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High-throughput technologies are en-

abling scientists to profile genomes, tran-

scriptomes, proteomes, and metabolomes

at an unprecedented scale [1]. All this

‘‘-omics’’ research (let’s call it genomics for

simplicity) is exciting—and game chang-

ing—but it’s also fraught with dangers for

the tenderfoot. Here, we’ve put together a

brief ‘‘field guide’’ for those wishing to visit

the genomics frontier, in which we use

caricatures to illustrate various pitfalls that

can beset those who inhabit this new

territory. By documenting the behaviors of

these common types, we hope to guide

researchers in their quest to apply sound

practices when designing genomics exper-

iments and analyzing the resulting data.

Many of the tendencies we have encoun-

tered are not specific to genomics re-

search, but they are particularly acute in

this field due to its interdisciplinary nature

and the complexity of the data it produces.

Drawing upon our own experiences in

various roles on genomics projects—and

at the risk of generalizing—we note the

prevalence of no fewer than six different

character traits that lead to problems in

experimental design (‘‘the farmer’’), data

interpretation (‘‘the gold miner’’ and ‘‘the

cowboy’’), collaboration (‘‘the hermit’’ and

‘‘the master and servant’’), and civic virtue

(‘‘the jailer’’). This list is not comprehen-

sive, but we hope it will guide new

adventurers in the approaches and atti-

tudes needed to stake their claim in this

novel terrain.

The Farmer

‘‘Let’s harvest a bunch of data and design fancy

tools, and then we’ll figure out what to do with

them.’’

The farmer meticulously cultivates and

gathers bushels of data (Figure 1). After a

season of hard labor, she looks in her

storehouse, finds enormous data files—

measurements for thousands of biological

features across hundreds of samples—and

asks, ‘‘What now?’’ Unfortunately, the

farmer has placed the proverbial cart

before the horse: she has budgeted and

planned for the seed and farmhands

necessary to sow and reap crops—perhaps

also developing new planting or harvesting

procedures in the process—but she has

failed to envision a specific use for the

data. This leaves the farmer searching for

ways to exploit the data; this lack of

foresight may limit the return on her

investment.

Over 75 years ago, experimental design

practices were developed for the purpose

of maximizing crop yield, usage, and

distribution [2,3]. Yet, in some cases, these

lessons learned from agricultural and other

research fields have not yet been adopted
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Figure 1. The farmer builds a vast storehouse of genomic data but falls short on
experimental design. Prior to ‘‘planting,’’ researchers should define clear objectives, identify
suitable analytical approaches, and consider sample-size requirements, confounding variables,
and evaluation measurements. Image credit: Dan Madsen.
doi:10.1371/journal.pbio.1001744.g001
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throughout the genomics community.

Most importantly, an experimental design

should be developed carefully before data

are acquired. It should include clear

objectives and/or hypotheses and delin-

eate analytic approaches, potential con-

founding variables, sample-size require-

ments, and measures that will be used to

assess the validity of the data (see Box 1)

[4]. Forward planning often uncovers

confounding factors or other study limita-

tions that could minimize the value of an

experiment if not anticipated and ad-

dressed in advance.

If possible, consult with someone who

has already done the type of experiment

you are attempting to do. Test the

assumptions underlying your data analysis,

understand the limitations of the statistical

procedures you plan to use, and know

what conclusions you can or cannot make

from the results. For example, have study

subjects been separated into sufficiently

homogeneous subgroups [5]? Are there

experimental/clinical/epidemiological fac-

tors that could confound your analyses? Is

your study design sufficiently powered to

generate a statistically significant result [6]?

Will your analysis allow you to draw a

decisive conclusion, or will subsequent

studies be needed? And do you have access

to the analytical tools and/or personnel

that will be needed to interpret the data?

Taking such considerations into account

will help you reap greater rewards for your

data-harvesting efforts.

The Gold Miner

‘‘If we keep digging, eventually we will find

what we are looking for.’’

The gold miner relentlessly digs into the

data in search of a treasure that will

impress the research community (Figure 2).

He hopes that with enough searching, a

highly significant finding that supports his

hypothesis—or any hypothesis, for that

matter—will eventually surface. But even

after proper planning and experimental

design, results are sometimes negative.

When should he give up and move to a

new mine? Or, if he does find a shiny

nugget, how can he be sure it’s not fool’s

gold [7]?

