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A B S T R A C T

Communication with visual signals, like facial expression, is important in early social development, but the
question if these signals are necessary for typical social development remains to be addressed. The potential
impact on social development of being born with no or very low levels of vision is therefore of high theoretical
and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a
rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the
eye, retina, anterior optic nerve). Early-latency event-related potential responses showed no difference between
the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over
central and right frontal channels between 280 and 320ms was reduced in response to own-name stimuli, but
not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed
an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and
emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for
the typical development of social processing across modalities.

1. Introduction

The ability of adults to infer the mental state of others by inter-
preting fleeting contractions of facial muscles is an amazing feat of our
species. Developmental studies show that infants are intuitively drawn
to faces (Johnson et al., 1991, 2000) and engage in reciprocal com-
munication with their caregivers through facial expressions from just a
few months of age (Leppänen and Nelson, 2008). Non-verbal signals,
like facial expression, eye gaze, and posture, are a rich source of in-
terpersonal communication signals. Reduced visual attention to these
cues has been found in disorders of social development and some the-
ories suggest a causal link between attending to facial communication
cues and social deficits in autism spectrum disorder (ASD) (Campbell
et al., 2006). The potential impact on social development of being born
with no or very low levels of vision is therefore of high theoretical in-
terest and clinical concern. Without visual interpersonal abilities,
children with congenital visual impairment (VI) may be at higher risk of
social deficits. They also provide a natural experiment to study the ef-
fects of absent vision from birth on the development of social cognition
and behaviour. The current study, therefore, sets out to investigate if

differences in social responses and behaviour, including social com-
municative/ASD risks, are found between children with congenital VI
and typically-sighted controls, with a particular focus on neural re-
sponses toauditory social stimuli and their associations with parent-
reported measures of social communicative and behavioural function
and risk.
Children with congenital VI have been found to deviate from the

typical trajectory of social development observed in typically-sighted
children. Firstly, children with VI pass social cognitive Theory of Mind
tests at a later age compared to typically-sighted children (Brambring
and Asbrock, 2010; Peterson et al., 2000; Minter et al., 1998; Green
et al., 2004; McAlpine and Moore, 1995). Secondly, a relatively large
proportion of children with VI display behaviours that are commonly
associated with autism, like stereotyped movement, echolalic speech,
and lack of engagement with caregivers and peers (Preisler, 1991;
Brown et al., 1997; Hobson and Bishop, 2003; Tadic et al., 2009).
Difficulties in social processing persist in mid-childhood and potentially
into adolescence. For instance, a study in a specialist secondary school
indicated that 22% of students with VI met clinical criteria for ASD
(Mukkades et al., 2007, also see Jure et al., 2016). Analyses of clinically
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referred samples suggest an even higher prevalence (Absoud et al.,
2010; Williams et al., 2013; Rogers and Newhart-Larson, 2008). How-
ever, Hobson et al. (2010) provided some evidence of later ‘recovery’
from early symptomatology This potential change in the trajectory of
social processing makes mid-childhood a particularly interesting period
to investigate if qualitative differences in the processing of social sti-
muli can be detected.
Behavioural studies of social function in VI to date have some sig-

nificant methodological limitations. First, many previous studies in-
cluded congenital visual disorders that also involve central brain
structures or included children with low intellectual functioning. It is
therefore not clear if VI, low intellectual ability, or brain damage is
affecting social development. In this study, we addressed these limita-
tions by investigating social development in VI in a group of children
with relatively pure disorders of the anterior visual system, who also
scored in the normal range for verbal IQ.
Another potential limitation of previous studies concerns the be-

havioural assessment methods. Standard assessments of social cognition
and Theory of Mind for sighted children rely predominantly on visually
presented materials, e.g. recognising facial expressions or inferring the
mental state of actors or puppets. Some attempts have been made to
adapt materials for children with VI (Brambring and Asbrock, 2010),
but these assessments have not been sufficiently tested and standar-
dised in a representative sample − probably due to the rarity of iso-
lated VI disorders. Other studies rely on verbally presented materials
(Pijnacker et al., 2012) that are potentially confounded by differences
in language development in children with VI, such as linguistic delays
and difficulties in semantic and pragmatic comprehension (Andersen
et al., 1993; Mulford, 1988; Wakefield et al., 2006). Therefore, the
current study used a more direct measurement of auditory social sti-
mulus processing in an electrophysiological experiment, which was not
dependent on vision or language ability or verbal working memory.
We hypothesised that differences in the processing of social stimuli

