Table 1.
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Table 2. ORFs with polymorphisms within the V. cholerae FL group.
N16961
Locus CP1110 CP1111 CP1112 CP1113 CP1114 CP1115 CP1116 CP1117 Annotation
VC0315 A A A A G G A A CDP-diacylglycerol-serine O-
phosphatidyltransferase
VC1899 hypothetical protein
VC0028 Dihydroxy-acid dehydratase
VC0031 Acetolactate synthase large
subunit
VC1359 T T T T C C T T ABC-type polar amino acid
transport system ATPase
component
Gl-26* G G T G G G G G putative transcriptional activator
ToxR
A A
VCA1063 G Ornithine decarboxylase
*=Not found in V. cholerae N16961.
doi:10.1371/journal.pone.0086264.t002
Env1r0nmental 10 20 30 40 50 &0 70 80 %0
S L e L L T e L I e [Ty e ey [
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110 120 130 140 150 180 170 180 130
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CP1110 ACGAACAGAGAAAAATGAGACTTCAAAGGGAAGCAATAAAGATAGGAAGCGCAACAGGCGAGTTGCTAAAAATATCTGATATCGTTAACTAC
BNTEBION e § 5t s 5 5 REIER B o RIRL 55 5 SIS Bk S RIS Rl 3 S ERERLE & S AR Feh SRS S 5B s A5 SR8 R THR L5 5 53 5
CDE6661] iissvamansssneviEas G5 5iviois & 56 R B BRI B BT E B R R R R B R R R R e F R R
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s Pewmrallfenss s Bosmellas sl o B oy e
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N I
e - 259/261(99%)
256/261(98%)
Calcutta 10 20 30 40 50 &0 70 80 30
B T I e e s e ) e ey el S e P
CP1110 ATGGCAACAAAGCACAT TARAGACAGTACGTGGAGAAAGGT TGAGGAAAAAACCGTAAAAGCGGTAATCGAGACCAAAACAAACATCAAAGA
N i 10
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sz < N awss | s s peillmns Lo fo s salfmos ¢ | oses bass sl sz Lo osd s sl zess e seulbssai)
CP1110 TGCTGGAT TACTTAATCAACCTAGGATTGAAGAGATT TACAGAAGAAGACT T CCATMGATMGCM&AAAAAAGCTTGA
BPLLOIDE oo opmimsms:mriowsoicmimimsim i 750500 i w1 8] o0 5 0505 s 7 0 S 15 1) 0 5 o o 8 S 180/180(100%)
10 20 30 40 50 &0 70 80 30
Classwal T e e T e e o e L T e e e
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s s I | | | | I sheeazlsses 13 502 sl pess | I [ )
CP1110 GCTTATGAAAAAGGCACACAATCACCAAAACTGGAAACTGTACAAAAATTAGCAAAATTCTATGETGTACCAATAGCTGAACTTGTCAGCCATA
OBDE L oo om0 e 0SS0, o s T, 755 O, 5 1 305 SRS, 5 sy 0 5 8 RS9 S A 50 1SS
210 2z0 230 240 250 280 270 280 230
slipeplcsaniisesc o ssallaptilnass et cnnillbccs niealleca i coe bsepilenoiin s Vscelimmatdie
CP1110 CAAACATTGACGAAAAGCTGAAATCGAAAATCCGAATGATTGAATCACTTGATGAACCAGAARAAGAGTCATTATTCATTTTGATGGAGGCTTT
O39TF w55 E GRS S SEE §5 6 ST 8 B S S S S § S A 5 ) 8 S SRS SR 5 S R
310 320 330 340
CP1110 GAGAAGTAAGAGTCGAGAAATACAAAAAGAATTTAGGTAG
0395

........................................ 339/340(99%)

Figure 2. rstR sequences from V. cholerae CP1110. Sequences are aligned to their most similar homologs extracted from NCBI Genbank
database. Nulceotide sequence identity is shown to the right of the last nucleotide aligned for each allele.
doi:10.1371/journal.pone.0086264.9g002
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Figure 3. Comparative genomic analysis of Vibrio pathogenicity island 1 (VPI-1). VPI-1 of the V. cholerae FL Group is the reference
sequence in a BLAST alignment with homologs of other Vibrionaceae genomes. Colored squares show degree of similarity.
doi:10.1371/journal.pone.0086264.g003

