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a b s t r a c t 

Conditional autoregressive (CAR) distributions are used to account for spatial autocorrelation in small areal or 

lattice data to assess the spatial risks of diseases. The intrinsic CAR (ICAR) distribution has been primarily used 

as the priori distribution of spatially autocorrelated random variables in the framework of Bayesian statistics. The 

posterior distributions of spatial variates and unknown parameters of Bayesian ICAR models are estimated with 

the Markov chain Monte Carlo (MCMC) methods or integrated nested Laplace approximation (INLA), which may 

suffer from failures in numeric convergence. This study used the Laplace approximation, a fast computational 

method available in software Template Model Builder (TMB), for the maximum likelihood estimation (MLEs) of 

the ICAR model parameters. This study used the TMB to integrate out the latent spatial variates for the fast 

computations of marginal likelihood functions. This study compared the runtime and performance among the 

TMB, MCMC, and INLA implementations with three case studies of human diseases in the United Kingdom and 

the United States. The MLEs of the ICAR model with TMB were similar to those by the MCMC and INLA methods. 

The TMB implementation was faster than the MCMC (up to 10 0–20 0 times) and INLA (nine times) models. 

• This study built conditional autoregressive models in template model builder 
• TMB implementation was 10 0-20 0 times faster than the MCMC method 
• TMB implementation was also faster than Bayesian approximation with R INLA 
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Specifications table 

Subject area; Environmental Science 

More specific subject area; Applied spatial statistics for ecological risk assessments 

Name of your method; Laplace approximation for maximum likelihood estimation of CAR spatial 

statistical models 

Name and reference of original 

method; 

[1] . Spatial interaction and the statistical analysis of lattice systems. Journal of 

the Royal Statistical Society Series B 36: 192-236. 

Resource availability; The C ++ codes, R code and data used in this work are available in the 

supplemental material 

Method details 

Spatial autocorrelation is commonly found in geographically registered data. Ignoring spatial 

autocorrelation results in the bias in the parameter estimates of statistical models. For instance,

disregarding spatial autocorrelation may lead to the missing of the disease risk hotspots and

underestimate the variance of unknown parameters, misleading the statistical inferences of disease 

risks. Data on human and wildlife infectious disease are often collected as small areal data (i.e.,

observations in the neighboring polygons or in the grid cells of a lattice). Conditional autoregressive

(CAR) distributions have been used to account for spatial autocorrelation in small areal data [ 1 , 2 , 10 ].

Conditional autoregressive models are the first-order Gaussian Markov Random Field (GMRF) models 

on a 2-dimensional plane [ 12 , 15 ]. The GMRF model assumes the multivariate normal distribution

for a spatial variate and its first-order neighborhood with a sparse covariance matrix, which has

majority of its elements being zero and only non-zero elements between the pairs of the neighboring

cells (i.e., the pairwise Markov property). The latent spatial variates within the first-order spatial

neighborhood are assumed to be independent, conditional on the sparse covariance matrix and the 

spatial neighborhood (the local Markov property) [ 1 , 15 ]. Thus, the conditional spatial independence

can be used to account for the spatial autocorrelation in the small areal data [7] . The most popular

CAR model for disease risk assessments is the intrinsic CAR (ICAR) model. The ICAR model is a

special case of CAR models, of which the covariance matrix is simplified by omitting a parameter

that is difficult to estimate ( Eqn. 1 below) [ 1 , 2 , 8 ]. Consequently, the covariance matrix of the ICAR

distribution is not invertible due to the simplification [ 1 , 14 ]. Therefore, the sum-to-zero constraint

on spatially autocorrelated random variates has to be imposed to make the ICAR model identifiable

[ 7 , 14 ]. This technicality creates some difficulties in the development of fast, reliable computational

methods for the ICAR models, particularly in the frequentist framework [20] . 

