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Abstract: We develop a deep learning refined kinematic model for accurately assessing upper limb
joint angles using a single Kinect v2 sensor. We train a long short-term memory recurrent neural
network using a supervised machine learning architecture to compensate for the systematic error
of the Kinect kinematic model, taking a marker-based three-dimensional motion capture system
(3DMC) as the golden standard. A series of upper limb functional task experiments were conducted,
namely hand to the contralateral shoulder, hand to mouth or drinking, combing hair, and hand to
back pocket. Our deep learning-based model significantly improves the performance of a single
Kinect v2 sensor for all investigated upper limb joint angles across all functional tasks. Using a single
Kinect v2 sensor, our deep learning-based model could measure shoulder and elbow flexion/extension
waveforms with mean CMCs >0.93 for all tasks, shoulder adduction/abduction, and internal/external
rotation waveforms with mean CMCs >0.8 for most of the tasks. The mean deviations of angles at the
point of target achieved and range of motion are under 5◦ for all investigated joint angles during all
functional tasks. Compared with the 3DMC, our presented system is easier to operate and needs less
laboratory space.

Keywords: upper limb functional assessment; Kinect; deep learning; recurrent neural network;
kinematics

1. Introduction

Three dimensional (3D) kinematic analysis of upper limb functional movement has been widely
conducted in many areas. Upper limb kinematic analysis has been employed in both theoretical studies
such as the underlying theory of neuromusculoskeletal system [1–3] and practical concerns in the
clinical assessment of motion functions, rehabilitation training [4], ergonomics studies [5,6], and so
forth. Marker-based 3D motion capture systems (3DMC) [7] have been widely employed in quantitative
measurements of upper limb functional tasks. In such a system, 3D motion data is obtained based on
passive or active markers attached to the anatomical landmarks of participants. These marker-based
systems have been confirmed to be valid and reliable in assessing upper limb kinematics [3,8]. However,
these systems are not practical for applications in small clinics or home-based assessment, given the
expensive hardware cost, time-consuming experiment conduction as well as the strict requirements for
lab space and trained technician.

Markerless motion capture system could be a possible alternative for upper limb functional
assessment [9], especially after the introduction of a commercially available, low-cost, and portable
device named Kinect (Microsoft, Redmond, WA, USA). The second iteration of the Kinect (denoted as
Kinect v2), is capable of tracking real-time 3D motions with its depth image sensor [10] and its human
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pose estimation algorithm [11]. The Kinect SDK v2.0 features skeletal tracking with 3D locations of
25 joints for each skeleton [12]. Kinect v2 has been employed in gait analysis [13–15], balance and
postural assessment [16,17], foot position tracking [18], gait rehabilitation training [19,20], upper limb
functional assessment or rehabilitation training [4,21–25].

Several studies have assessed the agreement between Kinect sensor and 3DMC. Kinect sensor
demonstrated good reliability in assessing temporal-spatial parameters such as timing, velocity,
or movement distance of functional tasks for both healthy subjects and people with physical
disorders [4,13,21,22,26,27]. Kinect also has considerable good reliability in kinematics assessment
such as upper limb joint angle trajectories [22,28] and the respective range of motions [28], trunk flexion
angles during the standing and dynamic balance test [16], trunk, hip, and knee kinematics during
squatting and jumping tasks [29] or foot postural index assessment [30].

Kinect sensor has been employed in various rehabilitation scenarios for people with motor
disabilities [23,25]. A Kinect-based rehabilitation system improved exercise performance for adults
with motor impairment during the intervention phase [23]. An RGBD-based interactive system using
the Kinect sensor provided a gamified interface designed to replace physiotherapists in the supervision
of upper limb exercises. The interactive system is able to provide real-time feedback and to create
interactive, simple to use and fun environments to patients. The system improves the engagement of
the participants and the effectiveness of the exercises [25].

Nevertheless, Kinect is limited by its inherent inaccuracy. Although the system has good accuracy
in measuring temporal-spatial parameters such as the timing of movements [4], velocity, or distance
measurement during movement [26], gross spatial characteristics of clinically relevant movements
such as vertical oscillation during treadmill running [31], it lacks enough accuracy in small movements,
such as hand clasping [4].

The Kinect system captures RGBD data with a time-of-flight sensor [10]. Such RGBD data is a 2D
image with depth information for each pixel, which is not a complete 3D model. Intuitively speaking,
the RGBD data can be seen as a “relieve”, or a “2.5D model”. Skeletons calculated from such RGBD
data suffer from certain systematic errors due to the inaccurate depth measurement. The Kinect system
is highly task-dependent and plane-dependent in terms of kinematic measurement accuracy [28]. Due
to the “relieve” feature, the Kinect system measures more accurate joint angles on the sagittal plane
and coronal plane than on the transverse plane [28,32,33].

The performance of the Kinect system is highly influenced by the occlusion of body parts. The
Kinect camera cannot directly assess necessary anatomical joint centers if another body part is in
between with the segment and the camera. The Kinect system is mostly placed in front of the human
subjects. In this scenario, assessing upper limb functional tasks is more challenging than conducting
gait analysis for the Kinect system due to the high probability of upper limb occlusion when performing
upper body activities such as drinking or combing hair [34].

In comparison with the joint angles measured with 3DMC systems, those angles calculated via the
Kinect system generally has unacceptable accuracy in clinical assessment. The performance of the Kinect
system is normally demonstrated with the root-mean-squared error (RMSE) between the investigated
parameter via the Kinect system and the 3DMC system. The RMSE of the Kinect based system is
around 10◦ in measuring shoulder flexion/extension, 10◦ to 15◦ in measuring adduction/abduction, or
approximately 15◦ to 30◦ in measuring shoulder axial rotation during computer-using task [33]. For
people with Parkinson’s disease during multiple reaching tasks and tasks from the Unified Parkinson’s
Disease Rating Scale, the mean bias for shoulder flexion/extension, shoulder adduction/abduction
and elbow flexion/extension angles between the Kinect and 3DMC system are 10.44◦, 8.68◦ and 16.93◦

for healthy subjects and 17.07◦, 10.26◦, and 21.66◦ for patients [4]. A study of five gross upper body
exercises from the GRASP manual for stroke rehabilitation [35] revealed that the Kinect v2 is mostly
inadequate for correctly assessing shoulder joint kinematics during stroke rehabilitation exercises. The
movements of the shoulder joints are used as indicators for incorrect limb movements. Unacceptable
jitter and tracking occurred when the depth data surrounding the joint is partial or completely occluded.
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Various researches have been conducted to improve the accuracy of Kinect v2 in kinematics
measurement. One type of solution is model fitting algorithms. Xu et al. [33] employed a linear
regression algorithm between each Kinect-based shoulder joint angle and its 3DMC counterpart. Given
the nonlinear relationship between the upper limb joint angle trajectories calculated via Kinect and the
3DMC system, linear regression algorithms have limited ability to improve the kinematic measurement
accuracy. Only shoulder adduction/abduction angles are significantly improved after employed the
linear regression algorithms and the RMSEs between the Kinect sensor and the 3DMC system is around
8.1◦ and 10.1◦ for the right and left shoulders. Kim et al. [36] proposed a post-processing method,
which is a combination of two deep recurrent neural networks (RNN) and a classic Kalman filter, to
correct unnatural tracking movements. This post-processing method only improves the naturalness of
the captured joint trajectories. The accuracy is insufficient for clinical assessment.