in children with VI would be apparent in responses to auditory social
stimuli. The ‘subjects-own-name’ (SON) paradigm was considered par-
ticularly suitable as it assesses responses to a basic social stimulus in the
auditory domain, ie. hearing one’s own name spoken. Own-name sti-
muli have been shown to be processed preferentially, automatically,
and without conscious control in the typically-sighted child from as
early as 5 months of age (Alexopoulos et al., 2012; Parise et al., 2010;
Perrin et al., 2006; Pfister et al., 2012). Differences in processing of
own-name stimuli, compared with typically developing children, have
been associated with deficits in mentalizing ability in children with
high-functioning autism (Cygan et al., 2014; Lombardo et al., 2009). In
the event-related response, own-name stimuli consistently elicit an
early negative deflection with a maximum over frontal channels fol-
lowed by later positive deflection similar to the orienting-P3 (P3a) in
typical adults (Tateuchi et al., 2012, 2015). Manipulations of pre-
sentation frequency indicate that the early SON-related negativity is
distinct from the orienting P3 (Eichenlaub et al., 2012). Further, com-
parisons of responses to names of close family members indicate that
the SON-related negativity is specific to the subject’s own name rather
than personally familiar names in general (Tateuchi et al., 2015).
Neural generators of SON-related processing are likely to involve a
network of areas, including the right superior temporal sulcus (STS),
medial prefrontal cortex (PFC), and inferior parietal sulcus (IPS)
(Holeckova et al., 2006; Perrin et al., 2005; Kampe et al., 2003). Using
the event-related response in the SON paradigm, we anticipated that
there may be a reduction in amplitude of the SON-related response in
children with VI similar to effects observed in other groups with sus-
pected deficits in social processing (Cygan et al., 2014; Nadig et al.,
2007).
A school-aged sample of children with congenital disorders of the

peripheral visual system (CDPVS), aged 8–13 years of normal verbal
intelligence, were recruited for the investigation with matched controls
of typical sight. Parent-reported questionnaires that are validated on

children with typical sight for social communication difficulties, prag-
matic language disorder, autism risk, and behavioural strengths and
difficulties were included to assess the level of difficulties in the social
domain. It was hypothesised further that individual differences between
children with VI on the questionnaire measures (Sonksen and Dale
2002; Tadic et al., 2009) would be associated with differences in the
ERP response to SON.

2. Materials and methods

2.1. Participants

The assessments presented here were part of a wider study on the
neural and cognitive sequelae of congenital VI during mid-childhood.
This study was performed in accordance with the Declaration of
Helsinki. The study was approved by Bloomsbury Research Ethics
Committee − approval: 12/LO/0939. All parents, guardians or next of
kin provided written informed consent and children provided verbal
assent to participate in this study.
A prospective cross-sectional study was undertaken with eighteen

children with VI aged between 8 and 13 years. Congenital disorders of
the peripheral visual system with severe VI are rare with an estimated
prevalence of less than 2–3 per 10,000 children (UK) raising challenges
for recruitment and sampling (Rahi, Cable, BCVISG, 2003). Children
were therefore recruited through national specialist clinics at Great
Ormond Street Hospital for Children NHS Foundation Trust and
Moorfields Eye Hospital NHS Foundation Trust. Inclusion criteria: i)
children with congenital VI in the moderate to profound range with
primary diagnosis of ‘potentially simple’ congenital disorders of the
peripheral system (CDPVS), that is disorders affecting the globe of the
eye, retina, or anterior optic nerve up to the optic chiasm, with no
known brain disorder indicated by the paediatric or ophthalmological
diagnosis (Sonksen and Dale, 2002), ii) between 8 and 13 years, iii)
good verbal functioning (verbal IQ at the last assessment> 75 or at-
tending mainstream school at age-appropriate level), iv) English as
their first language. Children with indications of additional neurolo-
gical or endocrine abnormalities in their clinical records were excluded.
Recruitment was undertaken through initial identification through
clinical databases of children who had attended a tertiary paediatric
specialist clinic at the hospital research site and open recruitment call
through voluntary agencies associated with VI.
Children in the typically-sighted control group were recruited to

match the same age range and were included if they fit the following
criteria: attend mainstream school at the age-appropriate level, have no
known neurological or psychiatric conditions, have either normal or
corrected-to-normal vision, and have English as a first language.
Sample characteristics are presented in Tables 1 and 2.
The full sample consisted of 18 children with VI (9 female) between

8 and 13 years of age (mean age: 10.76, age SD: 1.39, age range: 8.27-
13.32) and a control group of 18 typically-sighted children (8 female,
mean age: 10.62, age SD: 1.44, age range: 8.73-12.92). Verbal com-
prehension was assessed using verbal subtests of the Wechsler
Intelligence Scale for Children 4th edition (WISC-IV) (Wechsler, 2004).
Verbal subtests of previous and current editions of the WISC have also
been used with children with VI (Greenaway et al., 2016; Dekker, 1993;
Tillman, 1973; Tillman and Bashaw, 1968; Witkin et al., 1968). The
administered subtests included all items of the Verbal Comprehension
composite score (Vocabulary, Similarities, Comprehension). Two items
were altered that required direct visual experience: The WISC-IV first
practice item on the Similarities subtest which includes colour was not
administered. The Comprehension question that asks about a situation
in which ‘you see thick smoke’ was changed to ‘you smell thick smoke’.
These alterations were used for the whole sample, including the typi-
cally-sighted control group. All other items were administered verbatim
according to the WISC-IV administration manual (Wechsler, 2004).
There was no significant difference in verbal IQ composite scores
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between the VI and the typically-sighted control group (VI:
mean=101.94, SE=4.81, Range=75-148; control: mean=113.17,
SE= 3.87, Range=83-144; t(31.125)=−1.8193, p= 0.079).
Twenty-six children (72%) agreed to participate in the ERP part of

the study (VI: 13; control: 13). One participant with VI was not included
in the analysis because of excessive movement artefacts. One partici-
pant in the control group was rejected because of time-locked blinks
that contaminated the ERP. One further participant in the control group
was rejected because less than 10 trials were left after threshold artefact
rejection (Final sample: VI= 12, control= 11). Complete parental
questionnaires were available for all children with useable ERP data.

