
RESEARCH ARTICLE

An analysis framework for clustering

algorithm selection with applications to

spectroscopy

Simon CraseID
1,2, Suresh N. Thennadil1,3*

1 College of Engineering, IT & Environment, Charles Darwin University, Darwin, Northern Territory, Australia,

2 Defence Science and Technology Group, Edinburgh, South Australia, Australia, 3 Energy and Resources

Institute, Charles Darwin University, Darwin, Northern Territory, Australia

* suresh.thennadil@cdu.edu.au

Abstract

Cluster analysis is a valuable unsupervised machine learning technique that is applied in a

multitude of domains to identify similarities or clusters in unlabelled data. However, its per-

formance is dependent of the characteristics of the data it is being applied to. There is no

universally best clustering algorithm, and hence, there are numerous clustering algorithms

available with different performance characteristics. This raises the problem of how to select

an appropriate clustering algorithm for the given analytical purposes. We present and vali-

date an analysis framework to address this problem. Unlike most current literature which

focuses on characterizing the clustering algorithm itself, we present a wider holistic

approach, with a focus on the user’s needs, the data’s characteristics and the characteristics

of the clusters it may contain. In our analysis framework, we utilize a softer qualitative

approach to identify appropriate characteristics for consideration when matching clustering

algorithms to the intended application. These are used to generate a small subset of suitable

clustering algorithms whose performance are then evaluated utilizing quantitative cluster

validity indices. To validate our analysis framework for selecting clustering algorithms, we

applied it to four different types of datasets: three datasets of homemade explosives spec-

troscopy, eight datasets of publicly available spectroscopy data covering food and biomedi-

cal applications, a gene expression cancer dataset, and three classic machine learning

datasets. Each data type has discernible differences in the composition of the data and the

context within which they are used. Our analysis framework, when applied to each of these

challenges, recommended differing subsets of clustering algorithms for final quantitative

performance evaluation. For each application, the recommended clustering algorithms were

confirmed to contain the top performing algorithms through quantitative performance

indices.

1. Introduction

Cluster analysis is an unsupervised machine learning technique aimed at generating knowl-

edge from unlabelled data [1]. This is achieved through grouping data points in a
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multidimensional space based on a similarity metric. The desired result is that data points in a

grouping or cluster have a natural relationship to one another and a dissimilarity to data points

in other clusters.

There are many aspects of cluster analysis that are challenging for practitioners. Clustering

is very much a human construct; hence, mathematical definitions are challenging. Even the

definition of good clustering is subjective [2]. Numerous clustering algorithms have been pro-

posed in literature with new clustering algorithms continuing to appear. Despite this ongoing

effort from the research community, there is no clear best clustering algorithm. Kleinberg [3]

goes as far as proposing clustering as a “basic impossibility theorem” through demonstrating

no clustering function can satisfy all of a set of three simple properties (scale-variance, rich-

ness, and consistency). Thus, trade-offs are inherent in the clustering problem. To make these

trade-offs in selecting appropriate clustering algorithms, there needs to be understanding and

consideration of the intended application for the analysis. In our previous works, which sur-

veyed cluster analysis in spectroscopy, we found little consistency, evaluation or even justifica-

tion in the selection of clustering algorithms [4]. This highlighted the need for better practices.

In reviewing literature aimed at assisting in selecting appropriate clustering algorithms, we

have observed that there is a significant focus on the characteristics of the clustering algo-

rithms, but limited consideration is given to the user’s goals of the cluster analysis and the

characteristics of the target dataset and the clusters it may contain. While it may be assumed or

implied that a reader may consider these aspects themselves, this presents a potential point of

failure if this is not done with sufficient rigor.

1.1 Related works

Despite cluster analysis being such a widely used technique, the efforts in developing an

approach or framework for selecting appropriate clustering algorithms have been somewhat

limited. As observed in related works, the majority of the focus has been on characterizing and

classifying the algorithms themselves and demonstrating their performance for a given

application.

Early work by Dubes and Jain [5] in “Clustering techniques: the user’s dilemma” present a

foundation to consideration of user’s needs, highlighting that “looking for an optimum cluster-

ing algorithm is contrary to the nature of the problem” as it ignores the application and imple-

mentation aspects. They present several aspects or characteristics for consideration including

user options (algorithm parameters), computational cost, and the type of output. They also

highlight the shortcomings of comparing algorithms against a single performance criteria as:

1) it cannot capture all the information that can be gleaned from clustering (e.g. the value of a

hierarchical output), 2) comparisons are typically made on well-behaved curated datasets,

which may not show an algorithm’s abilities on application data, and 3) it ignores practical

implementation aspect such as parameter selection, run time, and storage requirements. They

also highlight that many new algorithms are presented and evaluated against data and applica-

tions where that algorithm performs best. Even with a similar mindset to our thinking, Jain

and Dubes’ focus is still on characterizing the clustering algorithms and how to compare them.

The gap still exists in how to capture the user’s needs against which the algorithms can be

compared.

Despite that early focus on user’s needs, subsequent work has primarily focused on charac-

terization, classification, and comparison of the algorithms themselves. This algorithm centric

focus largely highlights the nature of the research domain and its outputs through publications.

Many criteria or taxonomies for classifying clustering algorithms have been developed and

refined, often starting from Fisher and Ness’s “Admissible Clustering Procedures” [6].
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Ackerman, Ben-David and Loker have made significant efforts towards mathematical algo-

rithm characterization and classification with rigorous but narrow contributions focusing on

linkage based clustering algorithms [7–9] and randomized clustering algorithms [7]. This clas-

sification of algorithms is important as it has been shown that clustering algorithms that follow

the same clustering strategy or mechanism tend to result in similar clustering, despite minor

variations in the parameters or the objective functions involved [10]. This can assist with

reducing the number of individual clustering algorithms to be evaluated.

In addition to these works capturing the characteristics of clustering algorithms and classi-

fying them, there is a suite of studies comparing and evaluating algorithms against real world

and synthetic datasets [11–18]. Aldenderfer and Blashfield [19] highlight that the results of

these are difficult to compare because each study has evaluated different combinations of data

structures and algorithms. They did however identify four data characteristics that appeared to

influence performance of the algorithms: the elements of the cluster structure (cluster shape,

size, size difference between cluster, and the number of clusters), the presence of outliers, the

degree of cluster overlap, and the choice of similarity measure. This highlights the importance

of the characteristic of the clusters in the data. Recently, Rodriguez et al. [20] conducted a com-

prehensive study comparing a variety of clustering algorithms against synthetics datasets with

varying parameters to understand how algorithms are affected by those characteristics. Despite

being comprehensive and valuable, they used equal number of objects per cluster (balanced

clusters), and maximum number of features was 200. As we will show later, these fall outside

the characteristics of most of the datasets we will evaluate. This demonstrates the challenge in

generating a universally applicable comparison. Hence, there is a requirement to consider the

specific user’s need and to conduct comparisons for their applications. Our proposed method-

ology assists in achieving this.