Although valuable findings sometimes

do arise serendipitously, it’s important for

genomics researchers to stay true to their

original experimental design. After a

dataset has been generated and the

preplanned evaluations have been per-

formed, it can be tempting to continue

digging for positive results. But queries

that fall outside the scope of what the

original experiment was designed to ad-

dress may leave the researcher standing in

quicksand. By not straying from his

experimental design, the gold miner can

better assess when to move on from a

barren mine. Additionally, because high-

throughput data typically contain thou-

sands of variables, false positive associa-

tions will inevitably arise in the data that

are not valid biological findings.

Sometimes a negative result occurs

simply because an experiment failed. As

with laboratory research, it is important

to preface critical experiments with a

series of test experiments that define

positive and negative controls and opti-

mal configurations. Because the requisite

statistical and bioinformatic analyses are

often beyond the expertise of a basic

biological scientist and because such

experiments are relatively expensive, it is

tempting to forego these crucial steps (see

Box 2). Yet failing to run appropriate

control experiments may lead to spurious

associations.

It is important to describe clearly all

steps used to analyze the data—including

failed attempts. For example, if you tried

multiple algorithms and configuration

parameters, report this in your results (if

anything, as a courtesy to researchers who

explore this area after you). Results that

are significant only when a specific

algorithm or parameters are used may be

less likely to stand the test of time than

those that stand up in several different

analyses. Scientists should approach geno-

mic analyses as they approach other areas

of science: ‘‘taken together, what do the

data and analyses tell you?’’

The Cowboy

‘‘We don’t really understand the data, but we

will go ahead and publish!’’

The cowboy is always ready to push

forward, shooting first and asking ques-

tions later (Figure 3). Often wrong but

with no shadow of self-doubt, the cowboy

places publication quantity ahead of

quality. If a result appears to support his

hypothesis, he wrangles it into a publica-

tion, even though he may not be sure

whether the methodology was sound. If

left unchecked, the cowboy’s reckless

behavior can mislead others on the

frontier; it’s only a matter of time before

the Sheriff catches up and hauls him off to

the jailhouse.

Before taking a publication to market,

genomics researchers must exercise con-

siderable care to ensure the validity of

Figure 2. The gold miner keeps digging
until a ‘‘significant’’ result surfaces.
Researchers should stay true to their original
experimental design, use positive and nega-
tive control experiments, and be open about
the approaches that were attempted but
failed. Image credit: Dan Madsen.
doi:10.1371/journal.pbio.1001744.g002

Box 2. Ensuring Sound Interpretation of Genomics Data

N Stay true to your original experimental design

N Develop and implement negative and positive control experiments

N ‘‘Taken together, what do the data and analyses tell you?’’

N Understand how statistical and computational methods should be applied

N Perform in silico and/or mechanistic validations

Box 1. Essential Components of Genomics Experimental Design
(before Acquiring the Data)

N Specify clear objectives and/or hypotheses

N Design an experiment to directly test the specific hypotheses

N Outline analytic approaches that will be used to meet the objectives

N Anticipate potential confounding variables, sample-size requirements, and
personnel needs
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their results. Biologists and statisticians are

often unprepared for the massive and

highly complicated datasets that are gen-

erated by these new technologies. Ten-

dencies that plague cowboys include

ignoring the potential impact of ‘‘batch

effects’’ [8,9], focusing on only one gene or

pathway of interest, applying inappropri-

ate statistical tests, computational algo-

rithms, or configuration parameters [10],

and applying computational methods in

ways that introduce bias and thus lead to

overoptimistic conclusions [11]. For exam-

ple, in a tumor gene-expression study, a

researcher may have great success in

differentiating between two apparent can-

cer subtypes; however, if all patients from

one subtype were profiled on one day and

patients from another subtype were pro-

filed on a different day, the observed

differences may be due to minor differenc-

es in sample processing rather than to an

interesting biological phenomenon. Even if

such biases have been avoided, it can be

tempting to home in on a single gene that,

for example, shows significantly different

expression levels between two conditions;

however, it’s important to place such

findings in context with other genes that

may also be differentially expressed.

Finally, we stress that independent

validation of all results from genomics

studies is required in nearly all circum-

stances. This validation may be performed

in silico using additional external datasets

or simulated examples, and/or experimen-

tal validation of mechanisms inferred by

the genomic findings [12]. In silico valida-

tion can provide a measure of confidence

that a finding applies generally beyond the

dataset and population from which it was

derived. Mechanistic validation helps to

decipher whether an observation is simply

correlative or actually causal.