2.2. Assessment of vision level

The experimenter (J.B.) was trained by a neurodisability pediatri-
cian specialised in VI to undertake the visual acuity assessments using

the Sonksen logMAR test of Visual Acuity (Sonksen et al., 2008). For
children who were not able to see the largest items on the Sonksen
logMAR test, the Near Detection Scale was used to assess their basic
level of detection vision (Sonksen et al., 1991).
Severe/Profound VI (S/PVI) is defined as limited form vision with

logMAR above 0.8 (Snellen worse than 6/36) to no or light perception
only (Near Detection Scale). Mild/moderate VI (MVI) is defined as re-
duced visual acuity with logMAR between 0.6 and 0.8 (Snellen 6/24-6/
36).

2.3. ERP experiment

2.3.1. Stimuli and stimulus presentation
The participants’ first name and a control name were recorded from

2 female and 2 male speakers in a quiet environment using Audacity
software V 2.0.5 (http://audacity.sourceforge.net). The control name
was selected to be unfamiliar, have the same number of syllables as the
participant’s own name, and start with a different phoneme. In order to
signal communicative intent, the recordings included “Hey” followed
by the name (Kampe et al., 2003). Participants listened to a total of 80
stimuli in random order with balanced frequency for own-name and
control-name stimuli. The experimental paradigms were implemented
in MATLAB R2012b (The MathWorks, MA) using Psychtoolbox V3
functions (http://psychtoolbox.org).
The sound amplitude was normalised to 65 dB SPL for each stimulus

in Audacity. Stimuli were presented through Creative Labs EP-660 in-
ear headphones (Creative Labs Inc., Singapore). The headphones were
electrically shielded by the manufacturer. Our own tests did not in-
dicate that the headphones induced electrical artefacts above back-
ground noise in empty room recordings. Sound stimuli were presented
through a Creative Sound Blaster X-Fi PCI Express sound card with a
low latency driver (Creative Labs Inc., Singapore). Offset latency in this
setup was measured and ERPs latencies were corrected accordingly.

2.3.2. EEG recording
The EEG was recorded in a quiet darkened room using a GES 200

high-density, high-impedance recording system with a NetAmps 200
amplifier and HydroCel Geodesic Sensor Nets with 128 channels and

Table 1
Table Characteristics of participants in the VI group.

ID Gender Age [y] VerbComp logMAR Near Detection Vision Group Visual Disorder ERP

MVI 1 female 9.19 114 0.1 – MVI congenital nystagmus ✓
MVI 2 female 13.32 95 0.4 – MVI ocular fibrosis ✓
MVI 3 female 11.91 104 0.5 – MVI bilateral optic nerve hypoplasia ✓
MVI 4 male 12.34 – 0.54 – MVI rod-cone dystrophy
MVI 5 female 8.27 104 0.6 – MVI oculocutaneous albinisim ✓
MVI 6 male 12.06 104 0.6 – MVI congenital nystagmus ✓
MVI 7 male 10.64 116 0.6 – MVI congenital nystagmus ✓
MVI 8 male 9.82 93 0.7 – MVI ocular albinism, congenital

nystagmus
✓

MVI 9 female 12.26 96 left: 0.23, right: light
perception

– MVI, PVI unilateral optic nerve hypoplasia ✓

SVI 1 female 10.98 87 0.9 – SVI hereditary progressive cone
dystrophy

SVI 2 male 11.69 148 0.9 – SVI oculocutaneous albinisim ✓
SVI 3 female 10.98 78 1.1 – SVI FEVR
SVI 4 male 9.57 119 1.2 – SVI Leber’s congenital amaurosis
SVI 5 male 9.01 – 1.225 – SVI ocular albinism, nystagmus
SVI 6 male 9.91 96 1.225 – SVI Norrie’s disease ✓
SVI 7 female 11.04 75 – 1.5 cm sweet from 20 cm SVI Leber’s congenital amaurosis
SVI 8 female 9.86 95 – 12.5 cm woolly from 50 cm SVI bilateral micro-ophthalmia ✓
PVI 1 male 10.36 134 – light perception only PVI Leber’s congenital amaurosis ✓

9 male mean=10.73 mean=103.63
9 female SE= 0.31 SE=4.41

Abbreviations: MVI: mild-to-moderate visual impairment, SVI: severe visual impairment, PVI: profound visual impairment, VerbComp: WISC-IV Verbal Comprehension age-normed score,
FEVR: familial exudative vitreoretinopathy.

Table 2
Characteristics of participants in the typically-sighted control sample.