Results and Discussion

Phylogenomic Analysis of Florida Outbreak Strains

The eight isolates subjected to analysis in this study have been
labeled by number (isolates CP1110, 1111, 1112, 1113, 1114,
1115, 1116 and 1117) and are hereafter collectively referred to as
the V. cholerae FL. Group. The phylogeny of 84 fully and partially
sequenced V. cholerae strains, including the eight V. cholerae FL
Group genomes, was inferred (Figure 1). Results of the analysis
demonstrate that the V. cholerae FL. Group are sister taxa with V.
cholerae V51, a clinical V. cholerae O141 serogroup strain isolated
from a human clinical case in the United States in 1987, suggesting
a common ancestor after it had diverged from other V. cholerae
lineages. From a public health perspective, the results of the
analysis demonstrate the group represents a phyletic lineage of V.
cholerae non-O1/non-O139 strains that persist in the United States
as a cause of morbidity. Although, not added to this analysis due to
the absence of their sequenced genomes, results of this analysis
coupled with V. cholerae isolation data from cholera patients
worldwide demonstrate that other V. cholerae serogroup O141 and
O75 strains result in similar clinical manifestations as the strains in
this study, that is symptoms of cholera [30,31]. As with the isolates
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sequenced in this analysis, other V. cholerae O141 and O75
infections in the United States were associated with either seafood
consumption or presence of the patient in a coastal state,
suggesting infections with strains of these serogroups are trans-
mitted to people in a similar manner as those of the O1 serogroup
and therefore they have a similar ecology as serogroup Ol strains
in the United States [32,33].

We identified 8 single nucleotide polymorphisms (SNPs) among
the V. cholerae O75 genomes in this study. Six of these occurred in
six separate ORFs and two occurred in one ORF annotated as a
“putative transcriptional activator ToxR.” It is not clear if these
SNPs influence the ecology or virulence potential of these isolates.
However, they do demonstrate an appreciable level of genomic
diversity between strains of the same outbreak (Table 2). To
further estimate the genomic diversity of this lineage, comparisons
should be made to other V. cholerae O75 isolates from clinical and
environmental isolates.

Genomic Islands, Pathogenicity Islands, and Virulence
Factors

The V. cholerae FL. Group isolates were determined to contain
the full C'TX phage encoding the cholera toxin, but the structure
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Figure 4. Phylogenetic analysis of Vibrio pathogenicity island 1 (VPI-1). Neighbor-joining tree showing evolutionary relationships of VPI-1.
The calculation was based on aligned fragments of 25 orthologous genes (VC0819 to VC0845) comprising ca. 26.9 kb. Bar length =0.005 substitutions

