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Abstract

Heavy metal and metalloid contaminations are among the most concerning types of pollut-

ant in the environment. Consequently, it is important to investigate the molecular mecha-

nisms of cellular responses and detoxification pathways for these compounds in living

organisms. To date, a number of genes have been linked to the detoxification process. The

expression of these genes can be controlled at both transcriptional and translational levels.

In baker’s yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is

regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has gluta-

thione peroxidase activity and is homologous to mammalian glutathione S-transferases.

The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on

the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small

ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes

to gene deletion strain for URE2. Neither of these genes were previously linked to metal tox-

icity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA

expression at the level of translation.

Introduction

Heavy metals and metalloids comprise a group of elements that are loosely defined as relatively

high-density transition metals and metalloids [1], [2]. Different metals are found in varied
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concentrations across the environment. Some of these heavy elements, such as iron (Fe), cobalt

(Co) and zinc Zn, are essential nutrients, while others are relatively harmless at low concentra-

tions such as rubidium (Ru), silver (Ag) and indium (In). At higher concentrations, all metals

and metalloids derived from natural environment [3] or anthropogenic sources such as phos-

phate fertilizers, disinfectants, fungicides, sewage sludge, industrial waste, bad watering prac-

tices in agricultural lands, and dust from smelters [4], [5] are toxic to living cells [6], [7], [8].

Among these, arsenic (As) is one of the most toxic despite being the twentieth most abundant

element on our planet. Its inorganic oxyanion forms including arsenite (As(III)) and arsenate

(As(II)) are highly lethal to living organisms [9].

Over the course of evolution, many organisms have found ways, for example, by evolving

molecular pathways to survive increased concentrations of metallic toxins in their environ-

ment e.g. [10], [11], [12], [13]. Microbes with extreme adaptation to heavy metals use detoxifi-

cation pathways to reduce toxic metals to a lower redox state, which lessens their mobility and

toxicity [14]. The baker’s yeast, Saccharomyces cerevisiae possesses an effective mechanism to

negate heavy metal and metalloids toxicity, allowing it to survive a broad range of toxic stress

scenarios [15], [16]. This makes yeast an ideal model organism to study molecular mechanisms

of the stress response that drive detoxification processes.

The glutathione S-transferases (GSTs) are key enzymes that mediate the resistance of S.

cerevisiae to a wide range of heavy metals and metalloids. Yeast Ureidosuccinate Transport 2
(URE2) gene product is structurally homologous to mammalian GST and is a major player in

the detoxification of S. cerevisiae against toxic metals through its glutathione peroxidase

activity [17], [18]. For detoxification purposes, GST proteins catalyze the conjugation of the

reduced form of glutathione (GSH) to xenobiotic substrates [19]. The deletion strain for

URE2 is hypersensitive to a wide range of heavy metals and metalloids including As, Cd and

nickel (Ni) [19], [20]. In this report, we show that the deletion of either ITT1 (inhibitor of

translation termination 1) or RPS1A (small ribosomal subunit protein 10), makes the cells

more sensitive to As(III), cadmium (Cd) and Ni suggesting a functional connection of these

two genes with heavy metal toxicity. Itt1p is known to modulate the efficiency of translation

termination through physical interactions with two eukaryotic release factors eRF1 (Sup45p)

and eRF3 (Sup35p) [21]. Rps1Ap is a constituent of the small ribosomal subunit; little infor-

mation is known about its function in S. cerevisiae [22]. Neither of these genes had previously

been linked to heavy metal toxicity. Overall, we provide evidence that the connection for

ITT1 and RPS1A with heavy metal toxicity is through their influence on the translation of

URE2 gene.

Materials and methods

Strains and plasmids used in this study

Yeast, S. cerevisiae, mating type (a) MATa strain Y4741 (MATa orfΔ::KanMAX4 his3Δ1 leu2Δ0
met15Δ0 ura3Δ0) and mating type (α) MATα strain, BY7092 (MATα can1Δ::STE2pr-Sp_his5
lyp1Δ his3Δ1 leu21Δ0 ura3Δ0 met15Δ0) [23] were utilized for this study. The yeast MATa

knockout (YKO) collection [23] and PCR-based transformed cells were used as a source of

gene deletion mutants; the open reading frame (ORF) collection [24] was used for over expres-

sion plasmid vectors. Yeast GFP Clones [25] were modified for Western blot analysis. pAG25

plasmid containing the Nourseothricin Sulfate (clonNAT) resistance gene was used as a DNA

template in PCR to generate gene knockouts. Escherichia coli strain DH5αwas used to replicate

different plasmids [26]. Two plasmids were used carrying the β-galactosidase open reading

frame for quantification of URE2-IRES and cap-dependent translation activities. p281-4-URE2
contained a URE2-IRES region which was fused with LacZ (β-galactosidase) gene from E. coli,
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and p281 contained only the β-galactosidase gene as a control for cap-dependent translation

[27]. All plasmids carried an ampicillin resistance gene which was used as selectable marker in

E. coli and the URAcil requiring 3 (URA3) marker gene which was used for selection in yeast.

Media and miniprep

YP (1% Yeast extract, 2% Peptone) or SC (Synthetic Complete) with selective amino acids

(0.67% Yeast nitrogen base w/o amino acids, 0.2% Dropout mix,) either with 2% dextrose or

2% galactose as a source of carbohydrates was used as culture medium for yeast and LB (Lysog-

eny Broth) was used for E. coli cultures. 2% agar was used for all solid media. Yeast cells were

grown at 30˚C unless otherwise indicated in the SGA procedure. E. coli cells were grown at

37˚C. Yeast plasmid extraction was performed by using yeast plasmid mini kit (Omega Bio-

tek1) and E. coli plasmid extraction was carried out by using GeneJET plasmid miniprep kit

(Thermofisher1) according to the manufacturer’s instructions.