In the framework of Bayesian statistics, the ICAR distribution is used as a prior distribution for

spatially autocorrelated random variates in conjunction with the uniform prior from negative to 

positive infinity for the intercept or mean [ 7 , 14 ]. The posterior marginals of unknown parameters

are proportional to the joint posterior distributions to a constant. The Markov chain Monte 

Carlo (MCMC) sampling is commonly used to estimate the posterior marginals of the unknown 

parameters of the ICAR model [10] . However, the MCMC chains for the ICAR model may suffer from

failures in the numeric convergence on the WinBUGS platform, which is not rare in the Bayesian

computation. Furthermore, the full Bayesian approach estimates the latent spatial variates using 

the MCMC methods, which increases the computational burdens. Alternatively, the R package INLA 

(Integrated Nested Laplace Approximation) includes different CAR models using approximate Bayesian 

computation (ABC) without the concern of the MCMC convergence [12] . The INLA approach uses

the GMRF to represent the set of the latent parameters (including unknown parameters and linear

predictors) of the generalized linear models and their extensions (i.e., model parameters, linear 

predictors, and latent spatial variates) of spatial and spatiotemporal statistical models [16] . The INLA

first uses the Laplace approximation and the Bayes’ Rule to compute the joint marginal posteriors

of model parameters and latent variables, respectively. Then the INLA numerically approximates 

the marginal posteriors of individual parameters or a latent variable by integrating out all other

parameters or latent variables with the Laplace approximation (i.e., Laplace approximation in a 

nested formulation) [17] . However, the nested Laplace approximation can be slow and fail to

converge numerically [13] . Compared to the MCMC and ABC implementations of ICAR models, fewer
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omputationally efficient CAR models are available in the frequentist framework [20] . Therefore,

here is a need for different com putational methods for CAR models for small-areal spatial data.

his study used the Laplace approximation within template model builder (TMB) to generate

he marginal likelihood function of the ICAR models, and then maximize the marginal likelihood

unction to estimate the unknown parameters of the ICAR model [9] . The TMB does not directly

stimate the latent spatial variates like its Bayesian counterpart; instead, the TMB uses a plug-in

ethod to estimate latent variables reducing computational burdens [19] . In a recent study, Wang

11] implemented multinomial-Dirichlet (M-D) models in TMB, which ran a few hundred times faster

han Bayesian M-D models in JAGS or Stan, a computer program for Bayesian statistics using the No-

-Turn sampler (NUTS) for the MCMC chains [5] . However, the performance of the TMB for small

real spatial data was unknown compared to the MCMC and ABC approaches. 

This study implemented the ICAR model using the TMB, WinBUGS, and INLA to compare

omputational performances among the TMB, WinBUGS, and INLA implementations and demonstrate

he computational efficiency and advantages of the TMB implementation over the MCMC and

NLA methods. The ICAR model functions in the WinBUGS and INLA are ready to use. This study

mplemented the ICAR models using the TMB C ++ template. We presented the mathematics and

tatistical expressions of the ICAR models below, which were used in the TMB implementation, for

eaders to understand and examine the TMB C ++ codes attached in the supplemental material. 

he Besag intrinsic conditional autoregressive model 

Besag [1] proposed CAR distributions for positive spatial autocorrelation in the lattice or the

irichlet polygons. Let s i denote a random variate in the polygon i and s 1 , s 2 , …, s i-1 , s i + 1 , …, s n i are

 i -1 the nearest or first-order neighboring polygons, of which each is directly bordered with polygon

 . Intrinsic CAR distributions assume s i following a conditional normal distribution: 

s i | s −i ∼ N 

( 

μi + 

n i ∑ 

j=1 

βi j ( s i − μi ) , σ
2 
i 

) 

, (1)

here μi is the mean of the spatial neighboring structure s ; s −i in the right side of the symbol “|”

s the n i -1 first-order neighbors of polygon i , indicating a conditional distribution of s i on its nearest

eighbors; σ 2 
i 

= σ 2 
s / n i ; and σ 2 

s is the variance of s . In the ICAR distributions, βi j is set to weight

 i j , where W i j = 1 if i � = j; otherwise, W i j = 0 . Intrinsic CAR models regress s i on the values of its

irectly bordering neighbors, providing a smoothing estimate of spatial effects within the nearest

eighborhood. 

ntrinsic conditional autoregressive models for the spatial structure in Poisson count 