ID Gender Age [y] VerbComp logMAR ERP

C1 female 8.56 98 −0.3 ✓
C2 female 8.73 110 0.1
C3 male 8.9 116 −0.3
C4 male 9.08 102 0.1 ✓
C5 female 9.12 98 −0.1 ✓
C6 male 9.34 108 −0.2
C7 male 10.07 96 0.1 ✓
C8 male 10.16 134 0.0 ✓
C9 male 10.37 106 0.0 ✓
C10 male 10.74 102 −0.2 ✓
C11 female 10.78 134 0.1 ✓
C12 female 10.82 116 −0.2 ✓
C13 female 10.89 83 0.0
C14 female 11.09 130 −0.3 ✓
C15 female 11.78 144 0.1
C16 male 12.7 106 −0.2 ✓
C17 male 12.77 130 −0.2
C18 male 12.92 124 −0.3

8 female mean=10.49 mean=113.17
10 male SE=0.32 SE=3.87
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suitable net sizes for all participants (Electrical Geodesics Inc., OR).
Recordings were obtained using NetStation software V4.1.2. The EEG
was recorded with a hardware low-pass filter at 400 Hz and a hard-ware
high-pass filter at 0.01 Hz. The sampling frequency was set to 250 Hz. A
vertex reference was used for recording.

2.3.3. EEG processing for event-related potentials analysis
The EEG recordings were exported to EEGLAB format for processing

and analysis. The pre-processing pipeline was based on previously de-
scribed routines (Bathelt et al., 2014). First, the EEG was digitally fil-
tered with finite impulse response (FIR) filters at a high-pass frequency
of 0.1 Hz and a low-pass frequency of 30 Hz in EEGLAB 11.0.3 (Delorme
and Makeig, 2004). Channels with low correlation to surrounding
channels were rejected and interpolated from surrounding channels.
The recording was re-referenced to the average reference. Second, the
continuous EEG signal was segmented according to stimulus codes set
during the recording beginning 100ms before the onset of the recording
to 500ms post onset. Third, trials with absolute amplitudes higher than
150 μV in several channels were rejected. Baseline correction with the
average amplitude in the 100ms before the stimulus onset was applied.
All epochs were visually inspected and epochs containing eye blinks,
lateral eye movement, or movement artefact were rejected from further
analysis.
There was no significant difference in the number of trials between

participant groups (Independent two-sided t-test: VI: mean=28.65,
SE= 0.47, Range= 20-52; typically-sighted control: mean=28.06,
SE= 0.37, Range=22-36, t(21)= 0.999, p=0.32). There was a
trend-level difference in the number of trials per conditions with fewer
epochs for the control name (Independent two-sided t-test: Own name:
mean=29, SE= 0.57, Range= 20-52; control name: mean=27.82,
SE= 0.28, Range= 21-32; t(21)= 1.8682, p=0.063). However, the
difference in epochs was negligible with only 1 trial difference.
Channel groups and time windows of interest were selected based

on previous reports using a similar paradigm (Holler et al., 2011a,
2011b). The channel areas of interest contained left and right fronto-
lateral, left and right frontal, mid-frontal, and central channels
(Channel labels according to the manufacturer: left frontolateral: 26,
27, 33, 34; right frontolateral: 3, 116, 122, 123; left frontal: 20, 24, 28,
29; right frontal: 111, 116, 117, 124; mid-frontal: 5, 6, 11, 12, central:
7, 31, 55, 80, 106). Channels within each area of interest were averaged
to create a virtual channel. Three time windows were analysed:
50–150ms after stimulus onset (N1 time window), 150–250ms (P2
time window), and 280–320ms (own name-related negativity). The N1
minimum over fronto-central channels appeared earlier in the VI group
and fell outside the N1 range reported in the studies of typical adults
(Holler et al., 2011). We therefore used an extended N1 window con-
taining earlier latencies (50–150ms). The mean amplitude in each time
window was used for statistical comparison.
In addition to comparison of mean amplitude, an exploratory ana-

lysis of latency differences was carried out to investigate potential
differences in the speed of processing between groups. The 50% frac-
tional area latency was used as a robust measure of ERP latency (Kiesel
et al., 2008).

2.4. Questionnaire measures of social communication, language use, and
areas of difficulty

The levels of social communication, autism-related behaviours, and
pragmatic language use were assessed using parent-reported ques-
tionnaires. The Social Communication Questionnaire (SCQ) focuses on
the frequency of behaviours that are rare in typically developing chil-
dren but common in children with an autism spectrum disorder (Rutter
and Bailey, 2007). Standard clinical cut-offs were used to describe the
results of this questionnaire. At the reported cut-offs, the specificity of
distinguishing an ASD from other diagnoses is 0.96 (diagnostic range)
and 0.80 (borderline range) (Social Communication Questionnaire, 2003).

The Children’s Communication Checklist 2nd edition (CCC) assesses
pragmatic language use relative to structural language abilities (Bishop,
1998, 2003). In addition, the Strengths and Difficulties questionnaire
(SDQ) was administered to assess difficulties in areas of emotional
symptoms, conduct problems, hyperactivity/inattention, peer pro-
blems, and prosocial behaviour (Goodman, 1997; Goodman et al.,
2003).
All testing was carried out in a dedicated paediatric research fa-

cility. The questionnaires were filled in by a primary caregiver in a
quiet waiting room, while the children participated in the ERP ex-
periment.
The questionnaires were examined for references to visual beha-