Gene knockout and DNA transformation

Mutant strains were either selected from the library of gene deletions [23] in MATa haploid

form or a PCR-based gene knockout approach was used to achieve gene deletion. Targeted

gene knockout strains were generated by PCR-based gene deletion strategy utilizing the clon-

NAT selection gene [28], [29]. Plasmid and gene transformation were performed by using a

chemical-transformation strategy (LiOAc method) and confirmed via colony PCR [30], [31].

Chemical sensitivity

Colony count assay (spot test) was performed to estimate the cell sensitivities, based on

their ability to give rise to colonies. Strains were grown in liquid YPD or SC without uracil

to saturation phase and serially diluted in sterile distilled H2O to 10−4 and aliquots were

streaked on solid media. The cells were cultured on YP, and YP supplemented with

Na3AsO3 (As(III) (1 mM)), CdCl2 (Cd (0.1 mM)), NiCl2 (Ni (8 mM)), as well as 6% ethanol

and 6% ethanol + Na3AsO3 (As(III) (0.3 mM)) for two days at 30˚C. YP + 2% glucose

(YPD) was used for the experiments without the involvement of any plasmid and YP + 2%

galactose (YPG) was used for experiments harboring plasmids (overexpression) with a

galactose-inducible promoter (GAL1/10), in order to activate the desired gene. The number

of colonies under drug conditions were compared to the number of colonies formed under

non-drug conditions for consistency and subsequently normalized to the number of colo-

nies formed by wild type (WT) strain under the same condition. Each experiment was

repeated at least three times.

Quantitative β-galactosidase assay

ortho-Nitrophenyl-β-galactoside (ONPG)-based β-galactosidase analysis was used to quantify

involvement of the identified genes in the IRES-mediated translation of URE2 via quantifica-

tion of β-galactosidase activity produced by a plasmid containing URE2-IRES fused to a β-
galactosidase reporter (p281-4-URE2) [27]. This plasmid contains a DNA sequence that forms

four strong hairpin loops prior to URE2-IRES region at its mRNA level. These four hairpin

loops inhibit cap-dependent translation of URE2 mRNA. A background plasmid (p281) carry-

ing only a β-galactosidase reporter was used as a control for cap-dependent translation [27].

Both plasmids contained a GAL1/10 promoter and YPG was used as a medium to activate the

desired gene [32]. Each experiment was repeated at least three times.
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Reverse Transcriptase quantitative PCR (RT-qPCR)

This methodology was used to assess the content of target mRNAs. Total mRNA was reverse-

transcribed into complementary DNA (cDNA), using iScript Select cDNA Synthesis Kit (Bio-

Rad1) according to the manufacturer’s instructions. cDNA was then used as a template for

quantitative PCR (qPCR). Total RNA extractions were performed with Qiagen RNeasy Mini

Kit (Qiagen1). qPCR was carried out using Bio-Rad iQ SYBR Green Supermix and the CFX

connect real time system (Bio-Rad1), according to the manufacturer’s instructions. In this

experiment, PGK1 was used as a constitutive housekeeping gene and related to WT [31], [32].

Each qPCR experiment was repeated at least three times using separate cDNA samples. Fol-

lowing oligonucleotide primers were used to quantify URE2 and PGK1 mRNAs:

Forward URE2: ATGATGAATAACAACGGCAA

Revers URE2: TCATTCACCACGCAATGCCT

Forward PGK1: ATGTCTTTATCTTCAAAGTT

Revers PGK1: TTATTTCTTTTCGGATAAGA

Immunoblotting

Western blotting was used to quantify relative protein levels. Total protein was isolated using

detergent-free methods as described in [33]. Samples were grown overnight in liquid YPD, pel-

leted and washed with PBS buffer. Samples for As(III) treatment, were grown overnight in liq-

uid YPD and then treated with Na3AsO3 (As(III) (0.5 mM)) for 2 hours. Bicinchoninic acid

assay (BCA) (Thermofisher1) was used to quantify total protein concentration according to

manufacturer’s instructions. Equal amounts of total protein extract (50 μg) were loaded onto a

10% SDS-PAGE gel, run on Mini-PROTEAN Tetra cell electrophoresis apparatus system (Bio-

Rad1) [34]. Proteins were transferred to a nitrocellulose 0.45 μm paper (Bio-Rad1) via a

Trans-Blot Semi-Dry Transfer (Bio-Rad1). Mouse monoclonal anti-GFP antibody (Santa

Cruz1) was used to detect protein level of Ure2p in Ure2-GFP protein fusion strains. Pgk1p

was also used as a constitutive housekeeping protein for quantification purposes. Mouse anti-

Pgk1 (Abcam1) was used to detect Pgk1p levels [31]. Immunoblots were visualized with

chemiluminescent substrates (Bio-Rad1) on a Vilber Lourmat gel doc Fusion FX5-XT (Vil-

ber1). Densitometry analysis was carried out using the FUSION FX software (Vilber1), and

each density was normalized to the density formed by Pgk1p control. Each experiment was

repeated at least three times using three separate total protein isolates.