This study focused on disease risk assessments using the count ( y ) of infection cases with the

ollowing model structure: 

y i ∼ Pois ( λi E i ) , 

ηi = log ( E i ) + log ( λi ) , 

log ( λi ) = β0 + 

p ∑ 

j=1 

β j x i j + s i , i = 1 , 2 , ..., N, (2)

here E i is the offset of polygon i ; λi is the relative risk of diseases; β0 is intercept; β j is the

oefficient of covariate x ij in polygon i ; and s i is the spatially structured variate of polygon i , which

ollows an ICAR distribution ( Eqn. 1 ). 

he implementation of the ICAR models in template model builder 

Template model builder is a C ++ based program for implementing hierarchical or multi-level

tatistical models using MLE methods [9] . Template model builder uses automatic differentiation
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(AD) to calculate the first- and second-order derivatives fast and accurately, which substantially 

speeds up the optimization of the Laplace approximation [18] . The TMB package also takes the

maximal computational advantage of the sparse covariance matrix for the fast maximization of model 

likelihood functions. The negative log likelihood function of Eqs 2 can also be implemented in the

matrix form as the following [7] : 

p ( s | τ ) ∝ exp 

(
− 1 

2 τ 2 
s ′ ( D w 

− W ) s 
)

nll = −
n ∑ 

i =1 

{ 

y i 

( 

log ( E i ) + 

( 

β0 + 

p ∑ 

j=1 

β j x i j + s i 

) ) 

−
( 

E i exp 

( 

β0 + 

p ∑ 

j=1 

β j x i j + s i 

) ) } 

+ 

1 

2 τ 2 
s ′ ( D w 

− W ) s , (3) 

where s is a vector spatial variate s 1 , …, s n ; s ’ is transposed s; W is the spatial weight matrix

with its element ij being equal to 1 if polygon j is a first-order neighbor of polygon i ; and D w 

is

a diagonal matrix with its diagonal elements (D ii ) being equal to the number of first-order neighbors

of polygon i ( i � = j ) or the row sum of matrix W . The terms log ( y i ! ) is omitted from Eqn 3 as well.

Matrix Q = D w 

−W is singular, not invertible; thus, instead of inverting Q to produce a covariance

matrix for multivariate normal distributions, negative log joint probability density functions (i.e., nll ) 

in Eqn 3 was integrated with regard to (w.r.t) random variable vector s to produce a negative log

marginal likelihood function ( nll ∗) by the Laplace approximation in TMB, 

nl l ∗ = 

∫ 
. . . 

∫ 
nl l ( θ, s ; y ) ds , (4) 

where θ is the unknown parameter vector including β0 , β j , and τ ; s is a vector of spatial variate s 1 , s 2 ,

…, s n . The negative log likelihood functions of Eqs 3 - 4 were implemented in the TMB C ++ template

and then were minimized by the R function optim(). The convergence was checked with the output

convergence indicator of optim() and the maximum gradient (derivative) of the log joint likelihood 

( ≈0). The TMB C ++ code was available in the supplemental material. 

The MCMC implementation of ICAR models in WINBUGS 

The Bayesian estimation of the unknown parameters of ICAR model with the MCMC approach

was implemented in WinBUGS. The WINBUGS codes were modified from [22] and is available in the

supplemental material. 

The integrated nested Laplace approximation of ICAR models 

The INLA method uses Laplace approximation to estimate the posterior marginals of unknown 

parameters, latent variables, and hyperparameters, whereas the TMB method uses Laplace 

approximation to integrate out latent variables to estimate the marginal likelihood functions without 

any prior distributions. The INLA assumes that the unknown parameter and linear predictors are latent

random variables following GMRF distributions. So these latent variables have multivariate normal 

or nearly normal distributions with the means of zeros and sparse precision matrices. Instead of

estimating multivariate Gaussian distributions, INLA applies Laplace approximation to estimate the 

posterior marginals of individual unknown parameters (including the hyperparameters of the MGRF 

precision matrices) or latent variables, respectively, in a nested structure. The review of the INLA

estimation procedures goes beyond the scope of this work. Interested readers can find the statistical

details in Rue et al. [17] . The RINLA code was modified from [21] for each case study. 