1.2 Contribution

Our primary contribution is an analysis framework to evaluate the clustering algorithms

against the purpose of the analysis (the user’s needs) and select appropriate clustering algo-

rithms for that application. This differs from existing literature which focuses on characteriz-

ing and classifying the clustering algorithms, or produce purely quantitative performance-

based comparisons. In our paper, we present a wider holistic approach to the challenge of

selecting a clustering algorithm, with a focus on the user’s needs, the data’s characteristics and

the characteristics of the clusters it may contain. Our analysis framework utilizes a softer quali-

tative approach in an analysis framework, drawing on soft systems thinking to identify appro-

priate characteristics for consideration when matching clustering algorithms to the intended

application. Jain [5, 21, 22] has repeatedly emphasized the importance of incorporating

domain knowledge into the selection process. We present a practical way to achieve this and

add rigor to this selection process.

In addition to the analysis framework itself, we validate our analysis framework through

application to four different types of datasets (fifteen datasets in total) with differing analytical

purposes. Through this, we identify a collection of selection criteria relevant for those applica-

tions and conclude with recommending the clustering algorithms best suited for the cluster

analysis of homemade explosives spectroscopy datasets, public spectroscopy datasets, gene

expression datasets and the classic machine learning datasets. Our primary focus for this

research is for the application to spectroscopy (which form the majority of the validation data-

sets). However, our successful evaluation and validation of our analysis framework on the gene

expression dataset and the classic machine learning datasets indicate it may have wider appli-

cability beyond spectroscopy.
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2. An analysis framework for clustering algorithm selection

Quantitatively evaluating a large variety of clustering algorithms can be arduous, and as we

have shown, quantitative evaluation alone ignores many of the aspects that influence how well

an algorithm meets the user’s need for cluster analysis. Our proposed analysis framework aims

to narrow down a potentially large and overwhelming set of candidate clustering algorithms to

a small subset of algorithms with characteristics that align with the user’s needs. These are then

evaluated using quantitative cluster validation metrics to ensure the final selected algorithm

achieves good clustering performance outcomes.

The general workflow consists of generating a set of potentially useful characteristics for

consideration (Stage 1). These are then filtered based on the intended application of the cluster

analysis (Stage 2). This could be considered the user’s needs and includes the specific charac-

teristics of the data being analysed. These filtered characteristics can then be used to evaluate

the range of candidate clustering algorithms and select a subset of algorithms that is likely to

satisfy the purpose of the cluster analysis and the user’s needs (Stage 3). Finally, these algo-

rithms are applied to the intended dataset and a final clustering algorithm is selected based on

quantitative performance measured against cluster validation indices (Stage 4). This process is

summarized in Fig 1 and the detailed steps of each stage are described as follows.

Fig 1. Analysis framework for clustering algorithm selection.

https://doi.org/10.1371/journal.pone.0266369.g001
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2.1 Stage 1—Evaluation characteristics identification

The first step in our analysis framework for selecting cluster algorithms is to identify important

characteristics to assess how well a clustering algorithm is likely to meet the needs of the analy-

sis. They may relate to the expected performance outcomes (how well the algorithm can cor-

rectly cluster the data), or practical considerations such as the ease of implementation or if the

output format of the algorithm meets the purpose of the clustering analysis.

While previous work in developing cluster analysis classification criteria has focused on

mathematically definable criteria such as outer or inner consistent, order invariant, and k-rich
[7], these appear at odds with the common language terms that are used to describe the charac-

teristics of the datasets and clustering algorithms. We have identified three sources of these

evaluation characteristics: the characteristics of the subject data, the characteristics of the clus-

ters contained within the data, and the characteristics of the clustering algorithms. While it

may be tempting to assume a generic or universal list of characteristics could be used, we

believe these would miss characteristics specific to the user’s application. Hence, generation of

these characteristics is an important task in delivering results tailored to the intended analysis

application. Our three proposed sources of characteristics are described as follows.

2.1.1 Dataset characteristics. Dataset characteristics refers to the characteristic of the sub-

ject datasets (without specific consideration for the clusters it contains). These characteristics

are largely dependent on the source of the data. There are numerous frameworks available for

data characterization [23] with potential characteristics including the size of the dataset, the

number of dimensions (or features), the nature of the data (such as whether it is continuous,

nominal, purely numerical, uniformly scaled, or contains missing values), and the presence of

labels.

2.1.2 Cluster characteristics. Cluster characteristics refers to the characteristics of the

clusters present in the dataset (the cluster structure [19]). Understanding these characteristics

typically requires access to labelled data to observe the clusters. This may not always be avail-

able, as the typical application of cluster analysis is to cluster unlabelled data. However, there

are practical approaches to achieve this if labels are unavailable. These include assessing alter-

native datasets of a similar type where labels are available or by applying common clustering

algorithms to the data itself. Characteristics can also be inferred from the intent of the cluster

analysis (e.g., for identification of cancer cells, it can be assumed that there will only be two

clusters of interest: cancerous and non-cancerous).

To identify these cluster characteristics, it is helpful to visualize the data and the clusters.

We utilize principal component analysis (PCA), an unsupervised dimension reduction tech-

nique to reduce the data into its principal components and to visualize the data in two dimen-

sions. An alternative technique is t-distribution stochastic neighbour embedding (t-SNE) [24].

From this two-dimensional visualization of the labelled data, potential observable characteris-

tics include the number of clusters, whether the clusters are non-spherical, varying in density,

if there is the presence of noise or outliers, and if the number of points in each cluster is equal

(balanced).

2.1.3 Clustering algorithm characteristics. The clustering algorithms characteristics are

what are typically discussed when clustering algorithms are compared. These may include

characteristics we have already covered under dataset characteristics and cluster characteristics.
However, addressing those separately does sometimes elicit characteristics not often discussed

when considering the general characteristics of clustering algorithms.

Beyond the dataset characteristics and cluster characteristics, additional clustering algorithm
characteristics often relate to the way the algorithm works, implementation considerations,

and the specifics of its output. The clustering algorithm characteristics can typically be
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identified through reviewing the literature associated with the candidate clustering algorithms

that are being considered for the analysis.

2.2 Stage 2—Matching characteristics to user’s needs

A significant focus for our analysis framework, and deviation from other literature, is the

explicit inclusion of the user’s needs or application needs of the cluster analysis. While this

may be implicit in other studies, it will often garner insufficient attention unless it is made

explicit. Having the evaluation characteristics that we have previously identified enables rigor

to be applied to this process.