Polyribosome fractionation

The total RNA extraction from yeast cells was adapted from [35]. Overnight cell culture was

used to inoculate YPD liquid medium. Prior to extraction, cycloheximide (100 μg/ml was

added to the samples for 15 minutes. Yeast culture was harvested at mid-log phase (OD600

0.6–0.8) and immediately chilled on dry ice prior to lysing the cells. Yeast cells were lysed by

mechanical disruption using 425–600 μm acid-washed glass beads (Sigma1). Fifty μg of the

total RNA was then loaded on a 10–50% sucrose gradient (20 mM Tris pH 8, 140 mM KCl,

5 mM MgCl2, 0.5 mM DTT, 100 μg/ml cycloheximide and sucrose to desired concentra-

tion). An Automated Gradient Maker (Biocomp gradient maker) was used to produce the

sucrose gradients. Centrifugation was performed at 40,000 rpm for 2 hours at 4˚C (Beckman

Optima LE-80K Ultracentrifuge) to separate the particles according to relative sedimenta-

tion rate.
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Samples were analysed via a Biocomp Gradient Station immediately after centrifugation.

The instrument recorded A254 using a flow cell coupled with a spectrophotometer (Bio-Rad

Econo UV monitor). In this procedure, untranslated mRNAs (top fractions) are separated

from polysome-associated mRNAs (bottom fractions) as described in [36]. Fractions were col-

lected (~650 μl) using Bio-Rad Collection Station (Bio-Rad1) and adjusted to 1% SDS for fluc-

tuation analysis of URE2 mRNA level via RT-qPCR [37]. Each polysome profiling experiment

was repeated at least three times.

Luciferase RNA (0.1 μg/ml) (Promega1) was then added to each fraction as a control. RNA

was precipitated overnight and purified as described in [37], by using Glycoblue and acidic

Phenol/chloroform (pH 4). Purified RNA samples were subjected to quantification for URE2
mRNA by performing RT-qPCR as described in the above section. The normalized values for

each fraction was determined by using the Ct values for URE2 and the Ct values for the gene of

interest using the formula [2^(Ct luciferase−Ct target gene)] [38]. The relative amount of URE2
mRNA was calculated by dividing the amount in each fraction by the total signal in all frac-

tions [38], [39]. RT-qPCR analysis for polysome profiling was repeated at least three times

using fractions from three separate polysome profiles.

Genetic interaction (GI) and conditional GI analysis

Synthetic genetic array (SGA) analysis was performed in large-scale through the creation of

double-mutations and subsequent analysis of colony size (fitness) as previously described in

[31], [40]. In summary, both gene candidates ITT1 and RPS1A were knocked out in MATα
(BY7092) and crossed with two arrays of haploid MATa knock-out strains [31]. The first array

contained 384 deletion strains for genes that are directly or indirectly involved in the process

of translation (translation gene deletion array). The second contained 384 random genes that

were selected from the YKO collection [23], [31], which was used as a control. Selectable mark-

ers designated in each background mating type, allowed for multiple selection steps. Meiotic

progeny harboring both mutations were selected. The created arrays could then be used to

score double mutants for their altered fitness under certain conditions [23].

Colony size of both single mutant arrays (reference and control) and double mutant arrays

were measured for their colony fitness [41], [42]. After three repeats, the interactions with 20%

alteration or more in at least two repeats were considered positive hits. Conditional SGA anal-

ysis was carried on under sub-inhibitory concentrations of chemicals (0.7 mM for As(III) and

60 ng/ml for cycloheximide). Phenotypic suppression array (PSA) analysis infers closer func-

tional relationships between interacting genes by establishing a more direct form of GI. It

refers to situations where defective growth caused by deletion of a particular gene, in a specific

growth condition (for example presence of a drug) is rescued by the overexpression of another.

PSA analysis was performed under a high sub-inhibitory targeted condition (As(III) (1.2 mM)

and cycloheximide (100 ng/ml)) as previously described in [31], [43], by overexpressing either

ITT1 or RPS1A in the above described translation gene deletion array. Each experiment was

repeated three times and the interactions with 25% alteration or more in at least two screens

were scored as positive.

Results and discussion

Deletion of ITT1 or RPS1A increases yeast sensitivity to heavy metals

Understanding the biology of the stress that heavy metals exert on a cell, as well as the cellular

responses and mechanisms that a cell uses for detoxification of these toxins, has been the sub-

ject of numerous investigations over the past decades e.g. [2], [14], [15], [16]. Although much

has been learned, additional studies are needed to uncover details of such responses as well as
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additional genes that may participate in this process. To this end, while screening for yeast

gene deletion mutants against heavy metals, we identified two deletion mutant strains for

ITT1 and RPS1A that showed increased sensitivity to three heavy metals (As, Ni and Cd).

These two genes are part of a larger investigation to study the chemical-genetic profile of

heavy metals in yeast e.g. [44]; details of this study will be published elsewhere. In our spot

test sensitivity analysis, when As(III) (1 mM), Cd (0.1 mM) and Ni (8 mM) were added to

the solid media the number of normalized yeast colony counts were significantly reduced for

itt1Δ and rps1aΔ strains (Fig 1A), highlighting the sensitivity of the mutant strains to these

metals and metalloids. Rescue experiments revealed a complete recovery to heavy metal tox-

icity upon the reintroduction of the deleted genes into their corresponding mutants (Fig 1B).