Another type of solution is applying marker-tracking technology with the Kinect system. Timmi
et al. [37] developed a novel tracking method using Kinect v2 by employing custom-made colored
markers and computer vision techniques. The markers with diameters of 38 mm were painted using
matte acrylic paints. Magenta, green, and blue paints were chosen for hip, knee, and ankle joint
markers, respectively. The centers of the three markers should be placed on a straight line. They
evaluated the method in comparison with lower limb kinematics over a range of gait speeds and found
generally good results. However, the actual use case for this kind of system appears limited due to two
factors: (1) The marker-tracking Kinect system could not solve the occlusion issue when performing
upper limb functional task; (2) The introduction of markers into Kinect system bring the reliability
issue from incorrect marker placement and complicated experimental calibration procedures. Thus,
the method is unlikely to provide significant benefits over the skeleton tracker algorithm [34].

Using multi-Kinect and fusion systems might be another solution to improve the assessment
accuracy of the Kinect system as it can reduce body occlusion and extend the field of view. However,
these systems show apparent limitations such as: (1) It is difficult to set up and calibrate multiple
depth cameras; (2) One Kinect is likely to be impacted by another Kinect sensor. For this matter, the
evidence of improving accuracy is not strong [38].

Given the pros and cons of the existing algorithms, as shown above, we develop a novel deep
learning refined kinematic model using a single Kinect v2 sensor for accurately assessing 3D upper limb
joint angles. We form a kinematic model to calculate upper limb joint angles from Kinect. For a specific
task, we construct a deep neural network to compensate for the systematic error on those joint angles.
Such a neural network is trained using joint angles via the Kinect sensor as the input and those 3DMC
counterparts as the target. For the 3DMC, a UWA kinematic model [39] is used to calculate 3D upper
limb kinematics based on the 3D positions of reflective markers attached on the subjects. A deep
neural network is a favorable tool for non-linear fitting, especially when the shape of the underlying
model is unknown [40]. The recurrent neural network (RNN) architecture is designed specifically for
time series data, which conforms to our joint angel data very well. Long short-term memory (LSTM) is
the cutting-edge technology of RNN [41]. We employ a three-layer LSTM network in our method. See
Figure 1 for a brief pipeline of our method.

A series of upper limb functional task experiments were conducted to evaluate the effectiveness
of our developed deep learning-based model. The tasks represent a variety of active daily functional
activities [42]. The hand to contra lateral shoulder task represents activities such as washing axilla
or zip up a jacket. The hand to mouth task represents eating or reaching the face. The combing hair
task represents washing/combing hair or reaching the back of the head. The hand to back pocket task
represents reaching the back and perineal care.

3D positions of the reflective markers according to the UWA marker set are recorded using a
3DMC system. The joint centers extracted from the Kinect skeleton are recorded and a single Kinect v2
sensor. We use a leave-one subject-out cross-validation protocol to evaluate the performance of our deep
learning refined kinematic model. The coefficient of multiple correlation (CMC) and root-mean-squared
error (RMSE) are used to evaluate the performance of the deep learning refined kinematic model in
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assessing upper limb angular waveforms in comparison with the kinematic model for Kinect sensor.
Range of motion (ROM) and angles at the point of target achieved (PTA) are extracted to represent key
kinematic parameters. ROM and PTA via both our deep learning refined kinematic model and the
kinematic model for Kinect sensor are statistically compared with those via the 3DMC system. The
absolute error and Bland-Altman plot are analyzed for the ROM and PTA via the deep learning refined
kinematic model as well as the kinematic model for the Kinect sensor in comparison with those via the
3DMC system.
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Figure 1. The architecture of our deep learning refined kinematic model for Kinect v2.

Our deep learning refined kinematic model significantly improves the performance of upper limb
kinematic assessment using a single Kinect v2 sensor for all investigated upper limb joint angles across
all functional tasks. At the same time, such an assessment system is also easy to calibrate and operate.
The requirements for laboratory space and specialties are easy to be fulfilled for a single Kinect-based
system. The system has great potential to be an alternative of the 3DMC system and be widely used in
clinics or other organizations, which lacks money, specialties, or lab space.

2. Methods

We denote the kinematic model for Kinect by Φ and the UWA kinematic model for a 3DMC
system by Γ. The deep learning refined kinematic model for Kinect v2 is denoted by Φ̂, which is a
combination of the model Φ and the trained neural network N. The upper limb kinematics calculated
by model Φ and Γ are defined as kΦ and kΓ, respectively. We train a long short-term memory (LSTM)
recurrent neural network (RNN) N using a supervised machine learning architecture to compensate
for the systematic error of Φ. During the training session, kΦ and kΓ are taken as the input data and
the target data, respectively. In the application stage, kΦ is given as the input of N, and output is our
refined upper limb kinematics (defined as kΦ̂). See Figure 1 for a simple demonstrate.

The UWA kinematic modeling for the 3DMC system and the upper limb kinematic modeling
for the Kinect v2 system follow the procedures demonstrated in Figure 2. A standard 3D kinematic
modeling procedure [43] includes four steps, namely setting up a global coordination system, setting
up local segments coordination systems, calculation of transformation matrix for segment investigated
and calculation of upper limb kinematics. The 3DMC system and the Kinect v2 sensor capture 3D
marker trajectories and record 3D joint trajectories of a participant concurrently when performing
upper limb functional tasks.

2.1. Upper Limb Kinematic Modeling for Kinect v2

The 3D coordinates of the anatomical landmarks identified from the skeletal model of the Kinect
v2 system (see Figure 3) during functional tasks are recorded concurrently with the 3DMC system.
Local segment coordinates, including Thorax λ and Upper Arm η, are established. Each of the segment
is based on the global coordinate.
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The origin of the thorax segment is defined by SpineShoulder (SS). The y-axis of the thorax
segment is defined by the unit vector going from SpineMid (SM) to SS (Equation (1)). The z-axis of the
thorax segment is defined by the unit vector perpendicular to y-axes and the vector from ShoulderLeft
(SL) to ShoulderRight (SR) (Equation (2)). The x-axis of the thorax segment is defined by z and y-axes
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to create a right-hand coordinate system (Equation (3)). The coordinate system of the thorax segment
CΦ,λ is then constructed by x, y and z-axis (Equation (4)):

yΦ,λ =
SS− SM
‖SS− SM‖

(1)

zΦ,λ =
yΦ,λ × (SR− SL)

‖yΦ,λ × (SR− SL)‖
(2)

xΦ,λ =
yΦ,λ ×ZΦ,λ

‖yΦ,λ ×ZΦ,λ‖
(3)

C(Φ,λ) =
[
xΦ,λ, yΦ,λ, zΦ,λ

]
(4)

The origin of the right upper arm segment is the right elbow joint center ElbowRight (ER). The
y-axis of the right upper arm segment is defined by the unit vector going from the elbow joint center to
shoulder joint center, ShoulderRight (SR), see Equation (5). The z-axis of the right upper arm segment
is defined by the unit vector perpendicular to the plane formed by y-axis of the upper arm and the long
axis vector of the forearm, pointing laterally (Equation (6)). The x-axis of the right upper arm segment
RΦ,η is defined by the unit vector perpendicular to the z and y-axes, pointing anteriorly (Equation (7)).
The coordinate system of the upper arm segment CΦ,η is then constructed by x, y and z-axis of the
segment (Equation (8)):

yΦ,η =
SR− ER
‖SR− ER‖

(5)

zΦ,η =
yΦ,η × (ER−WR)

‖yΦ,η × (ER−WR)‖
(6)

xΦ,η =
yΦ,η × zΦ,η

‖yΦ,η × zΦ,η‖
(7)

CΦ,η =
[
xΦ,η, yΦ,η, zΦ,η

]
(8)

Then our customized upper limb kinematics model for the Kinect v2 system calculates the three
Euler angles (αFE,αAA,αIE) for shoulder rotations, which following the flexion (+)/extension (−),
adduction (+)/abduction (−) and internal (+)/external (−) rotation order. The rotation matrix RΦ(λ, η)
is obtained via the parent coordinate system CΦ,λ (Equation (4)) and the child coordination system CΦ,η

(Equation (8)). Shoulder flexion/extension αFE, adduction/abduction αAA, internal/external rotation αIE

angles are calculated by solving the multivariable equations in Equation (9).