This study used three case studies of human diseases in the United Kingdom (UK) and the

United States (US), which were published in the literature [ 4 , 13 , 22 ]. The response variables are the

number of human suicides or the count of human disease incidents reported in an administrative

unit (i.e., small areal data), which is assumed to have Poisson distributions. Each administrative

unit has an irregular boundary polygon, which has various numbers of adjacent polygons (i.e., 
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Fig. 1. (a) Polygons of 67 counties of the State of Pennsylvania, the United States. A polygon represents the administrative 

boundary of a county. (b) Polygons of 32 boroughs, London, the United Kingdon. Each polygon represents the administrative 

boundary of a borough. Human suicide data did not include those from the City of London. The shapefile and data were 

obtained from Blangiardo and Cameletti [3] . (c) Polygons of 82 counties of the State of Mississippi, the United States. A polygon 

represents the administrative boundary of a county. 
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he first-order neighbors; Fig. 1 ). The boundary polygons are often saved as a GIS shapefile. The

ase study of the human infections of the West Nile virus in Mississippi was provided in the file

ms_human_wv_data.R”. The data will be loaded into the R environment by running the R code

ine ‘source(“ms_human_wv_data.R”)’. The GIS shapefile of the State of Mississippi boundary with

he boundaries of 82 counties was saved in “mississippi_county.shp” available in the supplemental

aterial. The R codes for loading and preparing data and running the TMB, WinBUGS, and INLA

odels are available in the file “ms_west_nile_final.R” in the supplemental material. 

ata on Pennsylvania lung cancer in 2002 

The number of lung cancer cases was compiled for each of the 67 counties of Pennsylvania, the US

 Fig. 1 a) in 2002. The number of expected lung cancer cases ( E ) was calculated by multiplying the rate

f lung cancer and population size using the function expected() within the R package SpatialEpi [13] .

ata on the number of lung cancer cases, expected number of lung cancer cases, and the shapefile of

he state and county boundaries of Pennsylvania were obtained from the R package SpatialEpi [13] .

he Besag ICAR model, y i ∼ Pois ( E i λi ) , log( λi ) = β0 + s i , i = 1, 2, …, 67, was fit to the lung cancer data

ith TMB, R INLA, and WinBUGS, respectively. Symbol β0 is the intercept or mean and s i is spatially

orrelated variate in polygon i. 
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Table 1 

Parameter estimates of intrinsic conditional autoregressive models for the number of lung cancer cases of 67 counties 

in the State of Pennsylvania, the United States in 2002 [13] . Parameter τ is the variance of spatially autocorrelative 

variates. The parameters were estimated by maximum likelihood method in template model builder (TMB), Markov 

chain Monte Carlo methods in WinBUGS (BUGS), and Bayesian approximation in R package INLA, respectively. Runtime 

is the computer elapse time during the execution of each program. 

Coefficient TMB BUGS INLA 

Intercept -0.050 (0.015) -0.051 (0.014) -0.050 (0.016) 

Spatial τ 0.133 (0.031) 0.142 (0.032) 0.142 (0.032) 

Runtime (s) 0.05 12.86 0.87 

Table 2 

Parameter estimates of intrinsic conditional autoregressive models for the number of human suicides in 32 boroughs 

in London, the United Kingdom from 1988 to 1992 [6] . Parameter τ is the variance of spatially autocorrelative variates. 

The parameters were estimated by maximum likelihood method in template model builder (TMB), Markov chain 

Monte Carlo methods in WinBUGS (BUGS), and Bayesian approximation in R package INLA, respectively. Runtime is 

the computer elapse time during the execution of each program. 