The Hermit

‘‘I don’t need help from anyone.’’

The hermit lives in isolation, unencum-

bered by outsiders who might challenge

her narrow view of the world (Figure 4).

Blinded perhaps by distrust, over-opti-

mism, or a false sense of superiority over

those with different backgrounds or objec-

tives, the hermit believes that her lab

possesses the broad array of knowledge

and skills necessary to perform any type of

experiment or analysis without the need to

collaborate with other scientists. The rapid

pace of technological development, how-

ever, coupled with the interdisciplinary

nature of genomics research, threatens to

relegate the hermit to ancient history.

Effective communication and collabora-

tion among a broad range of scientists are

crucial for success in genomics [13]. Such

research teams often include biologists,

bioinformaticians, chemists, clinicians,

computer scientists, engineers, and statisti-

cians. Within a team, individual researchers

may have very different or even contradic-

tory objectives. For example, a statistician’s

typical objective is to develop new methods

to address multiple embodiments of a

problem; priority is placed on developing

the ‘‘best’’ solution, not necessarily being

the first to solve the problem. The biologist,

by contrast, is usually intensely focused on a

specific biological or medical question.

Disseminating results rapidly may make

the difference between publishing in a high-

profile journal or one of less impact; so a

‘‘good enough’’ solution that can be

attained quickly is often acceptable; taking

time to refine and generalize methods may

not be a high priority. These conflicting

approaches may spawn hermitic behaviors

in scientists who prefer to surround them-

selves only by others who share the same

perspectives and objectives. Such an envi-

ronment may feel safer; but valuable insight

can be gained from outsiders who approach

their crafts in different ways.

No individual on a team can work

successfully on an island, so all researchers

need to know and respect the goals, needs,

and priorities of their teammates. This

means, for example, that biologists may

need to generate calibration data to test

new technologies or validate statistical

methods. Statisticians may need to devel-

op simple solutions first that allow the

biologist to move forward before the

approach is generalized. Computational

researchers must develop tools that are

user-friendly for colleagues from different

backgrounds.

When writing papers or grants, never

underestimate the contributions of

Figure 3. The cowboy wrangles data into publication without analyzing it properly.
Researchers should beware of potential confounding effects and statistical biases that could lead
to inappropriate conclusions. In silico and mechanistic validations can also overcome cowboy
tendencies. Image credit: Dan Madsen.
doi:10.1371/journal.pbio.1001744.g003
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colleagues with different expertise; instead

share primary authorship based on con-

tribution rather than discipline, and write

grants jointly that include funds for

development of technology or analytical

tools—not merely for their application. All

researchers should be involved in projects

from the earliest stages. Finally, don’t

jump off the wagon if technology devel-

opment, data generation, or data analysis

seems to be taking too long—both biolog-

ical and computational experiments can

encounter unexpected hurdles.

The Master and the Servant

‘‘I saw this in a talk; it shouldn’t be too hard

for you to do the same thing.’’

When the master recognizes a need for

extra hands to carry out a specific task on

his ranch, he immediately recruits a new

servant to address this need (Figure 5). On

one hand, the master may be conversant

in the general expertise of his new servant

but he may fail to comprehend the effort

required to produce quality results in that

field. On the other hand, the servant’s

training might be incomplete, or he might

lack independence, wanting the master to

tell him exactly what to do and how to do

it. It’s time to educate the master and

empower the servant!

Experiments or analyses often seem

straightforward when described in a talk

or publication, but there are always pesky

underlying details. A new experimental

method often does not work on the first try

and may require a great deal of trouble-

shooting. This is also true of a computa-

tional analysis, which typically requires

more than simply running a computer

program with default settings. About half

of computational experiments yield unex-

pected results [14], so even a seemingly

simple analysis can take months to refine

and may require input from several

scientists.

Consider the example of a master with a

wet laboratory background who enlists a

computational servant to conduct a spe-

cific type of genomic analysis. If the master

lacks expertise to advise the servant in the

development and application of relevant

algorithms, the servant should take the

initiative to develop those skills; however,

this process may take precious months of

learning and troubleshooting. The master

should be realistic about the time commit-

ment required to develop new skills—and

thus the potential to impact the project’s

timeline. Alternatively, if the servant has

an inadequate understanding of the pro-

ject’s overall context, he may be unable to

identify potential confounding factors that

could affect the project’s scientific validity.