This reversion of sensitivity indicates that the sensitivity phenotypes are in fact a conse-

quence of the intended gene deletions and are not due to a possible secondary mutation

within the genome. The sensitivity of deletion mutants to As, Cd and Ni suggests a potential

association for the target genes to heavy metal toxicity, a unique observation that has not

been previously reported.

Since the function of both ITT1 and RPS1A can be linked to the process of protein biosyn-

thesis [21], [22], it is conceivable that these genes may indirectly influence heavy metal sensi-

tivity by regulating the activity of another gene. However, given that the Ure2p is reported to

be a key enzyme involved in heavy metal detoxification in yeast [19], [20], we made double

gene deletion mutants for ITT1 and RPS1A with URE2 and exposed them to As(III) (1 mM)

for further analysis (Fig 1C). The sensitivity analysis of the double gene deletion mutants indi-

cated no increased sensitivity to As(III) in addition to that observed for the single gene dele-

tion mutant for URE2. This specifies a dominant effect for URE2 on heavy metal sensitivity

over ITT1 and RPS1A (Fig 1C). To further support the observed phenotype, we introduced

plasmid vectors containing ITT1 and RPS1A into the deletion strain of URE2 (Fig 1D). The

results demonstrated the same levels of sensitivity to As(III) with no compensation, deeming

indirect roles of ITT1 and RPS1A in rescuing the cells from As(III) toxicity when URE2 is

deleted. One way to explain this data is that ITT1 and RPS1A may exert their effect on sensitiv-

ity via the same pathway as URE2. If ITT1 and RPS1A influenced a second pathway, it might

be expected that their deletion would have had an additional effect on sensitivity when com-

bined with URE2 deletion [44]. However, this was not observed. On the other hand, overex-

pression of URE2 in itt1Δ and rps1aΔ strains reversed the As(III) sensitivity phenotype

observed by the corresponding gene deletions, effectively deeming these gene deletions incon-

sequential for heavy metal sensitivity (Fig 1E). These observations are in accordance with the

activity of URE2 as a dominant player in heavy metal toxicity and that it functions downstream

of ITT1 and RPS1A. Finally, to ensure the specific sensitivity of itt1Δ and rps1aΔ strains to

heavy metals, we investigated the introduction of different oxidative stress conditions such as

methyl methanesulfonate (MMS), acetic acid, and heat shock (S1 Fig).

Our findings suggest that the influence of ITT1 and RPS1A on heavy metal sensitivity is

linked to URE2. Although both ITT1 and RPS1A have reported roles in protein biosynthesis

[21], [22], the possible mechanism, regulation of transcription or translation of URE2 remains

to be investigated.

ITT1 and RPS1A do not affect the expression of URE2 at the mRNA level

RT-qPCR was employed to detect possible changes to URE2 mRNA levels in the absence of

ITT1 and RPS1A. Fig 2 illustrates our observation that in comparison to WT, the URE2 mRNA

appeared unchanged in the mutant strains, itt1Δ and rps1aΔ. We also investigated the content

of URE2 mRNA after exposure to As(III) (0.5 mM). As noted before, neither the deletion of

ITT1 and RPS1A affect URE2 expression in yeast
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ITT1 or RPS1A appeared to influence the content of URE2 mRNA, suggesting that the activity

of ITT1 and RPS1A is independent of URE2 mRNA content.

Ure2p content is reduced in the absence of ITT1 or RPS1A
We investigated the level of Ure2p in the presence and absence of ITT1 or RPS1A in the cells

by Western blot analysis. This was accomplished using a strain that carried Ure2p fused to a

GFP at the genomic level. Our analyses show a reduction in the endogenously-expressed

Ure2-GFP fusion protein levels in the absence of ITT1 or RPS1A (Fig 3). When either ITT1 or

RPS1A were deleted, Ure2p levels were reduced by approximately 40% and 60%, respectively,

compared to the WT cells (Fig 3A). This suggests that ITT1 and RPS1A play an imperative role

in regulating the expression of Ure2p. In parallel, introduction of As(III) (0.5 mM) to the

growth media reduced Ure2p approximately 70% and 80% for Δitt1 and Δrps1a, respectively

compared to WT strain (Fig 3B) which is reduced by approximately 34% in the presence of As

(III) (0.5 mM) compared to normal experimental condition. Deletion of ITT1 or RPS1A did

not change the protein levels of Pgk1p, used as an internal control. These observations provide

evidence by connecting ITT1 and RPS1A activities to the level of Ure2p. The additional

Fig 1. Normalized CFU counts for different yeast strains after exposure to As(III) (1 mM). CFU counts after 3 days exposure to the experimental

condition are normalized to control condition counts. (A) Sensitivity of itt1Δ, rps1aΔ and ure2Δ compare to WT phenotype. (B) Rescued sensitivity of

all deletion strains by reintroduction of their overexpression plasmids. (C) Sensitivity analysis for double gene deletions for ITT1 or RPS1A in the

absence of URE2 compared to single gene deletion of URE2. (D) Sensitivity analysis for overexpression of ITT1 or RPS1A in the absence of URE2. (E)

sensitivity of itt1Δ, rps1aΔ after introduction of pURE2 (carries URE2 genes). Each experiment was repeated at least three times. Error bars are

calculated as standard deviations. � Indicates statistically significant differences (t-test) between WT cells and mutant cells treated with heavy metals (p

<0.005). Colour code is the same as in (A) for all panels.

https://doi.org/10.1371/journal.pone.0198704.g001
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reduction in the Ure2p levels in the presence of As(III) implicates that ITT1 and RPS1A may

have a higher influence in regulation of Ure2p expression under a stress condition.