RΦ(λ, η) = CΦ,λ
−1
×CΦ,η

=


− sin(αFE) sin(αAA) sin(αIE) + cos(αFE) cos(αIE) − sin(αFE) cos(αIE) sin(αFE) sin(αAA) cos(αIE) + cos(αFE) sin(αIE)

cos(αFE) sin(αAA) sin(αIE) + sin(αFE) cos(αIE) cos(αFE) cos(αAA) − cos(αFE) sin(αAA) cos(αIE)

− cos(αAA) sin(αIE) sin(αAA) cos(αAA) cos(αIE)

 (9)

The elbow flexion/extension angle αEFE is calculated by the position data from ShoulderRight
(SS), ElbowRight (ER), and WristRight (WR) using the trigonometric function (Equations (10) and (11)).
In equation (10), VΦ,WE is the unit vector going from the elbow joint center to the wrist joint center.
The upper limb kinematics via the Kinect based system kΦ is formed by the shoulder and elbow joint
angles (Equation (11)). The kinematics model for Kinect v2 was developed using MATLAB 2019a:

VΦ,WE =
WR− ER
‖WR− ER‖

(10)

αEFE =
acos

(
yΦ,η·VΦ,WE

)
× 180

π
(11)
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kΦ = [αFE,αAA,αIE,αEFE] (12)

The angular waveforms between the Kinect v2 sensor and the Vicon system are synchronized
during post processing. The joint angles from both systems are firstly resampled to 300 Hz
using the Matlab function “interp” and then synchronized using a cross-correlation based shift
synchronization technique.

2.2. UWA Kinematic Modeling via 3D Motion Capture System

The UWA kinematic model Γ for the reference 3DMC system (in this paper we use Vicon, Oxford
Metrics Group, Oxford, UK) is based on the 3D trajectories of the reflective markers to the anatomical
position of each subject according to the UWA upper limb marker set [44]. The UWA marker set
includes the seventh cervical vertebra (C7), 10th thoracic vertebra (T10), sternoclavicular notch (CLAV),
xyphoid process of the sternum (STRN), posterior shoulder (PSH), anterior shoulder (ASH), elbow
medial epicondyle (EM), elbow lateral epicondyle (EL), most caudal-lateral point on the radial styloid
(RS), caudal-medial point on the ulnar styloid (US), a triad of markers affixed to upper arm (PUA),
a triad of markers affixed to forearm (DUA) and the metacarpal (CAR) (see Figure 4 for the detailed
marker setting). The PUA and DUA are positioned in areas that are not largely influenced by the soft
tissue artifact, according to Campbell et al. [45,46]. Medial and lateral elbow epicondyle markers are
removed for the dynamic functional tasks.
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A biomechanical model is employed based on the UWA upper limb marker set [39,44]. The
coordinates of each marker at each sample point in the global coordinate system are recorded and
represented by a three-dimensional vector (x, y, z). Four rigid body segments, namely Thorax, Torso,
Upper Arm, and Forearm, are defined based on the anatomical landmark positions following the
recommendations of the International Society of Biomechanics (ISB) [47]. In the following equations,
body segment Thorax, Torso, Upper Arm and Forearm are defined as λ, µ, η, and ψ, respectively. The
origin of a segment is denoted by o. The axes of each coordinate system are denoted by x, y and z.

The origin oΓ,λ of the thorax segment is defined as the midpoint between C7 and CLAV. The origin
oΓ,µ of the torso segment is defined as the midpoint of T10 and STRN. The y-axis of thorax coordination
system yΓ,λ is defined by the unit vector going from the midpoint of T10 and STRN to the midpoint of
C7 and CLAV, pointing upwards. The z-axis of the thorax coordinate system zΓ,λ is defined by the
unit vector perpendicular to the plane defined by T10, C7 and CLAV, pointing laterally. The x-axis of
the thorax coordinate system xΓ,λ is defined by the unit vector perpendicular to the plane defined by
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the y-axis and z-axis to create a right-hand coordinate system. The coordinate system of the thorax
segment CΓ,λ is then constructed by its x, y, and z-axis.

The origin oΓ,η of the right upper arm segment is defined by the elbow joint center E, which is the
midpoint between EL and EM. The y-axis of the right upper arm segment yΓ,η is defined by the unit
vector going from the elbow joint center E to shoulder joint center S, which is the center of PSH, ASH
and ACR. The z-axis of the right upper arm segment zΓ,η is defined as the unit vector perpendicular to
the plane formed by the y-axis of the upper arm and the long axis vector of the forearm. The x-axis xΓ,η

is defined by the y-axis and the z-axis of the right upper arm segment to create a right-hand coordinate
system. The coordinate system of the upper arm segment CΓ,η is then constructed by x, y and z-axis of
the segment.

The origin oΓ,ψ of the right forearm segment coordinate system is defined by the wrist joint center
W, which is the midpoint between RS and US. The y-axis of the right forearm segment coordinate
system yΓ,ψ is defined by the unit vector from the wrist joint center W to the elbow joint center E,
pointing upwards. The x-axis of the right forearm segment coordinate system xΓ,ψ is defined by the unit
vector perpendicular to the plane formed by y-axis and the vector from US to RS, pointing anteriorly.
The z-axis zΓ,ψ is defined by the unit vector perpendicular to the x and y-axis of right forearm segment,
pointing anteriorly. The coordinate system of the forearm segment CΓ,ψ is then constructed by x, y and
z-axis of the segment.

The calibrated anatomical systems technique [48] is used to establish the motion of anatomical
landmarks relative to the coordinate systems of the upper arm cluster (PUA) or the forearm cluster
(DUA). The motion of the upper-limb landmarks could be reconstructed from their constant relative
positions to the upper-arm technical coordinate system. For each sampling time frame, the coordinates
of each segment with respect to its proximal segment are transformed by a sequence of three rotations
following z-x-y order.

The rotation matrix RΓ(λ, η) and RΓ(η,ψ) are obtained via their responsive parent coordinate
system and child coordination system. Shoulder flexion (+)/extension (−) βFE, adduction (+)/abduction
(−) βAA, internal (+)/external rotation (−) βIE, elbow flexion (+)/extension (−) βEFE, varus (+)/valgus (−)
βEVV, internal/external rotation βEIE angles are calculated by solving the multivariable equations.

The UWA upper limb kinematic model Γ is developed using the Vicon Bodybuilder software
(Oxford Metrics Group). The reference shoulder angles and elbow flexion/extension angle
kΓ = [βFE, βAA, βIE, βEFE] are used as a golden standard to train our deep learning refined model
for the Kinect v2 system. We use fourth-order zero-lag Butterworth low-pass filter with the cut-off

frequency of 6 Hz for the UWA model Γ as well as the Kinematic model for Kinect Φ. The cut-off

frequency is followed the recommendation from the literature and determined by residual analysis for
the upper limb tasks [49].