viour prior to distribution. Five out of 40 items on the SCQ are in-
directly related to vision. For instance, item 26 asks if the child looks at
a person when talking to them. Other items may be vision dependent
and include non-verbal gestures (e.g. item 24 “Does he/she nod his/her
head to indicate no?"). Only one out of 70 items on the CCC-2 mentions
vision-mediated behaviour, i.e. ‘Item 65: Smiles appropriately when
talking to people’. We decided to include these items in the final ana-
lysis as the behaviour may be relevant for children with mild to mod-
erate VI and to conserve the psychometric integrity of the ques-
tionnaire. During analysis, scoring the questionnaires including or pro-
rating these items did not markedly influence the results of the study,
i.e. statistically significant differences between the VI and typically-
sighted group were found for both original and pro-rated scores.
Some questionnaire responses had to be excluded from the analysis

because parents missed out items or decided not to fill in a ques-
tionnaire. For the SCQ, 13 parents in the VI group and 17 parents in the
control group provided useable questionnaire responses. For the CCC,
17 parents in the VI group and 16 parents in the control group com-
pleted the questionnaire. For the SDQ, useable responses were available
for 16 children in the VI group and 17 in the control group.

2.5. Statistical analysis

The age-related representative norms of the questionnaires were
used to derive standard scores for analysis purposes. For the analysis of
event-related potentials data, a repeated measures analysis of variance
(ANOVA) model was used with factors for the channel region (left/right
frontal, left/right fronto-lateral, mid-frontral, central), condition (own
name, control name), and participant group (VI, control). The different
time windows of interest (50–150ms, 150–250ms, 280–320ms) were
analysed seperately. Shapiro-Wilk tests on mean amplitudes for each
channel region showed that normality assumptions were met.
Mauchly’s test indicated that sphericity assumptions were not violated;
therefore Greenhouse-Geisser correction was not necessary. Analysis of
global effects was followed-up with Student t-tests corrected for mul-
tiple comparisons using Bonferroni correction. All statistical analyses
were carried out in R version 3.2.3 (R Core Team, 2015). Visualisations
were created using Matplotlib version 1.4.3 (Hunter, 2007) under
IPython version 4.2.0 (Perez and Granger, 2007).

3. Results

3.1. ERP responses to SON stimuli in VI children compared with typically-
sighted controls

The observed ERP waveforms displayed the expected morphology of
components with a small early negative deflection followed by a large
positive deflection over central and frontal channels in both VI and
typically-sighted controls (see Fig. 1). A negative going wave between
270 and 320ms after stimulus onset with larger amplitude in the own
name condition over fronto-central channels was also observed (SON-
related negativity) (Tateuchi et al., 2012).
The mean amplitudes in time windows corresponding to the N1

(50–150ms), P2 (150–250), and SON-related negativity (280–320ms)
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were analysed in a repeated-measures analysis of variance (rmANOVA)
model with factors of condition, region, and participant group. The
statistical analysis indicated an effect of condition in the earliest time
window (50–150ms) with more negative amplitudes in the own name
condition (rmANOVA: Own name: mean=0.69, SE= 0.16,
Range=−6.21-4.26; Control name: mean=1.47, SE= 0.21,
Range=−4.88-8.06, F(1,209)= 11.05, p= 0.011). There was also a
significant effect of channel region with more positive amplitudes in
frontal channels (left fronto-lateral: mean= 0.98, SE=0.25; right
fronto-lateral: mean=1.53, SE=0.43; left frontal: mean= 0.98,
SE= 0.25; right frontal: mean=1.53, SE= 0.33; mid-frontal:
mean=1.67, SE= 0.34; central: mean= 0.71, SE= 0.26, F
(5,209)= 10.647, p=0.0013, Bonferroni-corrected p=0.0078).
Significant effects of region were also found in the second time window
(150–250ms) with the highest amplitudes over central channels (left
fronto-lateral: mean=0.2, SE= 0.42; right fronto-lateral:
mean=1.88, SE=0.47; left frontal: mean= 1.93, SE=0.37; right
frontal: mean=2.79, SE=0.35; mid-frontal: mean=3.56, SE= 0.45;
central: mean=2.65, SE=0.35, F(5,209)= 10.266, p < 0.001,
Bonferroni-corrected p=0.0054). In summary, early time windows
showed effects of condition and channel regions, but there was no
significant difference between children with VI and typically-sighted
controls.
A significant participant-group-by-condition-by-channel-region in-

teraction was observed in the 270–320ms time window (F
(5,209)= 4.064, p=0.002). Follow-up simple contrasts revealed sig-
nificant differences between the groups with less negative amplitudes in
the VI group over right frontal channels in the own name condition
(Right frontal: VI: mean=2.78, SE=0.73, Range=−7.87-8.25;
control: mean=−0.77, SE= 0.32, Range=−3.81 2.23; t
(31.024)= 4.4525, p < 0.001; Central: VI: mean=2.78, SE= 0.73;
control: mean=−0.77, SE= 0.32; t(31.02)= 4.453, p < 0.001,
Bonferroni-corrected p=0.003, See Fig. 1).
An exploratory analysis of 50% fractional area latency was carried

out to investigate potential differences in the speed of processing be-
tween groups. The analysis employed the same statistical approach as
the main analysis of ERP mean amplitudes. No significant group effects
were detected in the 50–150ms (N1) and 150–250 (P2) time windows.
The results indicated a significant group-by-region interaction with a

shorter ERP latency in the control group for left frontal channels in the
280–320ms (SON) time window (VI: mean=210.5, SE=2.08; con-
trol: mean=197.33, SE=2.27; t(37.79)= 4.2812, p < 0.001,
Bonferroni-corrected p=0.004). All other effects did not reach sig-
nificance criteria (Bonferroni-corrected p > 0.05). However, left
frontal channel in the control group showed little discernible event-
related response with amplitudes around baseline variation. Because of
the low area under the curve, the cumulative sum reaches 50% faster in
channels with little activity. The waveform morphology indicated that
responses in the VI and control group over left frontal channels are not
comparable. The latency difference is therefore likely to reflect differ-
ence in response topography rather than speed of processing.