So master and servant should work

together to ensure both have proper

perspectives on the project.

Before embarking on a new genomics

project, be sure to understand what

experiments, analyses, and validations will

be needed. Outline potential complica-

tions that could arise, formulate a realistic

timeframe for project completion, and

maintain open communication to address

any issues that may arise. If you are

mentoring a trainee who is doing some-

thing outside your expertise, make certain

they are co-mentored by someone in the

appropriate field. Allow the trainee time to

develop the necessary background and

cross-disciplinary training, even if it re-

quires them to explore areas that are

tangential to your goals or may even slow

the pace of the project.

The Jailer

‘‘We’ll keep our data, thank you.’’

Having rustled up some data, analyzed

it, and reported on it, the jailer seeks to

Figure 4. The hermit insists on scientific isolation and fails to realize that, in most
cases, success in genomics research hinges upon collaboration among a broad range
of scientists. Open-mindedness toward the conventions and idiosyncrasies of researchers from
other domains is key to avoiding the hermit’s existence. Image credit: Dan Madsen and Devika
Joglekar.
doi:10.1371/journal.pbio.1001744.g004

Figure 5. The master has unreasonable
expectations about the expertise and
time required to complete genomics
research tasks; and the servant submits
too willingly to those expectations.
Front-line researchers should insist on ade-
quate training and supervision, whereas
mentors should take the long view on
scientific training needs. Image credit: Dan
Madsen.
doi:10.1371/journal.pbio.1001744.g005
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retain full control of this precious com-

modity (Figure 6). She is equally as

protective of computer code and scripts,

which she hopes to harness for a future

competitive advantage. The jailer relin-

quishes control of these resources only

when held at gunpoint by a journal or

governing body.

Freely sharing data and tools—and thus

enabling your research to be reproduced

and extended—are scientific and ethical

responsibilities [15]. Research subjects

volunteer biological specimens expecting

their contributions to advance science,

not necessarily the investigator’s career.

Taxpayers who provide funds for public

research surely have similar expectations.

In an attempt to advance her own status in

a competitive environment, the jailer

hinders scientific progress and leaves

others questioning the scientific validity

of her work. Don’t keep the data and tools

locked up!

By publishing raw data alongside a

publication, researchers enable others to

glean additional insights. Great value can

be derived from applying new methods to

existing datasets or combining data in

meta-analyses [16]. Whenever possible,

make all original genomics data publicly

available upon publication in freely acces-

sible databases [17,18]. Code files should

be complete, well annotated, and posted in

freely accessible repositories. Data filter-

ing, preprocessing, parameters, and anal-

ysis steps should be detailed enough that

other competent researchers can repro-

duce the findings without the need to

contact the authors. In Box 3, we describe

effective practices for sharing data or code,

recognizing that every study may have

unique challenges that prevent data shar-

ing in practice [19].

Danger Warning

We urge you to be on the lookout for

these character traits that are far too

common on the genomics frontier. Be

aware of your own personal tendencies

toward these potentially damaging behav-

iors. Many stem from a lack of under-

standing or relevant training (such as ‘‘the

farmer,’’ ‘‘the hermit,’’ ‘‘the cowboy,’’ and

‘‘the master’’), whereas some arise from a

lack of awareness of customs or standards

(specifically, ‘‘the gold miner,’’ ‘‘the ser-

vant,’’ and ‘‘the jailer’’).

Success in genomics requires a compe-

tent and unified team with a broad range

of skills and talent working to a well

defined ‘‘battle plan.’’ Communal success

should take priority over individual noto-

riety. We look forward to many hoedowns

where we’ll celebrate each other’s achieve-

ments in taming this exciting frontier!

Author Contributions
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tions about their contributions: Wrote the

paper: AHB JTC WEJ SRP.

Figure 6. The jailer guards research data and tools under lock and key to maintain her
competitive advantage, even though sharing would advance general scientific
progress. Having published, researchers should openly share their methods and data with
the community. Image credit: Dan Madsen and Devika Joglekar.
doi:10.1371/journal.pbio.1001744.g006

Box 3. Data Sharing
Practices for Genomics
Researchers

N Describe methods in sufficient
detail that others can apply them

N Make raw and processed data
available in public repositories
like Gene Expression Omnibus,
Database of Genotypes and Phe-
notypes, or Sequence Read
Archive

N Share code and execution scripts
in version-control repositories like
GitHub or SourceForge

N Annotate code or script files
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