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A core question in neuroscience is how the brain’s structure ena-
bles the rich cognitive function that defines our conscious expe-
rience. Clinically, such knowledge would provide a mechanistic 
basis from which to design treatments to minimize cognitive 
deficits in disease, or to enhance cognitive function in healthy 
individuals. Technologically, it may open the door to neuro-
mimicry: brain-inspired design of new algorithmic frameworks 
for artificial intelligence. Recent unprecedented investments in 
neuroscience research have yielded large volumes of data rang-
ing from intricate whole-brain maps of the microscopic proper-
ties of neural circuits to neural dynamics measured across a wide 
range of spatial and temporal scales. Despite this deluge of data, 
we have relatively few organizing principles to explain the pat-
terns, make predictions, and design new experiments to test 
them.1–3 Progress in this direction requires closer collaboration 
between scientists with experimental, statistical, and theoretical 
modeling expertise. In this commentary, we highlight key results 
from our recent paper,4 framing them in the context of the 
modern neuroscience landscape.

The Prominence of Neuroinformatics on the 
Landscape of Modern Neuroscience
In Fulcher et  al.,4 we assembled multiple datasets as spatial 
maps of the mouse cortex: (1) gene expression,5 (2) cell type 
densities,6,7 (3) axonal connectivity,8 (4) cytoarchitecture,9 and 
(5) magnetic resonance imaging (MRI) structural maps.10 We 
demonstrated a surprising commonality of spatial variation 
between these diverse measurements, which together ordered 
mouse brain areas along a putative functional hierarchy, from 

primary somatosensory through to transmodal prefrontal areas. 
Our integrative approach provides clues about the multifaceted 
structural underpinning of hierarchical functional specializa-
tion11 and allowed us to produce data-driven cortical organiza-
tion schemes by representing each cortical area as a multimodal 
set of properties, such as that shown in Figure 1.

Our study is an example of integrative research that bridges 
the specialized expertise of many individual laboratories 
through data sharing. Following pioneering large-scale experi-
mental work by the Allen Institute5 and its associated infor-
matics challenges,13 the culture of data sharing in neuroscience 
has become widespread. For computational and theoretical sci-
entists, this provides new opportunities to leverage what are 
large financial investments in cutting-edge experimental pro-
tocols to discover new properties of brain organization, includ-
ing those that extend across datasets that would not traditionally 
be compared. This line of research is not without substantial 
challenges: compared with prototypical collaborations of 
experimental and theoretical scientists, analyses of open data 
involve an unusual level of disconnect between the process of 
data collection and statistical analysis. This requires much 
greater care on the part of the data analyst to proactively ensure 
that their analyses respect the subtleties of the dataset and any 
limitations in its measurement. For example, recent work com-
paring studies analyzing transcriptional data from the Allen 
Human Brain Atlas14 found a high degree of inconsistency in 
how researchers subsequently processed the data and demon-
strated that these choices can have a large impact on the final 
results and their interpretation.15
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Data-Driven Interspecies Comparison
Properties of brain organization that are shared across scales 
and species are strong candidates for providing an evolutionary 
advantage by enabling cost-efficient information processing. 
Although some such conserved properties are derived from 
abstractions of the brain as topological networks,16 studies of 
comparative anatomy (most commonly performed between 
different primate species) require a cortical parcellation mapped 
between species. Both the choice of parcellation and its map-
ping require subjective choices on the part of the researcher.17,18 
In Fulcher et al.,4 we circumvented the need to define a mouse-
human homology of cortical areas, instead using the noninva-
sive MRI contrast map, T1w:T2w, as a common spatial 
reference for interspecies comparison. As well as confirming 
the increase of T1w:T2w from dysgranular to eulaminate areas 
in mouse, as in primate and human,11 our results revealed a 
compelling consistency in the transcriptional patterning of 
brain-related genes relative to T1w:T2w. Mapping ortholog 
genes between mouse and human, we found significant mouse-
human correspondence: Spearman ρ = 0.44 (P = 1 × 10−4), a 
result that was reproduced across a wide variety of gene sets: all 
genes, brain-expressed genes, astrocyte-enriched genes, neu-
ron-enriched genes, and oligodendrocyte-enriched genes. As 
T1w:T2w is commonly interpreted as an MRI imaging marker 
for myelin content,19 interspecies correspondence may be 
expected on the basis of common variation of genes coding for 
myelin content. Whereas myelin-related gene expression did 

show interspecies correspondence, e.g., Mobp (ρmouse = 0.43, 
ρhuman = 0.41) and Mbp (ρmouse = 0.34, ρhuman = 0.45), the overall 
correlation was driven by functionally diverse genes, including 
the striking interspecies correspondences of N-methyl-D-
aspartate (NMDA) receptor signaling genes such as Grin3a 
(ρmouse = –0.63, ρhuman = –0.65) and the interneuron marker 
Pvalb (ρmouse = 0.57, ρhuman = 0.70).

The agreement is striking given (1) measurement noise in 
both datasets, (2) differences in measurement modalities 
between mouse (high-throughput in situ hybridization) and 
human (post-mortem microarray from 6 adults), and (3) vast 
differences in spatial scale. Although we developed new qual-
ity-control methods for the data, we note that the atlas-based 
expression measurements can be very noisy and that a noisy 
measurement in one species would manifest as a reduced cor-
relation with T1w:T2w. In this respect, our data are again 
consistent with a meaningful interspecies correspondence: a 
high correlation in one species consistently matched the same 
direction in the other species. This mouse-human conserva-
tion of gene expression gradients suggests that common 
structural features may shape hierarchical functional speciali-
zation in both mammalian brains.