Analysis of the URE2 translation

Since our data suggests a role for ITT1 and RPS1A in modulating URE2 expression at the pro-

tein level, polyribosome-bound mRNA analysis was performed. In this method, fractions of

polysomes are isolated and analyzed for their content of a target mRNA. Those mRNAs that

are translated more efficiently are generally found in association with multiple ribosomes and

hence will be isolated in heavier polysome fractions. In contrast, those mRNAs, which are

translated to a lesser degree, can be found in lower density fractions [34]. In this way, the dis-

tribution of mRNAs within polysome fractions can be used to estimate the translation effi-

ciency of the target mRNA. Using this strategy, polysome profile analysis was performed for

URE2 mRNA, in the presence or absence of ITT1 and RPS1A. Analysis of the polysome frac-

tions for URE2 mRNA content using RT-qPCR, normalized to a control (housekeeping)

mRNA (PGK1), showed a shift in URE2 mRNA accumulation towards lighter polysome frac-

tions for mutant strains (Fig 4), suggesting that when ITT1 or RPS1A are deleted, URE2
mRNA is translated to a less efficiently. These data provide direct evidence that ITT1 and

RPS1A affect the translation of URE2 mRNA.

Fig 2. The relative URE2 mRNA level quantified by normalizing the mRNA content of the mutant strains to those in the wild type. The house

keeping gene PGK1 was used as an internal control. Deletion of ITT1 or RPS1A had no effect on the normalized URE2mRNA content. Each experiment

was repeated at least three times. Error bars represent standard deviations.

https://doi.org/10.1371/journal.pone.0198704.g002
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Ethanol increases As(III) sensitivity for ITT1 and RPS1A gene deletion

strains

In addition to cap-dependent translation, URE2 mRNA has been shown to undergo a cap-

independent translation, which represents an interesting mode of gene expression control

[27]. Cap-dependent translation is mediated through the scanning of mRNA 5’ UTR to find a

suitable start codon. In cap-independent translation, mRNA structures called Internal Ribo-

some Entry Site (IRES) mediate the interaction between ribosomes and the mRNA, indepen-

dently of the 5’cap [45]. IRES-mediated translation is mainly used by RNA viruses but it can

also be found in cellular mRNAs [46], [47]. The majority of translation in eukaryotes occurs

through cap-dependent translation, whereas IRES-mediated translation is often associated

with physiological conditions such as stress, where general translation is compromised [45],

[48], [49].

Knowing that the exposure to heavy metal causes a stress condition for yeast cells e.g. [19],

[50] we examined the possibility that ITT1 and RPS1A may influence IRES-mediated URE2
mRNA translation. As a quick measure to examine this possibility, ethanol sensitivity analysis

was used as a positive stress control. Eukaryotic initiation factor 2A (eIF2A) acts as a regulator

of IRES-mediated translation in S. cerevisiae cells [51]. Abundance of eIF2A is shown to specif-

ically repress IRES-mediated translation of URE2 as well as other yeast genes with IRES form-

ing region [51]. It was previously reported that ethanol reduces the expression of eIF2A at

protein levels and hence promotes translation via IRES elements [51].

As described, URE2 plays a critical role in heavy metal detoxification [19], [49]. If ITT1 and

RPS1A affect IRES-mediated translation of URE2 mRNA, one may expect the presence of etha-

nol to further enhance the sensitivity of itt1Δ and rps1aΔ to As(III) treatment. In this case,

Fig 3. Western blot followed by densitometry analysis to measure Ure2-GFP levels in different yeast strains. Values are normalized to that for

Pgk1p, used as an internal control and related to the values for WT strain. (A) Cells are grown under standard laboratory conditions. (B) Cells are

challenged by As(III) (0.5 mM). In WT strain, normalized Ure2-GFP level was reduced by 34% ± 4% in the presence of As(III) (0.5 mM). Each

experiment was repeated at least three times. Error bars represent standard deviations. � Indicates statistically significant differences (t-test) between

WT cells and mutant cells untreated and treated with As(III) (p<0.005).

https://doi.org/10.1371/journal.pone.0198704.g003
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presence of ethanol and deletion of either ITT1 or RPS1A could be considered to introduce a

double effect on the same overall process.

As demonstrated in Fig 5, ure2Δ, itt1Δ and rps1aΔ showed hypersensitivity to a very low

concentration of As(III) (0.3 mM) in the presence of 6% ethanol which suggests that ethanol

increases the sensitivity of mutant strains to As(III). The mutant strains did not exhibit sensi-

tivity to neither 0.3 mM of As(III) nor 6% ethanol separately. These data may suggest a con-

nection for the activities of ITT1 and RPS1A to IRES-mediated translation. These outcomes

are open to other explanations, for example, ethanol and As(III) may have alternative effects

on the cell independent of IRES-mediated translation and hence influence cell viability. In this

context double deletion strains for eIF2A with ITT1 or RPS1A showed similar sensitivity to the

presence of either As(III) (0.3 mM) alone or with ethanol (6%) (Fig 5) connecting the reported

activity of ethanol to eIF2A. Nonetheless, additional experiments are needed to confirm these

interpretations. A double gene deletion for ITT1 or RPS1A with URE2 did not result in addi-

tional sensitivity compared to that observed for URE2 single gene deletion. This additionally

reiterates the connection between the activities of ITT1 and RPS1A via URE2 expression.