per site.
doi:10.1371/journal.pone.0086264.g004

of this region was unresolved due to the limitations of assembly
since ORFs were found on multiple contigs. For similar reasons,
CTX phage copy number could not be resolved. A BLASTN
analysis with V. cholerae N16961 and O395 as reference demon-
strated the presence of regions homologous to VC1456 to VC1463
(VC0395_0512 to VC0395_0505 and VC0395_A1060 and
VC0395_A1067 of V. cholerac O395) of the CTX phage (ctxB,
ctxA, zot, ace, orfUcep, rsiB, rstd, and rstRCl"“Si“"'l). To infer the
biotype of the cholera toxin, PCR targeting the ¢/xB gene was
employed and resulted in an amplicon for primers of targeting
ctxB%! These PCR results are consistent with profiles of other
clinically isolated V. cholerae strains on a global scale that suggest
this cholera toxin biotype is the predominant biotype currently
causing the majority of disease [34,35]. Based on the genome
sequence data, the CTX phage of the V. cholerae FL. Group
genomes were lacking the 7stR gene of V. cholerae N16961 El Tor
(VC1464), but did encode the rstR gene homologous to the one
encoded in V. cholerae O395 Classical. To further investigate and
confirm these w silico results, PCR targeting the 7stR region was
done and resulted in amplicons for the Calcutta, Environmental,
and Classical biotypes, but not the El Tor biotype, an as-to-date
uncommon combination. The 7stR amplicons of CP1110 were
subjected to Sanger sequencing and the resulting sequences were
compared by BLASTN to the NCBI Genbank database for better
interpretation of these results and each showed =99% nucleotide
sequence similarity to Calcutta, Environmental, and Classical
sequences (Figure 2). These amplicon sequences were compared
with V. cholerae CP1110 reads by BLASTN to re-confirm their
presence in the genome sequences. The 75tR sequences from the V.
cholerae FL. Group were confirmed as Calcutta, Environmental, and
Classical biotypes (Figure 2). The prototypical V. cholerae O1 El
Tor strains encode rstR™ 1" and ¢ixB™ ™" while Classical strains
encode rstR and cxB9% Altered V. cholerae O1 El Tor
strains which differ from prototypical El Tor strains in their rstR/

PLOS ONE | www.plosone.org

ctxB types have recently been identified [24]. Data from this study
further demonstrates the diversity of the C'TX phage outside of the
more frequently studied V. cholerae O1 strains and suggests many
alleles of this phage can be associated with cholera. Cholera toxin
expression was not assayed in this study.

The genomes of the eight V. cholerae FL. Group isolates harbored
Vibrio pathogenicity island 1 (VPI-1) encoding the toxin co-
regulated pilus (TCP) shown to be responsible for biofilm
formation in the intestine and a receptor for CTX® phage
[36,37]. VPI-1 of the V. cholerae FL. Group is highly similar in
structure to those of other clinical and environmental V. cholerae
and V. mimicus (Figure 3). Interestingly, the tpA gene (often used as
a marker of V. cholerae biotype) of this group has the highest
similarity with that of V. cholerae O395, a Classical biotype, while
showing similarity of 77% with V. cholerae V51. However, a
phylogeny of concatenated ORFs of this island demonstrates VPI-
1 of the V. cholerae FL. Group and V. cholerae V51 are closely related
to each other from an evolutionary perspective, and significantly
diverged from VPI-1 of other clinical and environmental V. cholerae
and V. mimicus strains (Figure 4).

The genomes of all V. cholerae FL. Group isolates also encoded
VPI-2, with a type III secretion system (T3SS) (Figure 5). Two
divergent T3SS variants have been identified in V. cholerae isolates
[38]. T3SS in the V. cholerae FL. Group genomes are most similar to
that of V. cholerae V51 and AM-19226, a non-O1 TCP-negative
and C'TX-negative 1solate (Figure 5). The T3SS of V. cholerae AM-
19226 has been shown to be essential for colonization of the infant
rabbit intestine and associated with severe diarrhea in this model,
suggesting it plays a significant role in virulence during human
infections [39]. This region has been found in environmental and
clinical V. cholerae on a global scale. For instance, V. cholerae HE-25,
a gray water isolate from Haiti and V. cholerae VC35, a clinical
isolate from Malaysia, both encode T3SS that is structurally and
phylogenetically similar to the variant in the V. cholerae FL. Group
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Figure 5. Comparative genomic analysis of Vibrio pathogenicity island 2 (VPI-2). VPI-2 of the V. cholerae FL Group is the reference
sequence in a BLAST alignment with homologs of other Vibrionaceae genomes. Colored squares show degree of similarity.