2.3. Long Short-Term Memory Neural Network

We construct a recurrent neural network [41] N to refine the upper limb kinematics kΦ =

[αFE,αAA,αIE,αEFE] calculated by the kinematic model for Kinect v2 (see Section 2.1). In order to reduce
the systematic error of Φ, the kinematics kΓ = [βFE, βAA, βIE, βEFE] calculated by the UWA model for
the 3DMC system (see Section 2.2) is taken as a target. To adapt the neural network, we assume that kΦ

and kΓ are normalize into range [0,1].
As shown in Figure 5, our neural network is formed by three long short-term memory (LSTM)

layers. The input of our model is a 101-time-step sequence (t = 101). The unit of each time-step is a
4-dimensional vector. We use, empirically, 100 neural units in each LSTM cell. The output of the model
is also a 101-time-step sequence with 4-dimensional vectors.

To train this model, we let kΦ be the input of the model. The output is denoted by kΦ̂ =

[α̂FE, α̂AA, α̂IE, α̂EFE]. We calculate the mean square error between kΦ̂ and kΓ as the loss of the model,
and then employ an Adam method for optimization [50]. The network is trained with a batch size of
20 and the learning rate is set to 0.006 for 200 epochs. In application, the upper limb kinematics kΦ
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calculated by Kinect v2 is taken as the input of the neural network. The output of the neural network,
namely kΦ̂, is our refined upper limb kinematics.Sensors 2020, 20, x FOR PEER REVIEW 9 of 27 
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Figure 5. Architecture of our LSTM neural network for upper limb kinematics refinement.

3. Evaluation

3.1. Subjects

We recruited thirteen healthy male university students (age: 25.3 ± 2.5 years old; height:
173.2 ± 4.1 cm; mass: 69.1 ± 6.5 Kg). The participants were absent of any upper limb
neuromusculoskeletal problems or medication use that would affect their upper limb functions.
The participants were informed about the basic procedure of the experiment before the test. The
experimental protocol was approved by the Research Academy of Grand Health’s Ethics Committee at
Ningbo University and all participants provided written informed consent.

3.2. Experiment Protocol

We used a concurrent validity design to evaluate our deep learning based upper limb functional
assessment system using the Kinect v2 sensor. The 3D anatomical position of the upper limb (take the
right side as an example) and trunk were recorded concurrently by a Kinect v2 sensor and a 3DMC
system with eight high-speed infrared cameras (Vicon, Oxford Metrics Ltd., Oxford, UK). The Kinect
v2 sensor and the 3DMC recorded the position of anatomical landmarks with sampling frequencies of
around 30 Hz and 100 Hz, respectively. The Kinect sensor was placed on a tripod, 0.8 meters above the
ground, and 2 meters in front of the subject [51].

Optical reflective markers were attached to the anatomical landmarks of each individual following
the instruction of the UWA upper limb marker set [39]. A static trial was recorded firstly during which
the participant was standing in the anatomical position. The elbow and wrist markers were removed
during dynamic trials. Four functional tasks, as shown in Figure 6, representing a variety of active
daily functional activities [42] and at the same time are important for independent living [52], were
performed. The tasks were selected based on previous studies [42,52–55] after extensive consultation
with clinicians. These tasks are also used in assessment scales such as Mallet score, which is commonly
used for evaluation of shoulder function [56].
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Figure 6. Four upper limb functional tasks evaluated in our study. Left: Hand to the contralateral
shoulder. Middle-left: Hand to mouth or drinking. Middle-right: combing hair. Right: Hand to
back pocket.

Task 1: Hand to the contralateral shoulder, which represents all activities near contralateral
shoulder such as washing axilla or zip up a jacket. Subjects started with the arm in the anatomical
position with their hand handing beside their body in a relaxed neutral position and end up with the
hand touched the contralateral shoulder (see Figure 6, left);

Task 2: Hand to mouth or drinking, which represents activities such as eating and reaching
the face. It begins with the same starting point, and ends when the hand reached subject’s mouth
(see Figure 6, middle-left);

Task 3: Combing hair, which represents activities such as reaching the (back of the) head and
washing hair. Subjects were instructed to move their hand to the back of their head (see Figure 6,
middle-right);

Task 4: Hand to back pocket, which represents reaching the back and perineal care. It begins with
the same starting point and ends when the hand placed on the back pocket (see Figure 6, right).

3.3. Leave One Subject Out Cross-Validation

We firstly calculate upper limb kinematics kΦ and kΓ using upper limb kinematic model for Kinect
v2 system Φ and the UWA kinematic model Γ for the reference 3DMC system, respectively. For all
four functional tasks, the joint angles are resampled to 101-time steps. Joint angles are represented as
0–100% across the time domain, with 0% being the initial and 100% being the finish. Next, we use
a leave one subject out cross-validation (LOOCV) (see Figure 7) to evaluate the performance of our
proposed deep learning refined upper limb functional assessment model Φ̂ using Kinect v2 sensor.

Using the LOOCV protocol, the kinematic data kΦ and kΓ are partitioned into training data and
test data. Assuming that we have n subjects, the validation process iterates n times. For each iteration,
kinematic data of the left-out subject is set as the testing data and the kinematics of the remaining
subjects is set as the training data. The testing data include one 3D matrix, which are the shoulder
and elbow joint angles of the left-out subject calculated via the kinematic model for Kinect v2 system
Φ. The training data from the remaining subjects are consist of two 3D matrices, the upper limb joint
angles calculated via model Φ, regarded as the input data of the deep learning refined kinematic model
Φ̂ for Kinect v2, and the reference UWA kinematic model Γ for the 3DMC system, regarded as the
target data of the model Φ̂. Our deep learning refined kinematic model Φ̂ explores the nonlinear
relationship between the upper limb kinematics via the kinematics model for Kinect kΦ and those
angles via the UWA model using the 3DMC system kΓ. Such a model can reduce the systematic error
of the Kinect system.
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3.4. Performance Evaluation and Statistical Analysis of the Deep Learning Refined Kinematic Model

The performance of our developed model Φ̂ is evaluated based on the test data, using the upper
limb kinematics calculated via the model Γ for the 3DMC system as the ground truth. The coefficient
of multiple correlation (CMC) values and root mean squared errors (RMSE) are calculated between
upper limb kinematic waveforms kΦ and kΓ as well as between kΦ̂ and kΓ in each application session.

The CMC values are used to evaluate the similarity and repeatability of the upper limb joint
angle trajectories between kΦ and the kΓ as well as the similarities between kΦ̂ and kΓ. The CMCs are
calculated following Kadaba’s approach [57]. The CMC values are explained as excellent similarity
(0.95–1), very good similarity (0.85–0.94), good similarity (0.75–0.84), moderate similarity (0.6–0.74) and
poor similarity (0–0.59) [58]. The RMSE values are employed to evaluate mean errors between the upper
limb angle waveforms kΦ and the kΓ as well as errors between kΦ̂ and kΓ across all functional tasks.

Range of motion (ROM) values and the joint angle at the point of target achieved (PTA) via the
kinematic model Φ, our deep learning refined kinematic model Φ̂ for Kinect v2 system and the UWA
kinematic model Γ for the 3DMC system are calculated and extracted. Both ROM and PTA data are
extracted from the test data in the application process. The normality of all ROM and PTA values are
tested by the Shapiro-Wilks test (p > 0.05). A paired sample t-test is used for the parameters which are
normally distributed; the Wilcoxon Signed Ranks Test is used for those who are not. Bland-Altman
analysis with 95% limits of agreement (LoA) is performed to assess the agreements between the ROMs
and the PTAs via model Φ and model Γ as well as the agreements via model Φ̂ and model Γ. The
CMC and RMSE are analyzed using Matlab 2019a, and the rest statistical analysis is carried out using
SPSS 25.0.