ITT1 and RPS1A affect IRES-mediated translation of a β-galactosidase
reporter gene

To further study the effect of ITT1 and RPS1A on IRES-mediated translation of URE2, we used

a β-galactosidase reporter whereby the β-gal mRNA is under the translational control of the

Fig 4. Polysome-bound mRNA analysis of itt1Δ, rps1aΔ and WT strains. The amount of URE2mRNA in each fraction was determined by RT-qPCR

and the percentage of total URE2mRNA on the gradient is plotted for each fraction. The profiles of PGK1 mRNA, used as an internal control, were

similar for deletion and WT strains and were used to normalize other values. Each experiment was repeated at least three times. Error bars represent

standard deviations.

https://doi.org/10.1371/journal.pone.0198704.g004
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URE2-IRES element. For this purpose, we utilized a previously published plasmid construct

known as p281-4-URE2 (Fig 6) [27], [51].

As shown in Fig 6, deletion of either ITT1 or RPS1A resulted in reduced expression of β-
galactosidase under the translational control of URE2-IRES. This data further supports the

notion that ITT1 and RPS1A regulate URE2-IRES-mediated translation. As a control to

account for cap-dependent translation activity, p281 background construct [27], [51] carrying

a β-galactosidase mRNA lacking four hairpin loops and URE2-IRES was utilized. We observed

no significant difference in β-galactosidase activity for WT, Δitt1 and Δrps1a strains indicating

that ITT1 and RPS1A do not influence cap-dependent translation (Fig 6). Since the reduced

levels of β-galactosidase may be a consequence of reduced mRNA, the β-galactosidase mRNA

was evaluated using RT-qPCR. As expected, we observed no significant change in its mRNA

level in the absence of neither ITT1 nor RPS1A (Fig 6B).

Genetic interaction analysis further connects the activity of ITT1 and

RPS1A to regulation of translation in response to stress

To further examine the role of ITT1 and RPS1A in the process of translation, we studied the

genetic interactions (GIs) by screening ITT1 and RPS1A against an array of 384 genes associ-

ated with protein biosynthesis and a second set of 384 random genes used for control pur-

poses. Genes that are functionally related often partake in GIs (also known as epistatic

interactions) [52], [53]. The most commonly studied form of GI is known as negative GI,

where the reduced fitness or lethal phenotype of a double mutant strain for missing two genes

is not observed in single mutant strains [31]. Genes that are associated with parallel and com-

pensating pathways are thought to commonly form negative GIs [31], [40]. Under standard

laboratory growth conditions, both ITT1 and RPS1A exhibited negative GIs with a limited

number of genes involved in the process of protein biosynthesis (Fig 7A and 7B). This is

expected as both genes are thought to be involved in the process of translation. Examples of

Fig 5. Average viability of single and double gene deletion strains for ITT1 and RPS1A with URE2. Cells were exposed to As(III) (0.3 mM), 6%

ethanol, a combination of both (6% ethanol + As(III) (0.3 mM)) or no treatment (control). CFU counts after 3 days of exposure to the experimental

conditions are normalized to CFU counts for WT strain. Error bars represent standard deviation of at least three independent experiments. � Indicates

statistically significant differences (t-test) between WT cells and mutant cells treated with As(III) + ethanol (p<0.005).

https://doi.org/10.1371/journal.pone.0198704.g005
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genes that formed GIs with ITT1 and RPS1A are large ribosomal subunit protein 19A

(RPL19A) and general control non-derepressible (GCN3), respectively. Rpl19p is a conserved

large ribosomal subunit protein involved in ribosomal intersubunit bridging and its alteration

is connected to the fidelity of translation [54], [55]. On the other hand, GCN3 is the alpha sub-

unit of translation initiation factor 2B (eIF2B), which is involved in guanine-nucleotide

exchange for eIF2. In this manner, phosphorylation of eIF2B regulates the activity of Gcn3p

[56], [57].

Conditional GIs define an interesting type of GIs as they provide more compelling insight

on the function of target genes under specific conditions [31], [58]. They represent the mosaic

nature of gene function(s) which can change as a result of different external or internal factors.

For example, although a number of genes are known to play a role in the DNA repair pathway,

their expression is only regulated in response to the presence of DNA damage [29], [43]. We

therefore investigated the negative GIs by assaying ITT1 and RPS1A in the presence of a low

concentration of As(III) (0.7 mM). Under this condition, we found both genes to form a new

set of interactions with a series of genes that play a role in the regulation of translation (Fig 7A

and 7B). This data suggests that in the presence of As(III), both genes appear to gain a new

role in regulating the process of translation (p-value ITT1= 9.39e-5 and p-value RPS1A =

5.26e-10) (Fig 7A and 7B). Suppressor of ToM1 (STM1) is an example of a gene that formed

new negative genetic interactions in the presence of As(III) with both ITT1 and RPS1A. STM1
codes for a protein that is required for optimal translation under nutrient stress [59], [60].