doi:10.1371/journal.pone.0086264.g005

suggesting global distribution of this virulence factor in environ-
mental and clinical isolates (Figure 6). A phylogeny based on
conserved ORFs of this variant and of V. parahaemolyticus as an
outgroup infers the nearest phylogenetic neighbor to T3SS in the
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V. cholerae F1. Group is V. cholerae VG35 (Figure 7). Although this
region has been shown to be part of VPI-2 variants it has been
identified as a separate genomic island capable of lateral transfer
between V. cholerae strains [12,40].
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tree inferred from an alignment of 7 orthologous genes (VCHE25_2738, VCHE25_2741, VCHE25_2742, VCHE25_2744, VCHE25_2745, VCHE25_2749,
VCHE25_2754) comprising ca. 5.2 kb. Bar length =0.05 substitutions per site.
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VPI-2 of the V. cholerae FL. Group also encodes a complete sialic
acid catabolism operon (homologs of VC1773 to VC1784 in the
canonical VPI-2 of V. cholerae N16961), including a neuraminidase
(sialidase) which has been shown to unmask the GM1 gangliosides
of human intestinal epithelial cells, making them available to the
cholera toxin [10]. A phylogeny of the sialic acid metabolism
region demonstrated this operon in the V. cholerae FL. Group is
closely related to that of V. cholerae V31, V. cholerae 1587, and V.
cholerae 623-39 (Figure 8). The phylogeny of this region is not
congruent with that of the T3SS suggesting a more recent
ancestral sialic acid metabolism region of the V. cholerae FL. Group
and V. cholerae V51 than that of the T3SS. Further, when the
phylogenies of T3SS and sialic acid metabolism operons of seven
V. cholerae strains with homologous ORFs are inferred (V. cholerae
strains AM-19226, TMA 21, HE-25, V51, 12129(1), FL. Group,
and VC35), sister taxa of the V. cholerae FL. Group T3SS remains V.
cholerae VC35 and sister taxa of the sialic acid metabolism region of
the V. cholerae FL. Group remains V. cholerae V51 (data not shown).
These data suggest the two regions in the V. cholerae FL. Group
originated from different sources. Morita et al. [40] demonstrated
these two regions of VPI-2 could be of separate origin and the
insertion locus of V. cholerae T3SS is exclusively in VPI-2.

Interestingly, the mu-like phage region, the most variable region
of the canonical VPI-2; is absent in these genomes.

A VSP-II-like island was identified in the V. cholerae FL. Group
1isolates with varying levels of similarity and conservation with
other homologous sequences in the Vibrionaceae (Figure 9). This
island was previously identified as GI-123, but was not well
characterized [41]. Interestingly, this island does not encode the
canonical integrase of VSP-II but rather one that is similar to an
integrase of a not yet described genomic island in V. cholerae
CP1033(6), a serogroup Ol strain isolated from a cholera patient
in Mexico in 2000. This VSP-II-like island was not inserted at the
tRNA-Met (adjacent to VC0517) where the canonical VSP-II is
inserted, but rather at the locus homologous to VC0208 and
VC0209, where GIs-32, 52, 68, 96, 98, 107 are inserted in other V.
cholerae strains [12,41]. When compared to the prototypical VSP-II
island in V. cholerae N16961, the V. cholerae FL. Group encodes two
regions with high similarity: VC0495 to V(0498 and VC0504 to
VC0510. A novel region encoding four ORFs annotated as
hypothetical protein, bacteriocin immunity protein, bacteriocin
immunity protein, and hypothetical protein were inserted between
the two regions that are similar to the prototypical VSP-II
(Figures 9 and 10). One of these hypothetical proteins comprises
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Figure 7. Phylogenetic analysis of most closely related T3SS. Neighbor-joining tree inferred from an alignment of 17 orthologous genes
(VCHE25_2737 to VCHE25_2742, VCHE25_2745 to VCHE25_2752, and VCHE25_2754) comprising ca. 10.2 kb. Bar length =0.02 substitutions per site.

doi:10.1371/journal.pone.0086264.g007
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doi:10.1371/journal.pone.0086264.g009
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794 amino acids, with cytoxic and S-type Pyocin domains, known
toxins active against bacteria [42]. When compared to the NCBI
nucleotide database, highest similarity is with an S-type Pyocin
domain-containing protein (YP_004564713.1) of V. anguillarum, a
marine fish pathogen. Two adjacent proteins are bacteriocin
immunity proteins, with one 83 amino acids and the other 93
amino acids in length. Both have colicin immunity protein/pyocin
immunity protein domains and are predicted by pSort to be in the
cytoplasm of the V. cholerae [43]. In other species secreted pyocins
are known to cause cell death among closely related strains [42].
The presence of a homologous genetic cluster in the V. cholerae FL
Group may allow it to outcompete other V. cholerae strains present
in the same local environment which may lead to an increased
density of pyocin and pyocin immunity protein-encoding strains in
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a specific environment such as a single oyster bed. However,
further research on pyocins in V. cholerae needs to be conducted to
further elucidate their potential role in intra-species competition in
the environment.