4. Results

4.1. Joint Kinematic Waveforms Validity

The kinematic waveforms of the chosen representative upper limb functional tasks via the
kinematic model Φ and our deep learning refined kinematic model Φ̂ for the Kinect v2 system are
presented in Figures 8–11 by means of average angles from the testing data. Joint angles via the UWA
kinematic model Γ for the 3DMC system are presented in Figures 8–11 as the golden standard. The
CMC values between kΦ and kΓ as well as between kΦ̂ and kΓ are presented in Table 1. The RMSE
values are presented in Table 2.
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Figure 8. Joint angles during the hand to contra lateral shoulder task calculated via the kinematic model
for 3DMC (orange solid line), our deep learning refined kinematic model for Kinect (green dashed line)
and the kinematic model for Kinect (blue solid line). The joint angles include shoulder flexion
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(orange solid line), our deep learning refined kinematic model for Kinect (green dashed line) and the 
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Figure 9. Joint angles during the hand to mouth task calculated via the kinematic model for 3DMC
(orange solid line), our deep learning refined kinematic model for Kinect (green dashed line) and the
kinematic model for Kinect (blue solid line). The joint angles include shoulder flexion (+)/extension (−),
shoulder adduction (+)/abduction (−), shoulder internal rotation (+)/external rotation (−), and elbow
flexion (+)/extension (−).
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Figure 10. Joint angles during the combing hair task calculated via the kinematic model for 3DMC
(orange solid line), our deep learning refined kinematic model for Kinect (green dashed line) and the
kinematic model for Kinect (blue solid line). The joint angles include shoulder flexion (+)/extension (−),
shoulder adduction (+)/abduction (−), shoulder internal rotation (+)/external rotation (−), and elbow
flexion (+)/extension (−).

Table 1. The coefficient of multiple correlation (CMC) (SD) between the joint angles via kinematic
model Φ for Kinect and the angles via 3DMC as well as between angles via our deep learning refined
kinematic model Φ̂ for Kinect and the angles via 3DMC.

Task 1 Task 2 Task 3 Task 4

Shoulder Flexion
/Extension

Φ 0.87 (0.99) 0.73 (0.13) 0.77 (0.13) 0.92 (0.09)
Φ̂ 0.97 (0.20) 0.95 (0.06) 0.97 (0.03) 0.94 (0.08)
P value 0.005 0.005 a 0.001 a 0.249 a

Shoulder Adduction
/Abduction

Φ 0.84 (0.10) 0.55 (0.27) 0.74 (0.18) 0.60 (0.22)
Φ̂ 0.88 (0.16) 0.72 (0.21) 0.97 (0.02) 0.79 (0.17)
P value 0.133 a 0.135 0.001 0.016

Shoulder Internal
/External Rotation

Φ 0.81 (0.10) 0.64 (0.23) 0.83 (0.07) 0.65 (0.17)
Φ̂ 0.98 (0.21) 0.75 (0.21) 0.89 (0.11) 0.75 (0.17)
P value 0.001 a 0.281 0.002 a 0.133

Elbow Flexion
/Extension

Φ 0.93 (0.53) 0.92 (0.07) 0.83 (0.07) 0.83 (0.20)
Φ̂ 0.99 (0.00) 0.99 (0.01) 0.99 (0.01) 0.93 (0.06)
P value 0.001 0.003 a 0.001 a 0.055 a

Superscript “a” Parameter is not normally distributed; the Wilcoxon Signed Ranks Test is used.
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Figure 11. Joint angles during the hand to back pocket task calculated via the kinematic model for
3DMC (orange solid line), our deep learning refined kinematic model for Kinect (green dashed line) and
the kinematic model for Kinect (blue solid line). The joint angles include shoulder flexion (+)/extension
(−), shoulder adduction (+)/abduction (−), shoulder internal rotation (+)/external rotation (−), and
elbow flexion (+)/extension (−).

Table 2. The root mean squared error (RMSE) (SD) between the joint angles via kinematic model Φ for
Kinect and the angles via 3DMC as well as between angles via our deep learning refined kinematic
model Φ̂ for Kinect and the angles via 3DMC.

Task 1 Task 2 Task 3 Task 4

Shoulder Flexion
/Extension

Φ 10.54 (4.65) 27.49 (11.38) 41.73 (8.19) 5.44 (2.91)
Φ̂ 4.61 (1.75) 8.18 (5.35) 11.50 (7.25) 4.39 (2.54)
P value 0.001 0.003 0.000 0.256

Shoulder Adduction
/Abduction

Φ 5.53 (1.81) 6.42 (2.41) 11.91 (4.61) 6.00 (2.16)
Φ̂ 2.90 (1.42) 3.88 (2.59) 5.14 (1.83) 3.04 (1.72)
P value 0.004 0.019 0.000 0.000

Shoulder Internal
/External Rotation

Φ 12.80 (3.22) 19.39 (6.76) 31.45 (6.89) 11.34 (3.44)
Φ̂ 5.60 (2.00) 7.15 (2.30) 8.59 (2.91) 6.16 (3.46)
P value 0.000 0.000 0.000 0.001

Elbow Flexion
/Extension

Φ 14.96 (5.90) 15.83 (4.90) 25.83 (3.45) 11.43 (7.10)
Φ̂ 5.56 (1.18) 7.74 (2.21) 6.96 (2.92) 6.53 (2.41)
P value 0.000 0.000 0.000 0.028 a

Superscript “a” Parameter is not normally distributed; the Wilcoxon Signed Ranks Test is used.

Our model Φ̂ significantly improves the waveform similarity (see Table 1) and decreases the
RMSE (see Table 2) in comparison with the model Φ for Kinect v2 for almost all upper limb joint angles
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during all investigated functional tasks (p < 0.05). For the angles calculated with model Φ, very good
similarities (CMC = 0.85–0.94) are only observed in shoulder flexion/extension angles during Task 1 and
Task 4 with the mean CMCs of 0.87 and 0.92 and in elbow flexion/extension angles during Task 1 and
Task 2 with the mean CMCs of 0.93 and 0.92. Good similarities (CMC = 0.75–0.84) are only observed
in shoulder flexion/extension angle during Task 3 (CMC = 0.77), in shoulder adduction/abduction
angle (CMC = 0.84) and shoulder internal/external rotation angle (CMC = 0.81) during Task 1 and in
elbow flexion/extension angle during Task 2 and Task 3 (CMC = 0.83 for both tasks). For the rest upper
limb joint angles during all chosen functional tasks, angles calculated using model Φ show poor to
moderate waveform similarities in comparison with the reference joint angles (CMC = 0.55–0.74).