The general aim of this stage of the analysis framework is to narrow down the set of evalua-

tion characteristics that we have already identified to a set of those that matter for our specific

application. While some of this may have already been done intuitively when selecting the

datasets characteristics, cluster characteristics and clustering algorithm characteristics, there

are likely some that need further consideration. As an example, computational complexity is

often highlighted as an algorithm characteristic. However, it is not a relevant consideration for

small datasets where computation times are short. To include the computational complexity
characteristic in the selection criteria for those applications may skew the results away from

those best suited to this specific application. Hence, the need to match characteristics to the

specific user’s needs.

In terms of the practical task of matching a set of evaluation characteristics to the specific

needs of the user, this can be as simple as reviewing all the characteristics that have been gener-

ated and, with a strong focus on the intended application of the analysis, eliminating those that

are not of significant importance. If more rigor or fidelity is required in the application of our

analysis framework, weightings could be generated for each evaluation characteristic through

techniques such as the analytical hierarchy process (AHP) [25] which utilizes pairwise

comparisons.

2.3 Stage 3—Qualitative evaluation of candidate algorithms

Once a set of refined characteristics has been selected based on the needs of the application,

these can be used to evaluate a set of candidate clustering algorithms as to how well they suit

the intended application. At the simplest level, this can take the form of a comparative matrix

where candidate clustering algorithms are compared and assessed against the desired charac-

teristics. A simple yes/no evaluation against each category can then be used to guide the analyst

to down-select appropriate algorithms.

If further sophistication is desired, a multi-criteria decision making (MCDM) process

could be used where weightings are applied to each criteria based on the application needs of

the cluster analysis and scores can be given as to how well each candidate algorithm meets

each criteria. However, in practical terms, a simple matrix representation of the capabilities

against the selection criteria should enable the analyst to down-select a subset of several candi-

date clustering algorithms for final quantitative performance evaluation.

2.4 Stage 4—Quantitative evaluation of selected algorithms

Once a reduced subset of the candidate clustering algorithms has been selected, they can be

evaluated using quantitative clustering performance metrics. The use of these quantitative per-

formance metrics enables the final selection of a high performing clustering algorithm that is

well suited to the user’s needs. The results of the quantitative evaluation may show that there

are several algorithms that perform well. Then, the user can review the algorithm characteris-

tics to determine if they have a preference between the algorithms. Alternatively, cluster
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ensemble techniques [26, 27] can be used to merge the results of multiple suitable clustering

algorithms.

The output of the above-described analysis framework is identification of a cluster analysis

algorithm (or several algorithms) that perform well and have characteristics that are well suited

to the intended application of the cluster analysis.

3. Materials and methods

To validate our analysis framework for cluster analysis algorithm selection, we apply it to four

types of datasets with differing characteristics and an associated scenario to add context to the

analysis. The primary focus of the analysis is for application to spectroscopy, but additional

types of data have been evaluated to indicate the extensibility of our analysis framework. The

intent is that the analysis framework will highlight suitable algorithms that meet the needs of

each application.

3.1 Datasets and context

A range of datasets have been selected with distinct and differing characteristics and applica-

tions. Details are as follows:

3.1.1 Homemade detonators explosives spectroscopy datasets. The explosives samples

used in this study are representative samples of the homemade explosive detonators used in

improvised explosive devices (IED) in the Middle East. Detonators are a small explosive device

used to detonate the larger main explosive charge in an IED. The homemade detonators used

in this study consist of three stages of explosives of varying chemistries, from which Fourier

transform infrared (FTIR) spectroscopy measurements were taken. Thus presenting three

spectroscopy data sets for comparison [28]: the Output Energetic dataset, the Transition Ener-
getic dataset, and the First Fire Energetic dataset. The real-world nature of these datasets pres-

ent unique characteristics for evaluation and differentiation of clustering algorithms. The

context of this analysis is to identify relationships between the explosives samples that can

infer relationships between the bombmakers that made them.

3.1.2 Public spectroscopy datasets. The publicly available spectroscopy datasets utilized

in our study include mid-infrared (MIR), near-infrared (NIR), and Fourier transform infrared

(FTIR) spectroscopy and are described as follows: The Coffee datasets [29, 30] from two differ-

ent species, the Fruit dataset [30, 31] from adulterated and non-adulterated strawberry purees,

the Liver datasets [32] annotated according to the majority presence of collagen, glycogen, lip-

ids, or DNA in the cell, the Mangos datasets [33, 34] of four different mango cultivars, the Mar-
zipan datasets [35, 36] of nine marzipan types, the Meats dataset [30, 37] from chicken, pork

and turkey mince, the Olive Oil dataset [30, 38] of olive oils from four geographic regions, and

the Wine (FTIR spectroscopy) dataset [36, 39] of wine from four geographic regions. These

represent the typical spectroscopy datasets used in laboratory studies where the context is to

demonstrate a spectroscopic testing technique can differentiate different materials or families

of materials [4].

3.1.3 Gene expression dataset. The gene expression dataset is part of the RNA-Seq

(HiSeq) PANCAN dataset from the cancer genome atlas pan-cancer analysis project [40]. It

contains a random extraction of gene expressions of patients having different types of tumour

[41]. This represents the typical high dimensional datasets from aspects of biomedical

research.

3.1.4 Classic machine learning (ML) datasets. The classic machine learning datasets are

a group of multivariate datasets commonly used within the machine learning community. The

Wine (multivariate) dataset is used to recognize the wine class given the features like the
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amount of alcohol, magnesium, phenol, colour intensity, etc. [42]. The Iris dataset contains

sepal and petal lengths and widths for three classes of plants [42]. The Breast Cancer dataset

contains ten features extracted from images of benign or malignant breast mass samples [43].

The context of their use (for our demonstration and validation) is for a data scientist learning

classification and cluster analysis techniques.

3.2 Clustering algorithms and their implementation

To validate our analysis framework, we have selected a range of candidate algorithms for

the analysis framework to choose from. There are multiple taxonomies or structures for

classifying clustering algorithms [7, 10, 20, 44]. We have broken the domain into hierarchi-
cal, partition based, density based, graph theoretic and spectral clustering, and model-based
clustering algorithms and have ensured we evaluate at least one candidate clustering algo-

rithm from each class. Where possible, we have also deliberately selected algorithms with

quite differing characteristics to highlight how these may result in differing analysis out-

comes, e.g., the selection of Ward’s method and single linkage variants of agglomerative

hierarchical clustering. While Ward’s method favours spherical clusters, the single linkage

method has a tendency to chain datapoints, or form long, elongated clusters [21]. Hence,

both techniques are evaluated in our study to identify if our analysis framework can exploit

these differences.