Enhancer of mRNA DeCapping EDC1 and its paralog EDC2 are other examples of the negative

interactions gained by RPS1A under As(III) condition. Edc proteins directly bind to mRNA

substrates and activate mRNA decapping. They also play a role in translation during stress

conditions such as heat shock [61]. We also studied negative GIs in the presence of cyclohexi-

mide, which binds to the E-site of the 60S ribosomal subunit and interferes with deacylated

Fig 6. Effect of gene deletion on translation and transcription of β-galactosidase mRNA. (A) The relative β-galactosidase activity is determined by

normalizing the activity of the mutant strains to that of the WT strain. Blue bars represent β-galactosidase activity under the translational control of

URE2-IRES. Red bars represent β-galactosidase activity via cap-dependent translation. (B) The relative β-galactosidase mRNA level quantified by

normalizing the mRNA content of the mutant strains to those in the wild type. The house keeping gene PGK1 was used as an internal control. Deletion

of ITT1 or RPS1A had no effect on the normalized β-galactosidase mRNA content. Each experiment was repeated at least three times. Error bars

represent standard deviations. � Indicates statistically significant differences (t-test) between WT cells and mutant cells (p<0.005).

https://doi.org/10.1371/journal.pone.0198704.g006
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tRNA to inhibit general protein synthesis in the cell [62] (Fig 7A and 7B). Similar to our obser-

vations with As(III), in the presence of a mild concentration of cycloheximide (60 ng/ml),

ITT1 and RPS1A formed new negative GIs with a group of genes that are associated with the

regulation of translation (p-value ITT1 = 1.33e-6 and p-value RPS1A = 6.59e-9). Translation

Initiation Factor 4A (TIF2) is an example of the gained interaction for both ITT1 and RPS1A
in response to cycloheximide. TIF2 is a key player in translation initiation and holds a helicase

activity [63]. Altogether, these observations are in agreement with the involvement of ITT1
and RPS1A in regulating translation in response to stress.

To further study ITT1 and RPS1A, we conducted phenotypic suppression array (PSA) anal-

ysis [31], [65] (Fig 7C and 7D) to assess the ability of overexpression of our target genes to

reverse the defective phenotype (i.e. sensitivity) on a series of gene deletion strains under spe-

cific conditions. PSA analysis constitutes a more direct form of GI and can infer close func-

tional relationships between interacting genes. In these cases, overexpression of one gene

compensates the phenotypic adverse effect that is caused by the absence of another gene under

certain conditions, such as stress caused by different chemicals [30], [31]. We observed that

the overexpression of both ITT1 and RPS1A reversed the sensitivity of a number of gene dele-

tion strains to As(III) (1.2 mM) or cycloheximide (100 ng/ml) (Fig 7C and 7D). The majority

Fig 7. Genetic interaction (GI) analysis for ITT1 and RPS1A. (A) Negative GIs for ITT1 under standard growth conditions and the presence of As(III)

or cycloheximide. In this case, deletion of a second gene along with ITT1 forms an unexpected growth reduction. (B) Negative GIs for RPS1A under

standard growth conditions and the presence of As(III) or cycloheximide as in (A). (C) Phenotypic suppression array (PSA) analysis using the

overexpression of ITT1. In this way, overexpression for ITT1 compensated for the sensitivity of gene deletions to As(III) (1.2 mM) or cyclohexamide

(100 ng/ml). (D) PSA analysis using the overexpression of RPS1A as in (C). Each experiment was repeated three times and the interactions with 20%

alteration or more in at least two screens were scored as positive. P-values were obtained from GeneMANIA [64].

https://doi.org/10.1371/journal.pone.0198704.g007
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of the newly identified gene interactors are involved in translation regulation further connect-

ing the activity of ITT1 and RPS1A to the regulation of translation. Interestingly, two of these

genes, GIS2 and DOM34, have reported to have IRES trans-acting factor (ITAF) activity [31],

[66], [67]. The fact that the overexpression of ITT1 and RPS1A can compensate for the absence

of ITAFs, GIS2 and DOM34 provide further evidence connecting ITT1 and RPS1A to IRES-

mediated translation.

GIg Suppressor (GIS2) is a well studied translational activator for numerous IRES contain-

ing mRNAs [66], [67]. Duplication Of Multilocus region 34 (DOM34) is a protein that facili-

tates inactive ribosomal subunit dissociation to aid in translation restart [68], and is reported

to play a role in IRES-mediated translation in yeast [31]. Our PSA analysis, not only supports a

role in IRES-mediated translation pathway for both ITT1 and RPS1A, but also suggests a possi-

ble systematic compensation between certain ITAFs which can be the subject of future studies.

This also leads to the conclusion, that other interacting partners of ITT1 and RPS1A in this

experiment may play a role in IRES-mediated translation. Further studies are required to

investigate these hypotheses. In agreement with our findings here, Sammons et al., [67]

reported a physical interaction between Rpsa1p and Gis2p connecting the activity of these two

proteins.

Supporting information

S1 Fig. Normalized CFU counts for different yeast strains after exposure to acetic acid

(180 mM), heat shock (37˚C), and MMS (0.05% v/v). CFU counts after 3 days exposure to

the experimental conditions are normalized to control condition counts. Sensitivity of itt1Δ,

rps1aΔ are compared to WT phenotype in the presence of (A) acetic acid (180mM), (B) heat

shock (37˚C) and (C) MMS (0.05% v/v). For each experimental condition, a corresponding

positive control strain is included. Each experiment was repeated at least three times. Error

bars represent standard deviations. � Indicates statistically significant differences (p<0.005).