The RMSEs between kΦ and the kΓ as well as the RMSEs between kΦ̂ and kΓ also demonstrate
the promising ability of our deep learning refined kinematic model Φ̂ in increasing upper limb joint
kinematic accuracy using Kinect v2. The RMSEs are both plane-dependent and task-dependent. Our
model Φ̂ decreases the RMSEs with much lower mean values and standard deviations for all degrees
of freedom under all functional tasks in comparison model Φ. The RMSEs via our model Φ̂ are
significantly smaller than those via model Φ (p < 0.05) except for shoulder flexion/extension angles
during the hand to back pocket task. For shoulder flexion/extension angle during the hand to back
pocket task, despite the RMSEs via our model Φ̂ and via model Φ do not reach significant difference,
the RMSEs via both models are all relatively small. Our model Φ̂ yields lower RMSEs. Taking the
combing hair task as an example, the RMSEs drop from 41.73◦ ± 8.19◦ to 11.50◦ ± 7.25◦ for shoulder
flexion/extension angles, from 11.91◦ ± 4.61◦ to 5.14◦ ± 1.83◦ for shoulder adduction/abduction angles,
from 31.45◦ ± 6.89◦ to 8.59◦ ± 2.91◦ for shoulder internal/external rotation angles and from 25.83◦ ± 3.45◦

to 6.96◦ ± 2.92◦ for elbow flexion/extension angles after using model Φ̂ instead of model Φ.
Using our deep learning refined kinematic model Φ̂, shoulder and elbow flexion/extension angles

during all four functional tasks show excellent similarities between kΦ̂ and kΓ with the mean CMC of
0.95–0.99 except for slightly lower similarities during Task 4 (mean CMC = 0.94 and 0.93 for shoulder
and elbow joint respectively). The shoulder internal/external rotation angles show excellent similarity
(mean CMC = 0.98) during Task 1, very good similarity (mean CMC = 0.89) during Task 3 and good
similarity during Task 2 and Task 4 (mean CMC = 0.75 for both tasks). For shoulder adduction/abduction
angles, excellent similarity (mean CMC = 0.97), very good similarity (mean CMC = 0.88) and good
similarity (mean CMC = 0.79) are observed in Task 3, Task 1 and Task 4, respectively. The lowest
similarity is found for the shoulder adduction/abduction angles during the drinking water task with
the mean CMC of 0.72.

4.2. Joint Kinematic Variables Validity

The joint angles at the point of target achieved (PTA) and the range of motion (ROM) during
the upper limb functional tasks via the kinematic model Φ and our deep learning refined kinematic
model Φ̂ for the Kinect v2 system as well as via the UWA kinematic model Γ for the 3DMC system are
presented in Tables 3 and 4, by means of mean and standard deviation values (± SD). Differences and
statistical significance of PTAs via model Φ and model Φ̂ in comparison with the PTAs via model Γ are
given in Table 3; whereas the absolute errors and statistical significance of ROMs are given in Table 4.
The Bland-Altman plots for all PTAs and ROMs are presented in Figures 12–15.
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Table 3. The joint angle at the point of target achieved (PTA) with mean and standard deviation (SD)
values calculated via the kinematic model Φ for Kinect v2, our deep learning refined kinematic model
Φ̂ for Kinect v2 and the UWA model Γ for the 3DMC system. Φ− Γ represents the discrepancy between
the PTAs via the model Φ and the reference model Γ. Φ̂ − Γ represents the differences between the
PTAs via the model Φ̂ and the reference model Γ.

Task 1 Task 2 Task 3 Task 4

Shoulder
Flexion/Extension
(Degrees)

Φ 53.05 (12.02) 92.37 (20.33) 151.50 (9.96) −40.30 (4.96)
Φ̂ 39.37 (7.22) 56.14 (11.29) 107.68 (12.24) −42.04 (3.77)
Γ 39.35 (7.95) 56.37 (8.83) 105.89 (15.02) −42.06 (5.56)
Φ − Γ 13.70 (6.39) 35.99 (15.59) 45.61 (10.30) 1.75 (4.27)
Φ̂ − Γ 0.02 (4.79) −0.24 (9.52) 1.79 (11.78) 0.01 (4.21)
pΦ,Γ 0.000 0.000 a 0.000 0.163
pΦ̂,Γ 0.987 0.930 0.594 0.990

Shoulder
Adduction/Abduction
(Degrees)

Φ 4.74 (7.98) −29.41 (9.11) −55.39 (7.03) −30.72 (8.56)
Φ̂ −1.19 (4.82) −23.20 (8.86) −58.51 (5.68) −23.39 (5.83)
Γ −1.28 (6.15) −22.78 (12.03) −58.49 (8.30) −23.72 (6.01)
Φ − Γ 6.02 (4.38) −6.63 (4.26) 3.10 (5.60) −7.00 (3.82)
Φ̂ − Γ 0.10 (3.22) −0.42 (4.57) −0.02 (5.21) 0.33 (3.02)
pΦ,Γ 0.000 0.002 a 0.069 0.000
pΦ̂,Γ 0.913 0.382 a 0.988 0.700

Shoulder Internal/External
Rotation (Degrees)

Φ 64.15 (6.30) 48.43 (11.38) 52.93 (10.21) 30.28 (7.98)
Φ̂ 69.76 (5.76) 33.84 (7.72) 24.04 (11.88) 36.46 (4.55)
Γ 69.22 (5.30) 31.82 (6.86) 23.53 (13.20) 37.89 (6.16)
Φ − Γ −5.08 (3.94) 16.61 (8.69) 29.40 (7.55) −7.61 (9.82)
Φ̂ − Γ 0.53 (4.20) 2.02 (7.06) 0.51 (6.97) −1.43 (7.76)
pΦ,Γ 0.001 0.000 a 0.000 0.706
pΦ̂,Γ 0.655 0.320 a 0.795 0.517

Elbow Flexion/Extension
(Degrees)

Φ 109.09 (10.75) 110.18 (7.49) 112.17 (3.96) 65.86 (18.30)
Φ̂ 125.47 (4.18) 131.26 (5.16) 146.29 (4.21) 79.11 (12.15)
Γ 125.06 (3.42) 130.05 (5.07) 144.56 (3.49) 78.66 (11.85)
Φ − Γ −15.97 (8.83) −19.87 (5.17) −32.39 (4.16) −12.80 (8.54)
Φ̂ − Γ 0.41 (4.07) 1.21 (5.78) 1.73 (2.79) 0.44 (6.70)
pΦ,Γ 0.000 0.000 a 0.000 0.000
pΦ̂,Γ 0.723 0.466 0.045 0.816

Superscript “a” Parameter is not normally distributed; the Wilcoxon Signed Ranks Test is used.

The PTAs via the model Φ are all reached significant difference in comparison with those via
the refence model Γ (p < 0.05) except the shoulder flexion/extension angle during the hand to back
pocket task and the shoulder adduction/abduction angle during the combing hair task. In contrast,
there is no significant difference in all PTAs via our model Φ̂ and the references except for those
of the elbow flexion/extension angles during the hand to back pocket task (p = 0.045). Although
statistical significance exists in the PTAs of elbow flexion/extension angle during the combing hair task
(Φ̂ = 146.29◦ ± 4.21◦, Γ = 144.56◦ ± 3.49◦), our model Φ̂ does reduce the absolute error of the PTA via
model Φ from (Φ − Γ) −32.39◦ ± 4.16◦ to (Φ̂ − Γ) 1.73◦ ± 2.79◦. By employing our model Φ̂, the PTAs
discrepancy of shoulder and elbow flexion/extension angles between the Kinect v2 and the 3DMC
system drop from 45.61◦ ± 10.30◦ and -32.39◦ ± 4.16◦ (Φ − Γ) to 1.79◦ ± 11.78◦ and 1.73◦ ± 2.79◦ (Φ̂ − Γ)
respectively during the combing hair task.

There is significant difference in all ROMs via model Φ and the references (p < 0.05); whereas
there is no significant difference between the ROMs via our model Φ̂ and the references for all
investigated upper limb joint angles. The greatest improvement occurs in the ROMs of the shoulder
flexion/extension angles during the combing hair task, in which the absolute error between the Kinect
v2 and the 3DMC system drop from 40.44◦ ± 9.88◦ (Φ − Γ) to 2.95◦ ± 10.88◦ (Φ̂ − Γ).
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Table 4. The range of motion (ROM) with mean and standard deviation (SD) values calculated via
the kinematic model Φ for Kinect v2, our deep learning refined kinematic model Φ̂ for Kinect v2 and
the UWA model Γ for the 3DMC system. Φ − Γ represents the discrepancy between the ROMs via the
model Φ and the reference model Γ. Φ̂ − Γ represents the differences between the ROMs via the model
Φ̂ and the reference model Γ.