3.2. Comparison of parent-reported social communicative behaviours
between the VI group and typically-sighted group

Social Communication Questionnaire: two participants with VI
reached scores above the clinical cut-off according to the SCQ manual.
One further participant with VI reached a score in the elevated range
according to the questionnaire manual. The mean score in the VI group
was higher compared to the control typically-sighted group (VI:
mean=9.15, Range:2–23; control: mean=1.28, Range=0–5), but
below the elevated range (see Table 3). When removing vision-related
SCQ items, 1 participant reached a score above the clinical cut-off, and
2 participants reached a score in the elevated range.
Children’s Communication Questionnaire (CCC 2nd edition): 4

children in the VI group reached Global Communication Composites
below the 5%ile. Four children in the VI group and one child in the
control group reached Social Deviance Composite Scores (SIDC) in the
clinically significant range (Range: −16 to −27, see Fig. 2). The
number of children reaching cut-off criteria on the Global Commu-
nication Composite or the Social Deviance Composite Score did not
change when excluding the vision-related item.
The Strengths and Difficulties Questionnaire (SDQ): Ratings on the

SDQ indicated a high prevalence of everyday problems in the current
sample of children with VI (see Fig. 3). Emotional problems and pro-
blems with peer relationships were most prevalent.

3.3. Relationship between SON ERP response and social communication
questionnaire results

Bivariate correlations between mean amplitude between 280 and
320ms in the own-name condition in the VI group and the CCC General
Communication Composite, CCC Social Interaction Deviance Score,
SDQ Peer Problems, and SDQ Emotional Problems were evaluated. A
significant effect was found for SDQ Peer Problems that suggested fewer
peer problems with more negative amplitudes (n=12, =−0.59,
p=0.044). However, the 95% probability level of the result did not
survive stringent correction for multiple comparisons despite the large
effect size (Bonferroni-corrected p=0.176).

4. Discussion

The current study is the first to report neural correlates of social

Fig. 1. Grand-average ERP waveforms in the VI and
control group for the own name condition for right
frontal (left) and mid-central (right) channels. The
solid line indicates the mean response, shaded areas
indicate two standard errors around the mean. The
grey boxes mark the time windows of interest (N280-
320). The mean amplitude between the groups is
shown next to the waveform. Statistical analysis in-
dicated significantly higher mean amplitude in the
VI group compared to typically-sighted controls in
the 280–320ms time window over right frontal and

mid-central channels. The waveforms were low-pass filtered at 15 Hz for visualisation purposes.

Table 3
Ratings of Social Communication Questionnaire (SCQ) in the VI and control group.
Results for scores for an ASD group from another study are shown as a reference (data
reproduced from Sasson et al. (2012)).

VI control ASDa

Domain mean SD mean SD mean SD

Total 9.15 7.30 1.28 1.41 22.32 6.47
Reciprocal Social Interaction 2.00 2.37 0.44 0.78 7.98 3.48
Communication 3.92 2.35 0.78 0.88 6.87 2.53
Restricted, Repetitive, and

Stereotyped Patterns of
Behaviour

3.00 3.02 0.33 1.41 5.88 1.86

a Data reproduced from Sasson et al. (2012) J. Neurodevelopmental Disorders.
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processing in children with visual impairment (VI). The auditory event-
related potentials (ERP) evidence suggested that the sample of school-
aged children with VI processed basic auditory social stimuli, i.e. re-
cordings of their own name, differently compared to typically-sighted
peers. The children with VI in the sample also showed some raised
social communicative risk with elevated parental ratings of ASD-related
behaviours, pragmatic language difficulties, and emotional and peer
relationship problems. There was further tentative evidence that dif-
ferences in neural processing of the auditory social stimuli related to
greater behavioural difficulties with peers relationships in the VI group.
In a first step, the current study investigated the neurophysiological

response to basic auditory social stimuli in children with VI in order to
elucidate any differences in the neural processing of social signals.
Differences between the own-name and control condition in the N1 and
P2 time window indicated that own-name stimuli were preferentially
processed. Higher amplitudes to self-relevant stimuli in early time
windows are generally interpreted to reflect automatic capture of at-
tention that does not require conscious awareness of the stimuli (Perrin
et al., 1999; Perrin et al., 2006). Similar responses in both children with
VI and typically sighted controls suggests that automatic attentional
processing of self-relevant stimuli was not affected by congenital VI. In