(TIF)

S2 Fig. Spot test sensitivity analysis for different yeast strains. Cells were grown to satura-

tion, serially diluted, and spotted on solid media containing As(III) (1 mM), Cd (0.1 mM), Ni

(8 mM) or no drug. Plates were incubated at 30˚C for 3 days.

(TIF)

S3 Fig. Spot test sensitivity analysis of selected GIs. Cells were grown to saturation, serially

diluted, and spotted on solid media with or without As(III). (A) and (B) EDC1 and DOM34
show conditional GI with ITT1 and RPS1A in the presence of As(III) (0.7 mM) representing

conditional negative genetic interactions. DAN1 is used as a negative control. (C) and (D)

Overexpression of ITT1 and RPS1A compensated the sensitivity of gene deletion strains for

GIS2 and DOM34, respectively, in the presence of As(III) (1.2 mM) confirming a phenotypic

suppression GI for ITT1with GIS2 and RPS1A with DOM34. DAN1 was used as a negative

control.

(TIF)
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Willmore, Mohan Babu, Bruce McKay, Bahram Samanfar, Martin Holcik, Ashkan

Golshani.

References
1. Ferguson JE. The heavy elements: chemistry, environmental impact and health effects. 1990.

2. Tamás MJ, Martinoia E, editors. Molecular biology of metal homeostasis and detoxification. Berlin, Hei-

delberg, New York: Springer; 2006.

3. Goyer RA, Clarkson TW. Toxic effects of metals. Casarett & Doull’s Toxicology. The Basic Science of

Poisons, Fifth Edition, Klaassen CD [Ed]. McGraw-Hill Health Professions Division, ISBN.

1996;71054766.

4. Schwartz C, Gérard E, Perronnet K, Morel JL. Measurement of in situ phytoextraction of zinc by sponta-

neous metallophytes growing on a former smelter site. Science of the total environment. 2001 Nov 12;

279(1–3):215–21. PMID: 11712599

5. Passariello B, Giuliano V, Quaresima S, Barbaro M, Caroli S, Forte G, et al. Evaluation of the environ-

mental contamination at an abandoned mining site. Microchemical Journal. 2002 Oct 1; 73(1–2):245–

50.

6. Chronopoulos J, Haidouti C, Chronopoulou-Sereli A, Massas I. Variations in plant and soil lead and cad-

mium content in urban parks in Athens, Greece. Science of the Total Environment. 1997 Mar 9; 196

(1):91–8.

7. Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M. Mobility and bioavailability of heavy met-

als and metalloids in soil environments. Journal of soil science and plant nutrition. 2010 Jul; 10(3):268–

92.

8. Hernández RB, Nishita MI, Espósito BP, Scholz S, Michalke B. The role of chemical speciation, chemi-

cal fractionation and calcium disruption in manganese-induced developmental toxicity in zebrafish

(Danio rerio) embryos. Journal of Trace Elements in Medicine and Biology. 2015 Oct 1; 32:209–17.

https://doi.org/10.1016/j.jtemb.2015.07.004 PMID: 26302931

9. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health

effects of some heavy metals. Interdisciplinary toxicology. 2014 Jun 1; 7(2):60–72. https://doi.org/10.

2478/intox-2014-0009 PMID: 26109881

10. Basu M, Bhattacharya S, Paul AK. Isolation and characterization of chromium-resistant bacteria from

tannery effluents. Bulletin of environmental contamination and toxicology. 1997 Apr 1; 58(4):535–42.

PMID: 9060370

ITT1 and RPS1A affect URE2 expression in yeast

PLOS ONE | https://doi.org/10.1371/journal.pone.0198704 September 19, 2018 15 / 18

http://www.ncbi.nlm.nih.gov/pubmed/11712599
https://doi.org/10.1016/j.jtemb.2015.07.004
http://www.ncbi.nlm.nih.gov/pubmed/26302931
https://doi.org/10.2478/intox-2014-0009
https://doi.org/10.2478/intox-2014-0009
http://www.ncbi.nlm.nih.gov/pubmed/26109881
http://www.ncbi.nlm.nih.gov/pubmed/9060370
https://doi.org/10.1371/journal.pone.0198704


11. Choudhury P, Kumar R. Multidrug-and metal-resistant strains of Klebsiella pneumoniae isolated from

Penaeus monodon of the coastal waters of deltaic Sundarban. Canadian journal of microbiology. 1998

Feb 1; 44(2):186–9. PMID: 9543720

12. Castro-Silva MA, Lima AO, Gerchenski AV, Jaques DB, Rodrigues AL, Souza PL, et al. Heavy metal

resistance of microorganisms isolated from coal mining environments of Santa Catarina. Brazilian Jour-

nal of Microbiology. 2003 Nov; 34:45–7.

13. Otth L, Solı́s G, Wilson M, Fernández H. Susceptibility of Arcobacter butzleri to heavy metals. Brazilian

journal of Microbiology. 2005 Sep; 36(3):286–8.

14. Gadd GM. Transformation and mobilization of metals, metalloids, and radionuclides by microorgan-

isms. Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley,

Hoboken. 2007 Nov 27:53–96.
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