Task 1 Task 2 Task 3 Task 4

Shoulder
Flexion/Extension
(Degrees)

Φ 51.38 (11.66) 87.53 (19.63) 146.30 (14.55) 38.04 (5.78)
Φ̂ 42.63 (7.73) 60.57 (15.25) 108.80 (13.44) 33.87 (4.71)
Γ 42.50 (7.90) 58.83 (10.46) 105.85 (16.30) 34.15 (5.63)
Φ − Γ 8.88 (4.89) 28.69 (12.50) 40.44 (9.88) 3.89 (2.76)
Φ̂ − Γ 0.13 (3.95) 1.74 (12.91) 2.95 (10.88) −0.28 (3.19)
pΦ,Γ 0.000 0.000 0.000 0.000
pΦ̂,Γ 0.905 0.636 0.348 0.422 a

Shoulder
Adduction/Abduction
(Degrees)

Φ 26.26 (6.96) 18.76 (8.61) 40.37 (5.62) 18.02 (7.76)
Φ̂ 13.87 (3.88) 16.28 (8.48) 48.76 (5.53) 12.93 (5.84)
Γ 14.08 (4.76) 13.71 (11.13) 47.36 (7.61) 12.97 (5.56)
Φ − Γ 12.18 (5.33) 5.05 (5.32) −6.98 (7.27) 5.05 (2.72)
Φ̂ − Γ 0.21 (2.97) 2.57 (5.00) 1.40 (4.86) −0.04 (2.57)
pΦ,Γ 0.000 0.009 a 0.000 0.000
pΦ̂,Γ 0.802 0.075 a 0.319 a 0.861 a

Shoulder Internal/External
Rotation (Degrees)

Φ 35.16 (11.69) 19.34 (8.35) 56.44 (19.60) 15.57 (6.92)
Φ̂ 68.34 (6.47) 29.17 (6.24) 47.31 (15.41) 24.06 (4.26)
Γ 64.59 (11.25) 30.07 (7.93) 45.69 (15.98) 22.92 (8.05)
Φ − Γ −29.42 (8.16) −10.73 (8.47) 10.75 (10.39) −7.35 (10.31)
Φ̂ − Γ 3.75 (9.33) −0.90 (7.59) 1.62 (7.94) 1.14 (10.10)
pΦ,Γ 0.000 0.001 0.000 0.025
pΦ̂,Γ 0.173 0.678 0.476 0.691

Elbow Flexion/Extension
(Degrees)

Φ 87.54 (8.21) 88.70 (7.41) 87.57 (7.89) 41.28 (21.06)
Φ̂ 95.03 (5.77) 100.19 (6.39) 112.64 (4.22) 48.93 (12.68)
Γ 95.03 (5.77) 100.29 (6.54) 112.97 (8.97) 47.82 (15.71)
Φ − Γ −7.49 (7.94) −11.59 (6.57) −25.41 (6.84) −6.54 (7.74)
Φ̂ − Γ 0.92 (8.33) −0.10 (6.52) −0.34 (7.55) 1.11 (7.95)
pΦ,Γ 0.005 0.001 0.000 0.010
pΦ̂,Γ 0.697 0.861 0.875 0.625

Superscript “a” Parameter is not normally distributed; the Wilcoxon Signed Ranks Test is used.
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rows are the angles at the point of target achieved (PTA) and the lower four rows are the range of 
motion (ROM) values. Plots of the left column are measurement differences between our deep 
learning refined kinematic model 𝛷෡ for Kinect and the UWA kinematic model 𝛤 for the 3DMC. Plots 
of the right column are measurement differences between the kinematic model 𝛷 for Kinect and the 
UWA kinematic model for the 3DMC 𝛤. 

 

Figure 12. Bland-Altman plots with 95% limits of agreement for joint kinematic parameters during the
hand to contralateral shoulder task. X axes represents the angle means of two systems and the Y axes
represents the mean of differences. The red line (middle one) represents the reference line at mean,
and the two dashed lines represent the upper and lower limit of agreement. The upper four rows
are the angles at the point of target achieved (PTA) and the lower four rows are the range of motion
(ROM) values. Plots of the left column are measurement differences between our deep learning refined
kinematic model Φ̂ for Kinect and the UWA kinematic model Γ for the 3DMC. Plots of the right column
are measurement differences between the kinematic model Φ for Kinect and the UWA kinematic model
for the 3DMC Γ.
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the mean of differences. The red line (middle one) represents the reference line at mean, and the two 
dashed lines represent the upper and lower limit of agreement. The upper four rows are the angles at 
the point of target achieved (PTA) and the lower four rows are the range of motion (ROM) values. 
Plots of the left column are measurement differences between our deep learning refined kinematic 
model 𝛷෡ for Kinect and the UWA kinematic model 𝛤 for the 3DMC. Plots of the right column are 
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Figure 13. Bland-Altman plots with 95% limits of agreement for joint kinematic parameters during
the hand to mouth task. X axes represents the angle means of two systems and the Y axes represents
the mean of differences. The red line (middle one) represents the reference line at mean, and the two
dashed lines represent the upper and lower limit of agreement. The upper four rows are the angles at
the point of target achieved (PTA) and the lower four rows are the range of motion (ROM) values. Plots
of the left column are measurement differences between our deep learning refined kinematic model Φ̂
for Kinect and the UWA kinematic model Γ for the 3DMC. Plots of the right column are measurement
differences between the kinematic model Φ for Kinect and the UWA kinematic model for the 3DMC Γ.
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dashed lines represent the upper and lower limit of agreement. The upper four rows are the angles at 
the point of target achieved (PTA) and the lower four rows are the range of motion (ROM) values. 
Plots of the left column are measurement differences between our deep learning refined kinematic 
model 𝛷෡ for Kinect and the UWA kinematic model 𝛤 for the 3DMC. Plots of the right column are 
measurement differences between the kinematic model 𝛷 for Kinect and the UWA kinematic model 
for the 3DMC 𝛤. 

 

Figure 14. Bland-Altman plots with 95% limits of agreement for joint kinematic parameters during
the combing hair task. X axes represents the angle means of two systems and the Y axes represents
the mean of differences. The red line (middle one) represents the reference line at mean, and the two
dashed lines represent the upper and lower limit of agreement. The upper four rows are the angles at
the point of target achieved (PTA) and the lower four rows are the range of motion (ROM) values. Plots
of the left column are measurement differences between our deep learning refined kinematic model Φ̂
for Kinect and the UWA kinematic model Γ for the 3DMC. Plots of the right column are measurement
differences between the kinematic model Φ for Kinect and the UWA kinematic model for the 3DMC Γ.
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and the two dashed lines represent the upper and lower limit of agreement. The upper four rows are 
the angles at the point of target achieved (PTA) and the lower four rows are the range of motion 
(ROM) values. Plots of the left column are measurement differences between our deep learning 
refined kinematic model for Kinect and the UWA kinematic model for the 3DMC. Plots of the left 
column are measurement differences between our deep learning refined kinematic model 𝛷෡  for 
Kinect and the UWA kinematic model 𝛤 for the 3DMC. Plots of the right column are measurement 
differences between the kinematic model 𝛷 for Kinect and the UWA kinematic model for the 3DMC 𝛤.  