contrast to the current findings that indicated no differences in latency
or amplitude of early ERP components, some studies reported enhanced
auditory processing in congenitally blind adults characterised by larger
amplitudes and early latencies of N1 (Roder et al., 1999; Roder et al.,
2000). Differences in early-latency auditory processing in children with
VI may only emerge later in development, may only be present in in-
dividuals with the most severe forms of VI, or may be more apparent
with non-social stimuli. The current study used complex auditory sti-
muli and a low number of trails, which is not optimal to resolve subtle
differences in early ERP components. Differences in auditory processing
in children with VI should be addressed in future experiments.
While no differences in early components related to auditory pro-

cessing and responses to control names between children with VI and
typically-sighted controls were detected, group differences emerged in
a later time window with less negative amplitudes to own-name stimuli
in the VI group compared to controls. Similarly reduced amplitude of
the ERP in response to own-name stimuli has also been reported for
adults with ASD (Cygan et al., 2014). Responses to own name stimuli as
presented in this study are thought to engage more social cognitive
processing such as Theory of Mind (ToM) processing. Differences in the
responsiveness to own name stimuli have been associated with deficits
in Theory of Mind in ASD across several paradigms (Cygan et al., 2014,
Lombardo et al., 2009Carmody and Lewis, 2011Cygan et al., 2014,
Lombardo et al., 2009; Carmody and Lewis, 2011). Reduced beha-
vioural responsiveness to self-related information, e.g lack of response
to name calling in situ, are now even part of clinical diagnostic ob-
servational schedules for autism e.g. the Autism Diagnostic Observation
Schedule (ADOS, Lord et al., 2008). The current study found reduced
amplitudes in response to own name stimuli over central and right
frontal channels. Central channel regions also show the largest own-
name specific effects in typically-sighted adults (Eichenlaub et al.,
2012; Muller and Kutas, 1996). The topography of the SON response in
the VI group deviates from the topography in the typically-sighted
control group and from the published results for typical adults. This
may indicate that different neural substrates are engaged in own-name
processing in children with VI. This could be associated with deficits in
social processing or may indicate compensatory engagement of addi-
tional neural substrates in the VI group.
In summary, while early ERP components related to early-latency

auditory processing did not differ between the groups, a specific de-
flection to own name stimuli over central and right frontal channels at
later latencies was found to be attenuated in children with VI compared
to typically sighted controls potentially indicating that auditory social
stimuli are processed differently in children with congenital VI.
In a second step, the current study aimed to assess the level of social

cognitive and social communicative function in this sample of high-

Fig. 2. Distribution of General Communication Composite (GCC) and the Social
Interaction Deviance Composite (SIDC) of the Children’s Communication Checklist 2nd
edition (CCC) with reference to cut-off that warrant further clinical investigation of
pragmatic language deficits frequently observed in children with either Asperger
Syndrome (AS) or autism spectrum disorder (ASD). Cut-offs are defined as: ASD:
GCC < 55, SIDC < 0; AS: GGC > 55, SIDC < −15 (Bishop and Norbury, 2002).

Fig. 3. Ratings on the Strengths and Difficulties Questionnaire (SDQ).
Participants in the VI group are shown as red circles and participants
in the typically-sighted control group as blue triangles. The solid lines
indicate the cut-off for abnormal scores according to the questionnaire
manual. Dotted lines show the cut-off for the borderline range. Higher
scores indicate more problems in each domain, apart from the pro-
social behaviour scale where higher scores indicate better prosocial
behaviour.
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functioning children with congenital VI. As in other studies on children
with VI, this study indicated that children with VI are at higher risk of
social communicative problems and show an increase in behaviours
associated with autism spectrum disorder (ASD) on a variety of parent-
reported measures. 2 out of 17 (12%) met the clinical cut-off
(score> 15) for ASD and a total of 3 out of 17 (18%) scored above the
elevated cut-off. Previous studies used a range of different behavioural
measures so it is difficult to compare ‘incidence’ but this number ap-
pears lower than previously reported (Brown et al., 1997; Mukkades
et al., 2007; Rogers and Newhart-Larson, 2008; Williams et al., 2013;
Jutley-Neilson et al., 2013; Parr et al., 2010; Jure et al., 2016). How-
ever, in previous studies likelihood of meeting ASD criteria was asso-
ciated with lower vision level and lower verbal ability (Brown et al.,
1997). The current sample was selected for good verbal abilities to
avoid confounding effects of additional learning disabilities. Further,
half of the sample consisted of children with mild to moderate VI, while
most previous studies focused on severe to profound VI. The lower in-
cidence in this higher-functioning sample may suggest that better
verbal ability and greater visual function may play a protective role as
suggested by other authors (Brown et al., 1997) and that severity of
vision level, particularly profound VI (light perception at best), is a risk
factor for early social communicative difficulties and ASD (Absoud
et al., 2010). Nonetheless, the 3 children who met ASD/AS criteria were
neither the children with the lowest vision level nor the lowest verbal
ability. This may indicate that other factors may be involved in ae-
tiology or maintenance of these difficulties.
The results of the pragmatic language and strengths and difficulties