The fourteen chosen algorithms for consideration (and their implementations) are as fol-

lows: Hierarchical (Ward’s) [19, 45], Hierarchical (Single Link) [19], BIRCH (Balanced Itera-

tive Reducing and Clustering) [46, 47], k-means [48–50], k-means minibatch [49, 51],

Partitioning around Medoids (PAM) [52], DBSCAN (Density-based Spatial Clustering of

Applications with Noise) [49, 53], OPTICS (Ordering Points to Identify Clustering Structure)

[49, 54], Mean Shift [49, 55], Spectral Clustering [49, 56, 57], Affinity Propagation [49, 57, 58],

and Gaussian Mixture Model [57, 59] were implemented using the scikit-learn Python package

(https://scikit-learn.org/stable/modules/clustering.html). Fuzzy C-Means [60, 61] was imple-

mented using the Fuzzy C-Means Python package [62] (https://git.io/fuzzy-c-means).

HDBSCAN (Hierarchical DBSCAN) [63, 64] was implemented using the hdbscan Python

package [64] (https://github.com/scikit-learn-contrib/hdbscan). The associated references

contain information about the function of the algorithms and their associated characteristics

which are later used in our evaluation process.

Predicting the number of clusters k is a significant challenge for cluster analysis. Potential

techniques for predicting k include the “elbow” method [65], the gap statistic [65], and peak

silhouette score [66]. As this is not the focus of this study, the number of clusters k was speci-

fied from a priori knowledge to achieve comparable results across all algorithms. Algorithms

were run using their default parameters, except when the algorithm had to be tuned to produce

the same number of clusters as other algorithms The detailed configuration and hyperpara-

meter selections are included in the S1 Table.

3.3 Data pre-processing

Before the clustering performance of the algorithms is tested, the raw spectra and multivariate

data were pre-processed. We utilized extended multiplicative signal correction (EMSC) [67]

for spectral data pre-processing which corrects for additive baseline effects, multiplicative scal-

ing effects, and interference effects. The EMSC was implemented for our analysis using

Orange3 data mining toolbox in Python [68]. For the multivariate datasets, the data was scaled

and centred.
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3.4 Quantitative evaluation

For the quantitative evaluation of the subset of clustering algorithms, we utilize an external

cluster validity index in the form of the V-measure [69]. This assumes data classification labels

are available for this evaluation. If data labels are not available, internal cluster validation indi-

ces are used such as the silhouette index [66], the Davies-Bouldin index [70], and the Dunn

index [71]. Arbelaitz et al. present an extensive comparative study of cluster validity indices

[72].

The V-measure external index uses the harmonic mean between the homogeneity (h) and

completeness (c) of clusters. i.e.

Vb ¼
ð1þ bÞ � h � c
ðb � hÞ þ c

: ð1Þ

The formulations of h and c are well described by described by Rosenberg and Hirschberg

[69]. We use a β value of 1 to place equal importance on homogeneity and completeness. The

result is a V-measure (VM) score between 0.0 and 1.0, where 1.0 represents perfectly correct

labelling. The V-measure was calculated in this analysis using the scikit-learn Python package

[73].

4. Results

As a means of validating our analysis framework for identifying suitable clustering algorithms,

we apply it to four differing kinds of datasets and evaluate whether the recommended cluster-

ing algorithms suit the intended analytical application (user’s needs).

4.1 Stage 1 –Evaluation characteristics identification

The first stage of our analytical framework identifies a set of characteristics from which sub-

sets can be selected for the differing applications. These characteristics are drawn from the

datasets, the clusters which they contain and the candidate clustering algorithms.

4.1.1 Observed dataset characteristics. As a starting point for characterization, we con-

sider the general characteristics of the four types of evaluation datasets. For our subject datasets

(as summarised in Table 1), the dominant characteristics that were identified as worthy of con-

sideration were the size of the dataset (number of samples) and the dimensionality.

Dataset size is one of the data’s most fundamental characteristics against which clustering

algorithms are often compared. Spectroscopy is typically used in laboratories or in process

plants where collecting and processing samples can be an expensive process from the perspec-

tive of cost, time, and expertise. Hence, the typical number of samples is small and may require

specific consideration for suitable algorithm selection. This was observed in the explosives

spectroscopy and public spectroscopy datasets.

High dimensionality is another strong trait of spectroscopic data. A large number of mea-

surements are taken at intervals across a spectrum for each sample. Elsewhere, 50 dimensions

is referred to as high dimension data for cluster analysis [74]. However, the number of dimen-

sions (features) for spectroscopy is typically in the hundreds or thousands for each sample.

The number of variables or features within the gene expression RNA-sequence dataset is an

order of magnitude larger again.

Hence, the characteristics we will carry forward for use in our analysis framework are small
datasets and high dimensionality.

4.1.2 Observed cluster characteristics. As with most aspects of machine learning, an

algorithm’s success is often dependent on how well suited it is to the characteristics of specific
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datasets. For clustering algorithms, this includes the characteristics of the clusters contained with

the dataset. To understand these cluster characteristics, principal component analysis (PCA) was

applied, and the first two principal components were plotted to enable a two-dimensional visuali-

zation of the data. True labels of the class of each sample were then applied to see the underlying

clusters for each dataset (as shown in Figs 2–5). We acknowledge that these class labels are often

not available in applications of cluster analysis (unsupervised learning), and we have included sug-

gestions of alternative methods to infer these characters in section 2.1.2.

The three homemade explosives (energetics) datasets (Fig 2) had noticeably different cluster

characteristics to the public spectroscopy datasets (Fig 3) reviewed in our study. These differ-

ences likely stemmed from the different purpose of the data samples. As these explosives spec-

troscopy samples represent real world collections of explosives, they are uneven (unbalanced)

in the number of samples of each type of explosive in a dataset. This distribution represents

the variation in the explosives encountered in real life, including the possibility of a single sam-

ple of one type of explosive being encountered which results in a single sample cluster (or a

single point cluster). It was also observed that there is a varying density within certain clusters

of homemade explosives, including the possibility of outliers. This may be due to homemade

nature of the explosives where ingredients and conditions may vary from batch to batch and

result in inconsistencies.

Table 1. Characteristics of the validation datasets.