Figure 15. Bland-Altman plots with 95% limits of agreement for joint kinematic parameters during the
hand to back pocket task. X axes represents the angle means of two systems and the Y axes represents
the mean of differences. The red line (middle one) represents the reference line at mean, and the two
dashed lines represent the upper and lower limit of agreement. The upper four rows are the angles at
the point of target achieved (PTA) and the lower four rows are the range of motion (ROM) values. Plots
of the left column are measurement differences between our deep learning refined kinematic model
for Kinect and the UWA kinematic model for the 3DMC. Plots of the left column are measurement
differences between our deep learning refined kinematic model Φ̂ for Kinect and the UWA kinematic
model Γ for the 3DMC. Plots of the right column are measurement differences between the kinematic
model Φ for Kinect and the UWA kinematic model for the 3DMC Γ.
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5. Discussion

Our study developed a novel deep learning refined kinematic model for 3D upper limb kinematic
assessment using a single Kinect v2 sensor. Our refined model Φ̂ is in good agreement with the
3DMC system and is far more accurate than the traditional kinematic model using the same Kinect v2
sensor for upper limb waveforms, joint angles at the point of target achieved (PTA), and the range of
motions (ROM) across all functional tasks. Using our deep learning-based model, the Kinect v2 could
measure shoulder and elbow flexion/extension waveforms with mean CMCs >0.93 for all investigated
tasks, shoulder adduction/abduction, and internal/external rotation waveforms with mean CMCs
>0.8 for most of the tasks. The mean deviations of angles at the PTA and ROM are under 5◦ for all
investigated joint angles during all investigated functional tasks. In clinic application, generally less
than 2◦ is considered acceptable, an error between 2◦–5◦ may also be acceptable with appropriate
interpretation [59,60]. Thus, the performance of our deep learning refined kinematic model using a
single Kinect v2 sensor is promising as an upper limb functional assessment system.

The results agree with other studies on similar upper limb functional tasks [42]. During the
combing hair task, at the maximum elevation, the mean elbow flexion via our model Φ̂ is 146◦. This is
in agreement with results of van Andel et al. [42], Magermans et al. [52] and Morrey et al. [61], who
find average elbow flexion angles of 122◦, 136◦ and 100◦, respectively. Andel et al. [42] find that the
shoulder flexion angles reach nearly 100◦ in the combing hair tasks and stay under 70◦ during the
other tasks. This is also the same case in our study via our model Φ̂ using a Kinect v2 sensor. Shoulder
flexion angles are around 108◦ during the hair combing task and remain under 60◦ during the hand to
contralateral shoulder and the hand to mouth task. The hand to mouth task does not require the full
ROM of all joints and the most important joint angle is elbow flexion [52]. The mean elbow flexion is
112◦ via our model Φ̂, which is consistent with Magermans et al.’s research with the elbow flexion of
117◦ [52].

The systematic errors of the proposed Kinect-based upper limb assessment system include errors
due to the inaccurate depth measurement and the motion artifact of moving objects [10]. Kinect v2
measures the depth information based on the Time of Flight (ToF) technique. The ToF measures the
time that “light emitted by an illumination unit requires to travel to an object and back to the sensor
array”. Kinect v2 utilizes the Continuous Wave (CW) Intensity Modulation approach, which requires
several correlated images for calculation of each depth image. The distance calculated based on the
mixing of correlated images requires approximation on the CW algorithm and causes systematic error
in depth measurement. Recording and processing the correlated images are also both affected by
moving objects, which lead to inaccurate depth measurement at object boundaries [10].

The systematic errors also include error due to the kinematic modeling. In both kinematic
models, the shoulder joint angles are considered as humerus coordinate rotations relative to the thorax
coordinate systems. The kinematic models developed for the Kinect v2 sensor and the model used for
the 3DMC system are followed the same recommendation on the definition of joint coordinate systems
of trunk, shoulder, and elbow joint proposed by the International Society of Biomechanics [47,62]. The
second option of humerus coordinate system is used for both systems [47], in which the z-axis of the
humerus coordinate system is perpendicular to the plane formed by the vector from the elbow joint
center to the shoulder joint center and the vector from the wrist joint center to the elbow joint center.
For the UWA model, the thorax segment is defined by the 7th cervical vertebra, the 10th thoracic
vertebra, the sternoclavicular notch and the xyphoid process of the sternum. Because of the limited
ability of skeletal joint tracking in the Kinect based system, the thorax coordinate system is defined by
Kinect Skeleton landmarks of both trunk segment and shoulder joints (i.e., SpineShoulder, SpineMid,
ShoulderLeft and ShoulderRight). Thus, tasks with large clavicle movements such as combing hair
have great deviations in shoulder kinematic assessment. In our study, the shoulder joint angles during
the combing hair task yield the largest root-mean-squared errors using our deep learning refined
model in comparison with the golden standard system.
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From Figures 8–11, it can be seen that the systematic error of the Kinect based system is highly
nonlinear. The LSTM network we employed is the state-of-the-art recurrent neural network, which is
good at modeling the nonlinear relationship for time series data. Our deep learning based algorithm
yields better results to the linear regression algorithm [63] in refining joint angles using a single
Kinect sensor. In assessing shoulder joint angles during the computer-using task, only shoulder
adduction/abduction is improved after the linear regression refinement [63]. As the measurement
error is positively correlated with the magnitude of that joint angle [63], the measurement error is
presented with its ROM. After applying the linear regression calibration, the mean RMSE of the
shoulder adduction/abduction angle are decreased from 14.8◦ and 9.1◦ for the right and left shoulder
respectively to 7.5◦, during which the ROM of the angle is under 20◦. While using our deep learning
refined kinematic model Φ̂, all upper limb joint angles, including shoulder flexion/extension, shoulder
adduction/abduction, shoulder internal/external rotation, and elbow flexion/extension, are significantly
improved during all functional tasks. Notably, the mean RMSEs of shoulder adduction/abduction
angles are decreased to around 3◦ for task 1, task 2 and task 4 and to around 5◦for task 3 with the mean
ROMs of 12.97◦ to 47.36◦.

Previous studies reveal that Kinect v2 with the automated body tracking algorithm is also not
suitable to assess lower-body kinematics. The deviation of hip flexion during the swing phase is more
than 30◦ during walking [15]. The limits of agreement (LoA) between the Kinect v2 sensor and the
3DMC system are 28◦, 46◦ for peak knee flexion angle at a self-selected walking speed [15], 7◦, 25◦ for
trunk anterior-posterior flexion [16]. Average errors of 24◦, 26◦ are observed for the right and left peak
knee flexion angles during squatting [19].

Timmi et al. [37] employed custom-made colored markers placed on bony prominences near the
hip, knee, and ankle. The marker tracking approach improves the knee angle measurement with the
LOA of −1.8◦ and 1.7◦ for flexion and −2.9◦, 1.7◦ for adduction during fast walking. Compared with
gait analysis and static posture assessment, motion analysis of the upper limb using Kinect sensors is
far more challenging. Upper limb functional activities show a larger variation in the healthy population
and a higher number of degrees of freedom in the upper limb. The upper limb, especially the shoulder
joint, has a very large working range, comparing to the lower extremity. Furthermore, the upper limb
joints are easy to be occluded by each other. The marker-tracking methodology may not be suitable for
the Kinect based system in assessing upper limb kinematics.

6. Conclusions

We have developed a novel deep learning refined kinematic model for upper limb functional
assessment using a single Kinect v2 sensor. The system demonstrates good kinematic accuracy in
comparison with a standard marker-based 3D motion capture system during performing upper limb
functional tasks, suggesting that such a single-Kinect-based kinematic assessment system has great
potential to be used as an alternative of the traditional marker-based 3D motion capture system. Such
a low-cost, easy to use system with good accuracy will help small rehabilitation clinics or meet the
need for rehabilitation at home.
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