questionnaire indicated that there were more widespread subtle diffi-
culties or deficits in social function in this group of higher functioning
children with VI (Harris and Lord, 2016) similar to previously reported
findings in an independent sample with similar characteristics (Tadic
et al., 2009). These difficulties included problems with peer relation-
ships, deficits in emotional regulation, insufficient use of context in
conversation, and stereotyped language among other difficulties. This
may indicate that children with congenital VI show similarities to
children that fall within the wider autism spectrum (Reisinger et al.,
2011; Taylor et al., 2013). However, elevated scores have also been
found for neurodevelopmental disorders like ADHD (Cooper et al.,
2013), preterm birth (Johnson et al., 2010), and children with prag-
matic language impairment (Reisinger et al., 2011), suggesting that
milder tendencies towards the wider autistic spectrum or certain as-
pects of the autistic spectrum may be a common feature of atypical
development that is also present in children with congenital VI.
The mechanisms leading to differences in social processing and in-

creased risk of social deficits in congenital VI are currently not known.
Following an interactive specialisation view (Johnson, 2011), by which
differences in one function may have cascading effects on the devel-
opment of other functions, we speculate that absent access to visual
social cues, specifically eye gaze and facial expression, may play an
important role in the aetiology of atypical social development in chil-
dren with congenital VI (Campbell et al., 2006) mirroring some theories
that have been proposed in the ASD literature (Klin et al., 2002). Eye
gaze discrimination is believed to be key for the development of joint
attention in infancy with important consequences for sociocognitive
development (Moore and Dunham, 1994). Reciprocal interaction be-
tween mother and infant has been linked to the development of social
communication and social cognition (Moore and Dunham, 1994).
At the neurophysiological level, differences in visual input or visual

drive may have lead to altered development of the social processing
network (Eggebrecht et al., 2017). Facial expressions are processed in a
specific network, including the posterior superior temporal sulcus,
ventromedial prefrontal cortex, and temporal pole (Leppanen and
Nelson, 2008), which receives visual input from the fusiform face areas
(FFA). The same areas also show higher blood oxygenation during so-
ciocognitive processing (Frith and Frith, 2003; Kampe et al., 2003).
Thus, both facial expressions and sociocognitive reasoning are at least

in part processed in the same circuit. The current study shows an at-
tenuated ERP in the children with VI using a paradigm (SON) that has
been shown to engage the social processing circuit (Kampe et al., 2003).
We propose that differences in the processing of auditory social stimuli
in congenital VI may have arisen as a consequence of reduced or
missing input from areas involved in the processing of visual social
information, which lead to downstream effects on the development of
the social processing network. This idea remains to be investigated in
detail in future longitudinal studies employing additional neuroimaging
modalities and additional comparison groups of typically-sighted chil-
dren with atypical social development.

4.1. Limitations

The current study has some limitations which affect generalisability
of findings. First, the sample size was very limited, which is mainly due
to the population rarity of the congenital disorders of the peripheral
visual system and consequent recruitment challenges (2–3 per 10,000
children in the UK, Rahi and Cable, 2003). An associated potential issue
concerns the heterogeneity of the sample. In order to reach a sample
size that allowed for a meaningful group comparison, a range of dis-
orders was included that share common impairment, i.e. visual im-
pairment and CNS involvement restricted to the peripheral visual
system. The individual disorders are extremely rare with often little
understood and complex genetic causes so that heterogeneity is even
found within diagnostic categories. However, investigations with larger
clinical samples found autistic features across the range of congenital
disorders of the peripheral visual system (Dale and Sonksen, 2002;
Sonksen and Dale, 2002; Absoud et al., 2010; Parr et al., 2010).
The representativeness of the current sample also demands cautious

interpretation. Children were recruited to show an intellectual function
within the typical range for their age, which is not the case for a large
proportion of children with visual impairment who have additional
intellectual disabilities (Alimovic, 2012; Rahi and Cable, 2003). Fur-
ther, children were mostly recruited through specialised clinical ser-
vices so that the sample is potentially clinically biased towards children
with specific problems even though these children were mostly referred
for standard clinical care during the early years and were later dis-
charged.
A further limitation is that only parental questionnaire ratings of

social communication and behavioural difficulties or ASD criteria were
collected without further validation by behavioural measures or tea-
cher-rated questionnaires. In the future, further investigation of social
communicative ‘risk’ and behavioural difficulties will be improved by
using robust observational assessments that are specifically designed for
and validated on children with VI and that do not depend on vision
behaviours.
The study is cross-sectional and therefore it is not possible to con-

clude if VI is playing a causal role and in the future longitudinal studies
may provide more insight into underlying mechanisms.

4.2. Conclusion

The current study investigated if social difficulties and deficits in
high-functioning children with congenital VI are associated with dif-
ferent processing of basic auditory social stimuli using the event-related
potentials method. Results of the ERP investigation suggested differ-
ences in the response to social stimuli in the VI group compared with
typically-sighted children, suggesting that VI may have a function in
neural development underpinning the SON paradigm. The results also
indicated that social and pragmatic deficits are common in the children
with VI in line with previous behavioural studies. There was also ten-
tative evidence that neural differences may relate to everyday diffi-
culties with peer relationships. Notwithstanding limitations regarding
sample size and generalizability, the findings provide proof-of-concept
evidence suggesting that visual stimuli or visual function may play an

J. Bathelt, et al. Developmental Cognitive Neuroscience 27 (2017) 10–18

16



important role in basic social processing (SON) that possibly has asso-
ciations with other areas of social cognition.
Evidence of differences in the basic neural response to social stimuli

highlights both clinical risk and also the importance of developing and
evaluating potential intervention and habilitative avenues in the future.
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