Domain Dataset Name Dataset Type No. of Samples No. of Features No. of Classes

Explosives Output Energetic Fourier Transform Infrared Spectroscopy 73 3350 5

Spectroscopy Transition Energetic Fourier Transform Infrared Spectroscopy 69 3350 8

First Fire Energetic Fourier Transform Infrared Spectroscopy 53 3350 7

General (Public) Coffee Mid Infrared Spectroscopy 56 286 2

Spectroscopy Fruit Fourier Transform Infrared Spectroscopy 983 234 2

Liver Fourier Transform Infrared Spectroscopy 731 234 4

Mangos Near Infrared Spectroscopy 186 1157 4

Marzipan Fourier Transform Infrared Spectroscopy 32 1557 9

Meats Fourier Transform Infrared Spectroscopy 120 448 3

Olive Oil Fourier Transform Infrared Spectroscopy 120 570 4

Wine Fourier Transform Infrared Spectroscopy 44 842 4

Medical Gene Expression RNA-Sequence 801 20531 5

Classic Machine Iris Multivariate 150 4 3

Learning Examples Wine Multivariate 178 13 3

Breast Cancer Multivariate 569 30 2

https://doi.org/10.1371/journal.pone.0266369.t001

Fig 2. PC1 vs PC2 PCA score plots of the clusters present in the explosives spectroscopy datasets. A: Output

Energetic; B: Transition Energetic; C: First Fire Energetic. The percentage of original information contained in each

principal component is shown on each axis.

https://doi.org/10.1371/journal.pone.0266369.g002
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In comparison to the homemade explosives spectroscopy datasets, the public spectroscopy

datasets (Fig 3) appear less disparate in the subject matter they are comparing, resulting in less

separation between the majority of clusters. The number of datapoints in each cluster appear

similar (balanced) with no single point clusters. These characteristics likely stem from the pur-

pose of the testing in the public datasets, i.e., a deliberate chemical testing process for research

purposes. The number of clusters or classes within each dataset was relatively small, with Mar-

zipan containing the most at nine clusters. The density of clusters does vary in many of the

datasets, both within a cluster and between clusters, and there are some non-spherical clusters.

There does not appear to be as many outliers in the public spectroscopy datasets when com-

pared to the homemade explosives dataset, but noise can be observed in the form of scattering

or spread in some of the data points.

The gene expression dataset shown in Fig 4 does not present any strong characteristics

within the clusters with mostly spherical clusters of equal size (balanced) and minor variations

in density and outliers.

Fig 3. PC1 vs PC2 PCA score plots of the clusters present in the public spectroscopy datasets. A: Coffee; B: Fruit; C:

Liver; D: Mangos; E: Marzipan; F: Meats; G: Olive Oil; H: Wine. The percentage of original information contained in

each principal component is shown on each axis.

https://doi.org/10.1371/journal.pone.0266369.g003

Fig 4. PC1 vs PC2 PCA score plots of the clusters present in the gene expression dataset. The percentage of original

information contained in each principal component is shown on each axis.

https://doi.org/10.1371/journal.pone.0266369.g004
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The classic ML datasets shown in Fig 5 do not present many strong characteristics within

the balanced clusters. The Iris dataset does present elliptical clusters and the breast cancer

dataset presents minor variations in density.

In discussing the cluster characteristics of the multiple types of datasets, there were com-

mon characteristics that were repeatedly observed, namely non-spherical clusters, varying den-
sity within clusters¸ unbalanced clusters, single point clusters, and noise and outliers. These are

the characteristics that we will use in our implementation of our analysis framework for select-

ing clustering algorithms for the datasets considered here.

4.1.3 Clustering algorithm characteristics. In this section we review the candidate algo-

rithms and capture characteristics for use in our evaluation. Clustering algorithms all generally

work to minimize the within-cluster distances or maximize the between-cluster distances. Each

clustering algorithm has a mechanism through which the clusters are generated. These mecha-

nisms impart characteristics on the algorithm as to how well it will work on data with varying

characteristics.

In reviewing the candidate clustering algorithms listed in the Materials and method section

and their characteristics in the associated references, commonly reoccurring characteristics

have been identified. These include high dimensional data, non-spherical shaped clusters, vari-
able cluster density, robustness to outliers and noise, multi-modal/hierarchical outputs, the num-
ber of parameters or hyperparameters, deterministic, and its time complexity or efficiency. Many

of these have been already identified when considering the dataset characteristics and the clus-

ter characteristics. The additional remaining characteristics that have been captured are now

described, including how they can influence algorithm selection.

Multi-modal refers to whether the output of the clustering algorithm produces multiple sets

of clusterings (multi-modal) or whether it produces a single set of clustering. Multi-modal

algorithms can typically generate a hierarchical output.

The number of parameters or hyperparameters required for implementing an algorithm is

of practical consideration. The simplest and most common parameter is the number of clus-

ters (k) for an algorithm to generate. Other common parameters for clustering algorithms

include the minimum number of points in a cluster (which often influences outlier removal),

or hyperparameters relating to minimum densities, distances, or bandwidths. These then influ-

ence the resulting number of clusters. When the algorithm is intended for use in an automated

process or minimal time is available for implementing hyperparameter tuning, then algo-

rithms with fewest parameters may be preferred due to its ease of implementation.

Deterministic refers to whether the results of each execution of a clustering algorithm are

always the same (deterministic) or if a random factor can cause variations in the outcomes and

can occasionally deliver poor results. This may require manual intervention or re-running of

the algorithm.

Fig 5. PC1 vs PC2 PCA score plots of the clusters present in the classic ML datasets. A: Iris; B: Wine; C: Breast

Cancer. The percentage of original information contained in each principal component is shown on each axis.

https://doi.org/10.1371/journal.pone.0266369.g005
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Often referred to as time complexity [22], the efficiency of an algorithm affects how long an

algorithm takes to execute and the computational and memory requirements. These computa-

tional complexities are typically described using the ‘Big O’ notation which captures the order

of magnitude in the number of steps to complete the clustering.

Through consideration of the characteristics of the datasets, the clusters that they contain,

and the clustering algorithms themselves, we have now developed a set of characteristics for

down-selection and use in our evaluation.

4.2 Stage 2 –Selection of evaluation characteristics for each application

From the characteristics that we have identified in Stage 1, we will now select those that are

most relevant for our specific applications. This is where the differences in the user’s needs

and desirable characteristics between each of our four cluster analysis applications will be

captured and then, subsequently, used in assessing the candidate clustering algorithms in

Stage 3. The characteristics we identified for consideration from the dataset characteristics

were small datasets, and high dimensionality. The characteristics we identified for consider-

ation from the cluster characteristics were non-spherical clusters, varying density within clus-
ters¸ uneven cluster sizes, single point clusters, and noise and outliers. The additional

characteristics we identified for consideration from the clustering algorithms multi-modal/
hierarchical outputs, the number of parameters, deterministic, and efficiency. We now consider

the context of use and expand on the application scenarios to assist in deciding which of these

are relevant for each application.

4.2.1 Matching desirable characteristics for homemade explosives spectroscopy analy-

sis. Our analysis of homemade explosive samples utilises spectroscopy data containing real-

world influences. These impart unique characteristics onto the dataset and the requirements

for the analysis.

From reviewing the general characteristics of the homemade explosives spectroscopy data,

small sample size and high dimensionality are clearly relevant.

From reviewing the labelled clusters evident in the homemade explosives spectroscopy

datasets, key characteristics were non-spherical clusters (ellipsoidal) of varying cluster density,

uneven cluster size, single point clusters, and occasional outliers. Single point clusters are

important for this application for when new explosive types are encountered as bombmakers

recipes evolve over time. This is somewhat challenging as these points may be considered out-

liers or noise by some algorithms. Hence, robust to noise and outliers can no longer be a con-

sideration if single point clusters are to be included.