The VSP-II-like element 1in isolates of the V. cholerae FL. Group
has 12 ORFs with similarity to regions of the V. corallilyticus ATCC
BAA-450 and V. anguillarum 775 genomes, with percent nucleotide
identity between the ORFs ranging from 69 to 99% (Figure 9).
These data suggest the suite of VSP-II-like elements is distributed
not only among clinical V. cholerae isolates, but also environmental

isolates including non-cholera vibrios. Further, the presence of

similar ORFs in non-pathogenic vibrios strongly indicates a
function in the natural environment

V. cholerae FL Group
V. cholerae TMA 21
V. cholerae RC385
Vibrio sp. RC341
—— V. cholerae MZO-3

oo L——— V. cholerae N16961

V. anguillarum 775

V. coralliilyticus ATCC BAA-450

Figure 11. Phylogenetic analysis of Vibrio Seventh pandemic island ll-like island. Neighbor-joining tree inferred from an alignment 8
orthologous ORFs (VC0495, VC0496, VC0504 to VC0506, VC0508 to VC0510) comprising ca. 3.7 kb. Bar represents 0.02 substitutions per site
doi:10.1371/journal.pone.0086264.g011
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strains (Figure 11). The subclade with which VSP-II of the V.
cholerae FL. Group clusters comprises environmental V. cholerae
strains and Vibrio sp. RC341, a novel Vibrio species closely related

A phylogeny of conserved VSP-II ORFs infers these sequences
of the V. cholerae FL. Group to be closely related to V. cholerae TMA
21 and significantly divergent from the V. cholerae 7" Pandemic

v 4 phage .
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Figure 13. Proposed hypothetical insertions of genomic islands in the V. cholerae V51/V. cholerae FL Group clade.
doi:10.1371/journal.pone.0086264.g013
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Figure 14. Comparative genomic analysis of LPS coding regions.

reference.
doi:10.1371/journal.pone.0086264.9014

to V. cholerae and known to cause sporadic infections in humans
[15,44,45]. V. cholerae V51 does not encode this element.

The presence of genomic islands comprising the V. cholerae
mobilome described by Chun et al. (12) was evaluated using
BLASTN and BLASTP. Including VPI-1 and 2 and a VSP-II-like
element, the V. cholerae FL. Group encoded sequences with high
similarity to Gls-1, 2, 3, 4, 26, 37, 57, 58, and two genomic islands
not yet described and designated here as FL-GI-1 and FL-GI-2
(Figure 12). All V. cholerae FL. Group isolates lacked VSP-I genomic
island and the site of insertion does not harbor any other genomic
island. Figure 13 depicts a proposed arrangement of genomic
island insertion and deletion in the V. cholerac V51/ V. cholerae FL
Group lineage before and after the two sets of isolates (V. cholerae
V51 and V. cholerae FL. Group isolates) would have diverged from a
common ancestor.

Lipopolysaccharide Coding Region

This region of the V. cholerae FL. Group is ca. 60.1 kb, with the
LPS core region ca. 19.1 kb and wb* region ca. 41 kb. Of all V.
cholerae serogroup data represented in NCBI GenBank, the core
oligosaccharide (OS) and the O141-antigen-specific coding regions
of V. cholerae V51 are most similar to the homologous ORFs of V.
cholerae FL. Group (Figures 14 and 15). Of 54 identified ORFs in
this region of the V. cholerae FL. Group, V. cholerae V51 shares 38
with at least 95% nucleotide sequence similarity. When the O-
antigen ORFs of V. cholerae V51 and the V. cholerae F1. Group are
compared the only observed structural differences are seven ORF's