Coefficient TMB BUGS INLA 

Intercept 0.056 (0.017) 0.059 (0.016) 0.058 (0.016) 

β1 (social deprivation) 0.115 (0.022) 0.115 (0.022) 0.114 (0.024) 

β2 (social fragmentation) 0.175 (0.023) 0.175 (0.024) 0.175 (0.025) 

Spatial τ 0.144 (0.050) 0.142 (0.049) 0.164 (0.055) 

Runtime (s) 0.14 22.77 1.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data on suicides in London 

Congdon [6] studied suicide mortality in the 32 boroughs of London, the UK from 1989 to

1993 ( Fig. 1 b). The number of suicides, the expected number of suicides ( E ), and the shapefile of

the boundaries of the 32 boroughs were obtained from [3] . The Besag ICAR model, y i ∼ Pois ( E i λi ) ,

log( λi ) = β0 + β1 x i 1 + β2 x i 2 + s i , i = 1, 2, …, 32, was fit to the suicide data with TMB, R INLA, and

WinBUGS, respectively. The notation β j ( j = 0, 1, 2) is regression coefficient, x i1 is social deprivation,

x i2 is social fragmentation, and s i is spatially correlated variates. 

Data on human West Nile virus infection cases in Mississippi in 2002 

Wang et al. [22] analyzed data on the human West Nile virus incidences in the 82 counties ( Fig. 1 c)

of Mississippi, the US in 2002 using the ICAR model within WinBUGS. The expected number of human

West Nile virus infections was estimated for each county by multiplying county human population 

size of the US 20 0 0 Census with the 2002 US national human incidence rate. The Besag ICAR model,

y i ∼ Pois ( E i λi ) , log( λi ) = β0 + s i , i = 1, 2, …, 82, was fit to the human West Nile virus infection data

with TMB, R INLA, and WinBUGS, respectively. Symbol β0 is the intercept or mean and s i is spatially

correlated variate in polygon i. 

Comparisons of model performances and runtime among the TMB, MCMC, and INLA implementations 

All three estimation methods produced similar estimates of the intercept for the 2002 lung cancer

data of Pennsylvania ( Table 1 ). The estimates of both the mean and standard error only differed

at the third decimal place. The MLE estimates of the variance of spatially autocorrelative variates

by TMB were slightly lower than those by the MCMC with WinBUGS and Bayesian approximation

with R INLA (0.13 vs. 0.14, Table 1 ). Template model builder produced similar estimates of regression

coefficients with those by the MCMC with WinBUGS for the suicide data in London ( Table 2 ). Likewise,

the estimates of intercept and spatial variance of the ICAR model for the human West Nile virus

infections of Mississippi in 2002 were similar between the MLE and Bayesian estimates (Tables 3).
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Table 3 

Parameter estimates of intrinsic conditional autoregressive models for the number of human West Nile virus cases 

in 82 counties in the State of Mississippi, the United States in 2002 [22] . Parameter τ is the variance of spatially 

autocorrelative variates. The parameters were estimated by maximum likelihood method in template model builder 

(TMB), Markov chain Monte Carlo methods in WinBUGS (BUGS), and Bayesian approximation in R package INLA, 

respectively. Runtime is the computer elapse time during the execution of each program. 

Coefficient TMB BUGS INLA 

Intercept -0.196 (0.123) -0.195 (0.122) -0.205 (0.123) 

Spatial τ 1.170 (0.264) 1.155 (0.255) 1.195 (0.257) 

Runtime (s) 0.10 14.56 0.92 
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he TMB models was 9 times faster that the INLA models and > 100 times faster with the MCMC on

he WinBUGS ( Tables 1-3 ). 

dvantages of the template model builder for ICAR models 

This study has demonstrated the feasibility to use the Laplace approximation of TMB to integrate

ut spatial variates for the MLE of the ICAR model. Template model builder can detect the sparsity

f covariance matrices and use the sparse matrix to enhance and speed up the maximization of

ikelihood functions [9] . 

The fast runtime of TMB, as shown in this study, can help us develop the ICAR model in multiple

ays. First, TMB helps with the development and variable selection of the ICAR models, iterating

hrough various models of different structures in a reasonable timeframe. Second, TMB is free of

he MCMC convergence issue. Bayesian model parameterization, such as the choice of the prior

istributions and initial values of model parameters, can facilitate the convergence of the MCMC

hains. The results of the ICAR model with TMB may provide information for the prior choice and

nitial values of the full Bayesian CAR models to facilitate the MCMC convergence [11] . 
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