Having a multi-modal (hierarchical) output is especially important for the application of

matching homemade explosive samples as the hierarchical output may be used to infer com-

monalities between bombmakers and potential linkages within a bombmaker network.

A secondary consideration is a desire to create an automated process to regularly reanalyse

datasets as more homemade explosive samples are obtained. For this, having deterministic

results is attractive as an analysts would not be available to observe intermediate results and

manually detect if the random starting points of an algorithm lead to a clear non-optimal local

minima and poor results. Additionally, having consistent results between applications would

be desirable. Similarly, the use of a minimal number of hyperparameters is desirable if the pro-

cess is to be automated.

The computational efficiency of an algorithm is less of a concern as these are relatively

small datasets, so computation time is low.

From this review, the important characteristics to be used in the evaluation are small data-

sets, high dimensions, non-spherical clusters, variable cluster density, single point clusters,
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uneven cluster size, and multi-modal output, with minor consideration given to the number of

parameters and deterministic characteristics.

4.2.2 Matching desirable characteristics for public dataset spectroscopy analysis. Clus-

ter analysis of spectroscopy (as seen in the public spectroscopy datasets we evaluate) is often

applied in controlled laboratory setting for food, agriculture and biomedical studies [4]. We

now consider the characteristics that are important for this application and the associated

user’s needs.

From reviewing the general characteristics of the public spectroscopy datasets, small sample

size and high dimensionality were clearly evident (Table 1).

From reviewing the labelled clusters evident in the public spectroscopy datasets, key charac-

teristics were non-spherical clusters of varying cluster density, and occasional outliers and

noise. Due to the controlled nature of these experimental datasets, they typically contain equal

sized clusters with no single point clusters.

Considering the purpose of the analysis and the user’s needs, the multi-modal (hierarchical)

cluster analysis capability is important as it enables the results to be related back to the hierar-

chical nature of the samples (e.g. biological species, genus and family) [4]. However, the num-

ber of parameters and the deterministic characteristics of the algorithms are typically not as

important as they are unlikely to be performed as part of an automated process. They are more

likely to be performed by a researcher or analyst who can tune the parameters, observe the

results, and mitigate against poor results due to random starting points for non-deterministic

algorithms. Once again, the size of the typical spectroscopy datasets mean computation time is

low, hence, computational efficiency is not an important consideration.

From this review, the important characteristics to be used in the evaluation are small data-

sets, high dimensions, non-spherical clusters, variable cluster density, and multi-modal output.

4.2.3 Matching desirable characteristics for gene expression dataset analysis. Cluster

analysis of gene expression datasets presented two core, interrelated characteristics that stem

from the nature of the data. The data is extremely high dimensional. This means that algo-

rithms specifically designed for high dimensional data may be attractive. An outcome of this

high dimensional data is that the volume of data needing to be processed is large. Hence, effi-

cient algorithms will be attractive to enable analysis within an acceptable computation time

without the need for specialist hardware or supercomputer capabilities. The nature of the clus-

ters did not present any strong characteristics as the clusters are balanced, spherical, and of

similar density with minimal noise or outliers. The analysis is likely to be performed by a

researcher or experienced analyst, so the number of parameters and a deterministic nature are

less of a concern. A hierarchical output may be of value depending on the nature of the geno-

mic research being conducted.

From this review, the important characteristics to be used in the evaluation are high dimen-

sions and efficiency.

4.2.4 Matching desirable characteristics for classic ML dataset analysis. The classic ML

datasets present an interesting case. For researchers and practitioners to acquire skills in

machine learning, datasets are required for learning to work with data, implement code and

algorithms, and understand the mathematics and associated phenomena behind it. These clas-

sic ML datasets have rose to prominence for this application due to their well-behaved and

somewhat simplistic nature and general lack of strong characteristics. I.e., they are of moderate

size and low dimensionality which makes them easy to apply and they are typically well

curated, so they lack noise, outliers, and contain balanced clusters. They are well-sized, well-

balanced, and easily understood datasets.

While the datasets and associated clusters may lack strong characteristics, there are some

characteristics that can be implied from how or who is using these datasets. Given that these
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are datasets are used as a learning and demonstration tool, a primary focus is that they are easy

to implement. Hence, a desirable characteristic is that they contain a low number of hyper-

parameters to tune (preferably only requiring k).

The characteristics that we have extracted from the four datasets and their scenarios are

summarised in Table 2.

4.3 Stage 3 –Qualitative evaluation of candidate clustering algorithms for

each application

We now utilise the characteristics we have identified (stage 1) and selected (stage 2) in our

analysis framework to evaluate which of the candidate clustering algorithms suits our needs.

This is effectively a qualitative process to reduce the large list of candidate clustering algo-

rithms to a select few that are most likely to suit our needs (prior to final evaluation of those

selected clustering algorithms based on quantitative clustering performance metrics).

Our approach uses a simple comparative matrix where candidate clustering algorithms are

compared and assessed against the desired characteristics. A simple yes/no evaluation against

each category can then be used to guide the analyst to down-select appropriate algorithms.

As a starting point for this evaluation, a comparative matrix has been generated for the eval-

uation characteristics we had previously identified, and the literature associated with the can-

didate clustering algorithms. This is shown in Table 3. This does not yet take into account the

needs of our specific application. Note that there are some gaps in the information available for
certain algorithms against some criteria. If this missing information was considered essential in
the decision-making process, further research could be conducted to assess those algorithms.

This information can now be used for evaluation in matching algorithms to the characteris-

tic needed of each type of dataset and scenario.

4.3.1 Matching desirable characteristics for homemade explosives spectroscopy analy-

sis. The characteristics identified for the evaluation of the homemade explosives (Table 2) are

now compared against the candidate clustering algorithms characteristics (Table 3) to enable

down-selection of clustering algorithms that best meet the desired characteristics. There was

no universal match found against all characteristics, hence, options that meet the majority of

characteristic were selected. The clustering techniques down-selected for quantitative perfor-

mance evaluation on our explosives spectroscopy datasets were hierarchical (Ward’s), hierar-

chical (single link), HDBSCAN, and affinity propagation.

Table 2. Characteristics applicable to the validation datasets.