Whereas our results demonstrate a surprising consistency in 
how transcriptional gradients vary with T1w:T2w, they also 
provide insights into key differences in the degree of speciali-
zation in the mouse cortex. Previous comparative studies of 
mouse and primate have focused on quantifying microstruc-
tural variation between areas with the most disparate function, 
e.g., between V1 and frontal cortex in mouse and between V1 
and lateral prefrontal cortex in rhesus monkey.20 This research 
has painted a consistent picture of the relative uniformity of the 
mouse brain compared with the highly differentiated primate 
cortex. In our study, correlations between T1w:T2w and other 
spatial maps were consistently weaker in mouse relative to 
macaque and human: for hierarchical level (ρmacaque = 0.76, 
ρmouse = 0.29), cytoarchitectural type (τmacaque = 0.87, 
τmouse = 0.51), and the leading principal component of gene 
transcription (ρmouse = 0.53, ρhuman = 0.81).11 In characterizing 
the most salient mouse-human differences in brain structure, 
we also flagged candidate genes for further investigation that 
show the most difference between mouse and human, includ-
ing NMDA receptor signaling genes Grin2b/GRIN2B 
(ρm = 0.19, ρh = –0.63), Grin2d/GRIN2D (ρm = –0.41, ρh = 0.13), 
and Grin3b/GRIN3B (ρm = –0.34, ρh = 0.26).

Validating Gene Markers for Cell Types
Bringing together measurements of gene expression5 with direct 
measures of interneuron cell densities6 allowed us to validate 
gene markers for interneuron cell types. We demonstrated that 
using gene expression data as a proxy for cell-type density can be 
highly accurate, as shown for the strongest correspondence we 
observed between the density of parvalbumin-containing 
interneurons6 and the independently measured expression of 

Figure 1.  A low-dimensional projection of mouse brain cortical areas, 

represented as a multimodal feature vector. The feature vector combines 

properties of gene expression (Pvalb, Grin3a, and Grik2), cytoarchitecture 

type, weighted axonal in-degree, T1w:T2w, estimated hierarchical level, 

and mean density of parvalbumin-containing cells. Brain areas with a 

similar set of properties are close in this projection space. Shading has 

been added manually to highlight the different functional families, labeled 

according to Harris et al.12
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Pvalb5 across cortical areas in Figure 2. The correspondence for 
vasoactive intestinal polypeptide (VIP) cell density with Vip 
gene expression was also strong, ρ = 0.76 (P = 3 × 10−7), but was 
much weaker for somatostatin (SST) cell density with Sst expres-
sion, ρ = 0.24 (P = 0.1). The lack of agreement for Sst may be due 
to a breakdown in the relationship between Sst expression and 
SST cell density: Sst expression decreases in adults and is regu-
lated by neural activity.21 Our results suggest that the inference 
of cell density from gene expression atlases can be accurate, but a 
direct correspondence can be confounded by the many factors 
regulating gene transcription, as well as additional factors com-
plicating straightforward inference of protein levels from 
mRNA.22 Continuing the search for cell types and their marker 
genes,23,24 and validating them against independent cell density 
measurements,6,7 will equip us with tools to infer the spatial dis-
tributions of cell types, including their contribution to psychiat-
ric phenotypes.

Spatial Continuity of the Macroscopic Brain
At the macroscale, the brain is a continuous physical system25 
that is commonly approximated as a set of discrete brain areas 
partitioned by hard boundaries. Our analysis brought together 
many open datasets of spatial maps reported at the level of the 
Allen Reference Atlas areas, but neuroscience datasets are 
now being measured and shared at cellular resolution.26 These 
data open the door to future research overcoming the limita-
tions of discrete parcellations, and moving toward a continu-
ous characterization of the fine-scale spatial patterning of the 
brain’s structural and functional properties. The next genera-
tion of brain atlases will likely contain a far more subtle rep-
resentation of the brain’s spatial organization that takes into 

account multimodal information measured at each voxel,27 
likely yielding a combination of continuous gradient-like 
variation28 as well as sudden changes consistent with interar-
eal boundaries.

The Need for Theoretical Frameworks
Linking neuroscience big data to scientific understanding 
requires statistical analysis to uncover and characterize inter-
esting patterns and theories that explain diverse observations in 
a coherent conceptual framework.1 Seen through this lens, the 
multimodal statistical relationships we present in Fulcher et al.4 
will be important for constraining new mechanistic models of 
brain dynamics that bridge spatial scales of brain organization 
by capturing whole-brain activity dynamics in terms of puta-
tive physiological mechanisms. Whole-brain models, whether 
formulated physically (e.g., neural fields) or phenomenologi-
cally (e.g., as coupled dynamical systems), have overwhelm-
ingly made the simplifying assumption of spatially uniform 
parameters when simulating brain dynamics. New models are 
beginning to incorporate inter-regional heterogeneity, allowing 
model parameters to vary with an empirical measurement such 
as spine count29 or T1w:T2w.30 Models including this simple 
1-dimensional heterogeneity yield better out-of-sample fits to 
experimental functional-connectivity measurements and the 
hierarchical organization of intrinsic timescales,30 providing 
evidence that hierarchical variation in local circuits plays a key 
role in shaping cortical dynamics. Physiologically based mod-
els, as opposed to phenomenological models, stand to gain the 
most from the rich new neuroscience datasets, as their formu-
lation and parameters can be directly constrained and verified 
against data.25

The modern landscape of neuroscience has been shaped by 
advances in neuroinformatics, data-sharing standards, and 
greater contributions from statistical and computational mod-
eling in generating guiding hypotheses for new experiments. 
Integrative studies like Fulcher et  al.4 that assemble many 
diverse datasets across multiple species will play a key role in 
uncovering the principles of how the brain’s organization ena-
bles a diverse functional repertoire.
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