PLOS ONE | www.plosone.org

Reciprocal BLAST analysis of LPS coding region with V. cholerae V51 as a

absent in the regions homologous to VCV51_0176 to
VCV51_0185 in the V. cholerae FL. Group and 11 ORFs in V.
cholerae V51 absent in the homologous region (found between
positions 98044 and 113059 in contig re-
fINZ_AMWLF01000009.1|). Eight ORFs were identified in the
O75-antigen coding region of the V. cholerae FL. Group isolates that
have not yet been described in the O-antigen coding regions of
other V. cholerae genomes, and these ORFs may be specific to the
O75 antigen (Figures 14 and 15).

Although it is well known that this region is a hot-spot for gene
transfer, it can be assumed that O141 and O75 O-antigen coding
regions derived from a recent ancestral sequence based on the high
level of conservation between the two, and that the difference
between the two clusters arises from a substitution of ORFs
specific to the O-antigen region. A similar mechanism has been
suggested for the relationship between O139 and O22 serogroups
[46,47]. This substitution may have involved a ca. 18.2 kb region
in the genomes of V. cholerae FL. Group isolates and a ca. 16.2 kb
region in V. cholerae V51 flanked by homologs found at nucleotide
positions 97166 to 98047 (glucose-1-phosphate thymidylyltransfer-
ase) and 116274 to 116825 (lipid carrier:UDP-N-acetylgalactosa-
minyltransferase). Alternatively, three substitution events involving
shorter sequences may have occurred between the flanking
regions, indicated by absent ORFs (red squares in Figure 15) in
reciprocal comparison. Interestingly, the serogroup with the next
highest level of conservation with serogroups O141 and O75 is the
epidemic-associated O139 serogroup isolate V. cholerae MO10.
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Figure 15. Comparative genomic analysis of LPS coding regions. Reciprocal BLAST analysis of LPS coding region with V. cholerae FL Group as

a reference.
doi:10.1371/journal.pone.0086264.g015

Phenotypic Analyses

The eight V. cholerae FL. Group isolates were evaluated for
hemolysis, motility, and proteolysis, following standard methods
for testing these methods in V. cholerae [27]. Although not
responsible for the rice water diarrhea characteristic of cholera,
these virulence factors are associated with intestinal and extra-
intestinal V. cholerae infections, as well as ecological functions in the

aquatic environment [48,49,50,51]. All strains are motile,
100+
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Figure 16. Survival curves of C. elegans challenged with V.
cholerae CP1112, CP1114, CP1115, V. cholerae El Tor E7946,
Escherichia coli OP50.

doi:10.1371/journal.pone.0086264.9g016
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proteolytic, form biofilms and are hemolytic. However, strain
CP1114 demonstrated weak or incomplete hemolysis. This isolate
was also weakly proteolytic, compared to the other V. cholerac FL
Group isolates, and incomplete hemolysis may be due to
incomplete processing of hemolysin by the hemagglutinin/
protease [52].

The Caenorhabditis elegans model of V. cholerae infection, which
yields data on strength of hemolytic activity (hly4) proved useful
[29]. Nematodes were fed three isolates of V. cholerae FL. Group (V.
cholerae CP1112; 1114, and 1115). CP1115, which showed the
largest zone of hemolysis on blood agar, was selected for testing.
CP1114 demonstrated incomplete hemolysis and CP1112 showed
a moderate zone of clearing when compared to the other isolates
of the V. cholerae FL. Group. The results demonstrated significantly
more rapid lethality in nematodes fed the V. cholerae FL. Group
isolates than nematodes fed non-pathogenic E. coli as a control, but
significantly slower lethality than nematodes fed V. cholerae E1 Tor
strain 17946 (P<<0.05) (Figure 16). It is concluded that all three of
the V. cholerae FL. Group isolates produced in similar C. elegans
survival patterns. However, median survival time of worms fed
isolates V. cholerae CP1112 and CP1115 was ca. nine days versus ca.
eleven days for worms fed V. cholerae CP1114, the isolate with
incomplete hemolysis, a consistent result based on previous
observations. Interestingly, the three isolates caused a C. elegans
die-off similar to V. cholerae O1 biotype Classical than to El Tor
[29], not expected since Alyd of the V. cholerae FL. Group does not
have the same 11 bp deletion linked to the decreased hemolytic
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activity of V. cholerae O1 Classical but higher nucleotide sequence
similarity with V. cholerae O1 El Tor N16961 than Classical O395.