Dataset Characteristics Cluster Characteristics Clustering Algorithm Characteristics

Dataset Type Small

Datasets

High

dimensions

Non-

Spherical

shape

Variable

Cluster

Density

Single

Point

Cluster

Uneven

Cluster

Size

Robust to

Noise and

Outliers

Multi-modal

(hierarchical)

No. of

parameters/

hyperparameters

Deterministic Efficiency

(O)

Explosives

Spectroscopy

Datasets

X X X X X X X X X

General

Spectroscopy

Datasets

X X X X X X

Gene

Expression

Dataset

X X

Classic ML

Datasets

X

https://doi.org/10.1371/journal.pone.0266369.t002
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The hierarchical clustering algorithms appear well suited to this application due to their

ability to work with small datasets, single point clusters, uneven cluster size, and produce the

hierarchical output that is important for our application. Potential shortcoming could eventu-

ate from the Ward’s methods limited ability to model arbitrary shaped clusters and the Single

Link methods limitations on varying density clusters.

Table 3. Comparative matrix of identified characteristics vs. candidate clustering algorithms.

Dataset Characteristics Cluster Characteristics Clustering Algorithm Characteristics

Clustering

Algorithm

Small

Datasets

High

dimensions

Non-

Spherical

shape

Variable

Cluster

Density

Single

Point

Cluster

Uneven

Cluster

Size

Robust to

Noise and

Outliers

Multi-modal

(hierarchical)

No. of parameters/

hyperparameters

Deterministic Efficiency

(O)

Hierarchical

(Ward’s) [19,

45]

Y N N Y Y Y Y Y k Y n2log n

Hierarchical

(Single Link)

[19]

Y N Y N Y Y N Y k Y n2log n

BIRCH [46,

47]

Y Y N Y Y Y Y k+2 n

k-means [48–

50]

Y N N N Y N N N k N nkdi

k-means

minibatch

[51] [49]

N Y N N Y N N N k+1 N <nkdi

PAM [52] Y N N N Y Y Y N k N n2k2

Fuzzy

C-Means [60,

61]

Y N N Y N N N k N nk2di

DBSCAN [49,

53]

Y N Y N Y# Y Y N 2 Y� n log n

HDBSCAN

[63, 64]

Y N Y Y Y# Y Y+ 2 Y n2

OPTICS [49,

54]

Y N Y Y N Y Y Y+ 2 Y� n

Mean Shift

[49, 55]

Y N Y N Y Y Y Y+ 1 n2

Spectral

Clustering

[49, 56, 57]

N Y Y Y N N N k+1 N n3

Affinity

Propagation

[49, 57, 58]

Y Y Y N Y Y N Y+ 2 n2i

Gaussian

Mixture

Model [57,

59]

Y N Y Y Y Y Y N k N nkd3

n = the number of objects to be clustered.

k = the number of clusters.

d = the number of dimensions.

i = the number of iterations to convergence.

�Results can change based on the order the data is provided.

+Produces an object such as a minimum spanning tree from which hierarchy can be inferred.

#Enabling single point clustering removes outlier/noise detection capabilities.

https://doi.org/10.1371/journal.pone.0266369.t003
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HDBSCAN assess well on non-spherical clusters of variable density and can produce a hier-

archical output, although it has a limitation of not producing single point clusters and infor-

mation about its performance on uneven cluster sizes was not readily available.

Affinity propagation clustering is the only selected algorithm explicitly well suited to high

dimensional data. However, it is not suited to clusters of varying density and having multiple

parameters to tune may make its implementation challenging.

All of the selected algorithms include potential shortcoming for application to the explo-

sives datasets. Hence quantitative clustering performance metrics will be used for final selec-

tion of algorithms from this subset (Stage 4).

4.3.2 Matching desirable characteristics for public dataset spectroscopy analysis. The

characteristics identified for the evaluation of for the public spectroscopy datasets (Table 2) are

now compared against the candidate clustering algorithm characteristics in (Table 3) to enable

down-selection of clustering algorithms that best meet the desired characteristics.

In reviewing these characteristics against the clustering algorithm characteristics, the clus-

tering techniques down-selected for quantitative performance evaluation on our explosives

spectroscopy datasets were hierarchical (Ward’s), HDBSCAN, OPTICS, and gaussian mixture

model clustering.

The hierarchical (Ward’s) clustering algorithm appear well suited due to their ability to

work with small datasets, varying density cluster, is robust to outliers, and produces the hierar-

chical output that is important for our application. HDBSCAN and OPTICS also assess well

against these criteria, plus they are well suited to non-spherical shaped clusters and can pro-

duce a hierarchical output.

Finally, the gaussian mixture model presents many attractive characteristics. However, it

lacks the important ability to create a hierarchical output. Hence, it would require exceptional

quantitative clustering performance to offset that limitation. This quantitative clustering per-

formance is evaluated in Stage 4.

4.3.3 Matching desirable characteristics for gene expression dataset analysis. The char-

acteristics identified for the evaluation of for the gene expression dataset (Table 2) are now

compared against the candidate clustering algorithm characteristics in (Table 3) to enable

down-selection of clustering algorithms that best meet the desired characteristics.

In reviewing these characteristics against the clustering algorithm characteristics, there

were four algorithms noted as suitable for high dimension data. However, of those, spectral

clustering and affinity propagation were noted for high computational complexity (efficiency

(O) above n2) and would be unsuitable for our application to the large RNA sequence datasets.

Hence, the BIRCH and k-means minibatch were selected as they are suited to high dimen-

sional data and very efficient.

4.3.4 Matching desirable characteristics for classic ML dataset analysis. The important

characteristics to be used in the evaluation of algorithms for the classic ML datasets was simply

minimizing number of parameters (Table 2). This is compared against the candidate clustering

algorithm characteristics in (Table 3) to enable down-selection of clustering algorithms that

best meet the desired characteristic.

Limiting the selection to the simplest parameter selection (k) results in the hierarchical

(Ward’s and single link), k-means, PAM, fuzzy c-means and gaussian mixture model being

selected.

4.4 Stage 4 –Quantitative evaluation of clustering algorithms

We have so far highlighted characteristics of clustering algorithms that may make them attrac-

tive to the user’s needs and used these characteristics to down-select a subset of clustering
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algorithms that are well suited to the needs of the analysis. In this section, we quantify the per-

formance of these algorithms on the application datasets. Once the performance of the algo-

rithms is understood, trade-offs can be considered if needed between attractive characteristics

and outright performance of the algorithms for our considered application.

In order to validate of our analysis framework, we also perform quantitative evaluation on

all of the non-selected candidate clustering algorithms. This will enable comparison between

the subset of algorithms that were down-selected as well suited to our application, against

those that were not selected. When our analysis framework is being applied in other situations,

the intention is to only evaluate the performance of the selected algorithms, hence removing

the need for arduous evaluation of a wide range of algorithms.

The clustering algorithms were applied to the four types of datasets (fifteen datasets total)

and the results were evaluated using the V-measure external cluster validation index. The

results are shown in Table 4, with a total score for each type of dataset presented in bold to

enable easier comparisons. The highlighting shows the subset of clustering algorithms down-

selected through the qualitative evaluation process (Stage 3).

4.5 Evaluation of the framework for clustering algorithm selection

We now consider the success of the analysis framework in selecting suitable algorithms that

are high performing and meet the needs of the analysis for each of the datasets.

4.5.1 Homemade explosives spectroscopy datasets results. The results (highlighted in

green in Table 4) for the three explosives spectroscopy datasets show that we had correctly

selected multiple high performing algorithms with the Affinity Propagation algorithms perfor-

mance being the only exception. Hierarchical (Ward’s) produced the best results from the

Ward’s and Single link hierarchical clustering algorithms. HDBSCAN produced the best over-

all clustering performance but is unable to model single point clusters. Thus, depending on

priorities, Hierarchical (Ward’s) or HDBSCAN algorithms are recommended for cluster anal-

ysis of homemade explosives spectroscopy.

There were other algorithms such as k-means, PAM, BIRCH and gaussian mixture model

deliver strong clustering results that were not chosen by our analysis framework. These were

not selected due to their mismatch to the user’s needs of the cluster analysis. I.e., the k-means

variants, PAM and gaussian mixture model lack a hierarchical output (which is important for

our analytical application), and the higher number of parameters required for the BIRCH algo-

rithm that would make future automated implementations challenging. This highlights the

value of our analysis framework for algorithm selection when compared to selection algo-

rithms purely based on quantitative performance-based metrics.

4.5.2 Public spectroscopy datasets results. The results (highlighted in yellow in Table 4)

for the eight public spectroscopy datasets show that we had correctly selected multiple high

performing algorithms. Hierarchical (Ward’s), HDBSCAN, OPTICS and gaussian mixture

model all performed well. Given the highest performance of hierarchical (Ward’s) and the

hierarchical output that is well matched to the typical user’s needs when clustering spectros-

copy datasets, hierarchical clustering using Ward’s method is our recommended clustering

algorithm.

One observation of note is that unlike for the homemade explosives spectroscopy dataset,

our analysis framework did not down-select the hierarchical single-linkage method for the

public spectroscopy datasets. This choice was vindicated by the poor resulting clustering per-

formance of Hierarchical (Single) algorithm as shown in Table 4. This is likely due to the lack

of the elongated chain like clusters that single link hierarchical clustering is best suited to. This

indicates correct function of our analysis framework, and that the approach used in our
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analysis framework is suitable for identifying likely high performing clustering algorithms

given a specific user’s scenario.

A second observation of note was that while k-means clustering algorithm was the second-

best performing algorithm for each set of spectroscopy data, it was not recommended by the

analysis framework. This is primarily due to its lack of a hierarchical output, and hence, does

not match the typical user’s needs where the public spectroscopy datasets commonly analyse

biological materials that contain a taxonomical hierarchy [4].

4.5.3 Gene expression dataset results. The results (highlighted in salmon colour in

Table 4) for the gene expression dataset show that we had correctly selected two high perform-

ing algorithms for analysis of the gene expression data. BIRCH and k-means minibatch both

delivered very high v-measure scores and were very fast to compute. The alternative tech-

niques suited to high dimensional data (affinity propagation and spectral clustering) were

computationally and memory intensive and hence, were unsuited to this application. Hence,

the fact that they were not selected contributes to the validation of our analysis framework.

4.5.4 Classic ML datasets results. Despite having limited guiding characteristics for

selecting algorithms for the classic ML datasets, the results (highlighted in blue in Table 4)

show that multiple high performing algorithms were selected, including the highest perform-

ing gaussian mixture model algorithm. The only selected algorithm to perform poorly was the

single link method of hierarchical clustering. This algorithm is best suited to elongated chain

like clusters which were not predominant within these datasets.

5. Conclusions

We address the challenging task of selecting a clustering algorithm from the many options

available. To achieve this, we have presented an analysis framework for selecting appropriate

clustering algorithms for specific use cases, where consideration can be made for the intended

application of the analysis and the associated desirable characteristics. In contrast to other lit-

erature which predominantly focuses on the characteristics of the algorithm, our process con-

siders the characteristics of the data, the characteristics of the clusters it contains, and the

characteristics of the clustering algorithm and compares these with the needs of the user (the

purpose of the cluster analysis).

To validate our analysis framework for selecting clustering algorithms, we applied it to four

different types of datasets with four differing analytical applications. Our analysis framework,

when applied to each of these challenges, recommended differing subsets of clustering algo-

rithms for final quantitative performance evaluation. The recommended clustering algorithms

were confirmed to contain the top performing algorithms through quantitative performance

indices and the algorithms characteristics were well suited the intended context of the analysis

(the user’s needs).

For cluster analysis of homemade explosives spectroscopy datasets, we considered the char-

acteristics of small datasets, high dimensions, non-spherical clusters, variable cluster density,

single point clusters, uneven cluster size, and multi-modal (hierarchical) output, with minor

consideration given to the number of parameters and deterministic characteristics for if the

analysis process was to be automated. This resulted in the agglomerative hierarchical clustering

(Ward’s method) and HDBSCAN (Hierarchical Density-based Spatial Clustering of Applica-

tions with Noise) being assessed as the most suitable clustering algorithms for homemade

explosives spectroscopy datasets by delivering high clustering performance while meeting the

user’s needs of the cluster analysis.

For cluster analysis of the public spectroscopy datasets, we considered the characteristics of

small datasets, high dimensions, non-spherical clusters, variable cluster density, robust to
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noise and outliers, and multi-modal (hierarchical) output. This resulted in the agglomerative

hierarchical clustering (Ward’s method) being assessed as the most suitable clustering algo-

rithms for public spectroscopy datasets by delivering high clustering performance while meet-

ing the user’s needs of the cluster analysis.

For the gene expression dataset, we considered the characteristics of high dimensionality

and efficiency in selection of suitable clustering algorithms. Our analysis framework recom-

mended the BIRCH and k-means minibatch algorithms which resulted in fast computation on

the huge dataset (meeting the user’s needs) and highly accurate clustering outcomes.

For cluster analysis of the classic machine learning datasets, we considered the characteris-

tic of the number of parameters/hyperparameters. This resulted in a selection of multiple high

performing algorithms that require the value of k (number of clusters) as their only parameter,

hence meeting the example user’s needs of simple to implement algorithms.

Cumulatively, these findings indicate that our analysis framework is a valid means of select-

ing clustering algorithms that are well suited to the user’s needs of cluster analysis. The pri-

mary focus in development and evaluation of the analysis framework has been for applications

to spectroscopy. The validation of the methodology against eleven varying spectroscopy data-

sets demonstrates its suitability for this application. However, the successful evaluation of addi-

tional types of data (gene expression data and classic machine learning datasets) indicates the

analysis framework may be extensible to other clustering applications.

Supporting information

S1 Table. Hyperparameters for each clustering algorithm and dataset.
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