Based on BiOLOG phenotypic microarray assay, all strains
utilized sialic acid three to six times greater than background
demonstrating a functional sialic acid catabolism operon of the
VPI-2. Almagro-Moreno and Boyd [10] reported the ability to
utilize sialic acid confers a competitive advantage to strains
encoding this region during infection of the sialic acid-rich
environment of the gut. This is due to the ability of V. cholerae
encoding a functional sialic acid metabolism region to utilize sialic
acid as a carbon source [10]. All strains also utilized maltose,
which was shown by Lang et al. [53] to be related to cholera toxin
and toxin co-regulated pilus production and translocation across
the V. cholerae outer membrane. Results of the study demonstrated
that a functional maltose operon is needed for virulence of V.
cholerae [53].

The BiOLOG profiles showed similar metabolic profiles among
the V. cholerae FL. Group strains (data not shown). However, both
replicates of V. cholerae CP1110 utilized caproic acid as carbon
source while all other isolates generally did not, except isolate V.
cholerae CP1117 which utilized this substrate in one replicate.
Isolates CP1112, CP1113, and CP1116 weakly utilized caproic
acid in at least one replicate. Isolate V. cholerae CP1115 did not
utilize B-methyl-D-glucoside while the other V. cholerae FL. Group
isolates did.

Conclusions

It is concluded the outbreak was caused by V. cholerae growing to
a sufficiently high density in the environment (i.e., not in a single
oyster) to cause multiple cases of cholera. Clonality of the isolates,
including 67% of all reported cholera cases from this outbreak,
demonstrates that there need not be a human vehicle of V. cholerae
dispersal into a given geographical region prior to a cholera
outbreak, as has been suggested for cholera epidemics. Further, it
1s concluded that genomic and phenotypic diversity exists among
clinical isolates V. cholerae non-O1/non-O139 strains of the same
outbreak, supporting a recommendation to investigate the
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genomics of cholera epidemics at the population level. Large-
scale genomic and molecular analyses accomplished for the
cholera epidemics in Haiti and Bangladesh and the recent
epidemics in Nigeria and Kenya have revealed distinct V. cholerae
populations causing disease [6,7,54,55].

Because the V. cholerae FL. Group isolates formed a monophyletic
lineage with V. cholerae V51 serogroup O141 (a 1987 clinical
isolate), we hypothesize the clade to represent a lineage of cholera-
causing isolates, similar to those of the 7" pandemic clade.
Although, diverged from recent 7™ pandemic strains and older
Classical and pre-7" pandemic strains, from an evolutionary
perspective, the virulence factors known to be involved in cholera
are present in the V. cholerae FL. Group and V. cholerae V51. The
difference in the constellation of mobile elements and incongruent
phylogenies of some elements of V. cholerae V51 and the V. cholerae
FL Group suggest that, although these two groups are similar, they
have independently acquired various elements from the environ-
ment, with some islands globally distributed.

Although the majority of the research on V. cholerae focuses on
the O1 serogroup because of the major epidemics associated with
these strains, V. cholerae non-O1/non-O139 serogroup strains
should be further evaluated for contribution to the global disease
burden. V. cholerae serogroup O141 isolates have been shown by
other investigators to globally cause significant disease and many
encode ctxBY™ Y [14,30,31,56] as do the V. cholerae FL. Group
serogroup O75 isolates. Pathogenic V. cholerae causing cholera
outbreaks must be characterized in a phylogenomic context and
their genomic island constellations as well. It is no longer sufficient
to label these V. cholerae strains as serogroups O1, O139, or non-
0O1/non-0139, without further appropriate genomic analysis.
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