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Abstract

Background—Micro RNAs (miRNAs), important regulators of cell function, can be 

interrogated by high-throughput sequencing in a rapid and cost-effective manner. However, the 

tremendous amount of data generated by such methods is not easily analyzed. In order to extract 

meaningful information and draw biological conclusions from miRNA data, many challenges in 

quality control, alignment, normalization, and analysis must be overcome. Typically, these would 

only be possible with the dedicated efforts of a specialized computational biologist for a sustained 

period of time.

Results—Here, we present SMiRK, an automated pipeline that allows such tasks to be 

completed with minimal time and without dedicated bioinformatics personnel. SMiRK’s 

flexibility also allows experienced users to exert more control, if they wish. We describe how 

SMiRK automatically normalizes the data, removes low-information miRNAs, and produces 

heatmaps of the processed data. We give details on SMiRK’s implementation and use cases for 

novice and advanced users. As a demonstration of its capabilities, SMiRK was used to rapidly and 

automatically analyze a dataset taken from the literature.

Conclusion—SMiRK is a useful and efficient tool that can be used by investigators at multiple 

skill levels. Those who lack bioinformatics training can use it to easily and automatically analyze 

their data, while those with experience will find it beneficial to not need to write tools from 

scratch.

This is an open access article is properly cited and distributed under the terms and conditions of creative commons attribution license 
which permits unrestricted use, distribution and reproduction in any medium.
*Corresponding author: Yousin Suh, Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461, USA, 
yousin.suh@einstein.yu.edu. 

Availability and Requirements

• Project name: SMiRK

• Operating system(s): Platform independent

• Programming languages: Java, Python, Bash, R

• Other requirements: None

• License: GNU GPL 3.0 or later

• URL: https://github.com/smirkpipeline/SMiRK

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
BM programmed part of the pipeline, performed the analysis of the sample data, and drafted the manuscript. SG designed the pipeline 
and programmed part of it. YS conceived and coordinated the project. All authors read and approved the final manuscript.

HHS Public Access
Author manuscript
Source J Genom. Author manuscript; available in PMC 2015 November 24.

Published in final edited form as:
Source J Genom. 2015 June ; 1(1): .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/smirkpipeline/SMiRK


Introduction

Since their discovery, micro RNAs (miRNAs)—small RNA molecules of 18–25 bp that 

post-transcriptionally regulate gene expression—have been increasingly recognized as key 

mediators of a wide range of biological processes in humans and other organisms [1–8]. 

High throughput analysis of miRNAs, originally accomplished through microarray 

technology, has given way to sequencing analysis for several reasons. These reasons 

include: miRNAs are fewer in number and smaller in size than most other RNA species, and 

they require less sequencing capacity than conventional transcriptome studies. This means 

that indexed libraries from many samples can be simultaneously sequenced on a single lane 

on a high-throughput platform like the Illumina HiSeq 2500 or Ion Torrent Proton. As a 

result, miRNA sequencing is a useful tool for studies in which many samples are collected.

The utility of miRNA sequencing in producing large amounts of data is diminished by the 

difficulties of data analysis. Necessary steps after sequencing include: alignment of the raw 

data to known miRNA sequences, mathematical normalization of quantitative read counts, 

and determination of significant differences between each experimental group. Typically, 

these tasks require specialized knowledge and computational skills, which necessitate 

dedicating informatics and statistics personnel to the analysis. Furthermore, the complexity 

of these tasks can often cause them to take weeks or even months to complete, causing a 

bottleneck in the scientific process that is inconsistent with the speed with which data can be 

produced.

In order to solve the problems presented by the analysis of miRNA sequence data, we have 

developed an automated pipeline called SMiRK. This pipeline takes care of the major tasks 

of miRNA sequence data analysis; it can be easily run by investigators who do not have 

access to informatics cores. Furthermore, since it is automatic, running SMiRK requires only 

a small amount of active time on the part of the user.

It is possible that for some use cases, however, SMiRK’s default workflow is not 

appropriate; for that reason SMiRK’s individual modules can also act as standalone tools, 

which can assist users who wish to perform bespoke analyses.

Implementation

SMiRK is implemented in the form of several modules, which perform the tasks of: adaptor 

trimming, alignment, normalization, removal of low-abundance miRNAs, and analysis 

(Figure 1). sequence data. The WASP system is used to trim the adaptors from the 

sequences and align them to miRNA sequences. The resulting table of miRNA read counts 

is normalized by the rpm method, producing a table of normalized read counts. Finally, the 

expression levels of miRNAs are visualized on a heatmap.

First, raw files, in the FASTQ format, must have their adaptors trimmed. Then, the trimmed 

reads are aligned with the mature miRNA sequences in version 20 of the relevent mirBase 

database [9] for the species using Bowtie [10] with the best and tryhard parameters. The 

result is a table of miRNA read counts for each library. SMiRK was designed to use output 

from the Wiki-Based Automated Sequence Processor (WASP) [11,12] implementation of 
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these steps. SMiRK, however, is versatile, and can accept as input a comma-separated table 

of miRNA counts from any source.

Next, read counts must be normalized between libraries. Depending upon sample quality 

and quantity, library preparation protocol, accuracy of quantification prior to sequencing and 

quality of the final sequence, the total read counts can vary dramatically between libraries. If 

this is not accounted for, results can be greatly altered, and both false positives and false 

negatives can result. For example, if one library has many more reads than another, then 

miRNAs in that sample may appear to be overexpressed, leading to a false positive. On the 

other hand, if two libraries from the same group have vastly different numbers of reads, then 

the expression of miRNAs in that group may appear to be highly variable, which will reduce 

the power of any subsequent statistical tests and lead to a risk of false negative results. 

Therefore, normalization of library read counts is essential if any comparisons are to be 

made of miRNA expression levels between libraries.

Library normalization is implemented in SMiRK by a custom-built Java program. The 

normalization is based on the reads per million (rpm) method [13]. With this method, the 

number of reads aligned to each individual miRNA in a library is divided by the total 

number of miRNA aligned reads in that library, and then multiplied by 1,000,000. The result 

is that each library is normalized to a size of one million reads; and because each library has 

effectively the same size, the expression level of any given miRNA can be compared 

between multiple libraries. After normalization, it is often apparent that many miRNAs are 

completely unexpressed or expressed at very low abundance in all samples. Since they do 

not contain any meaningful information about the differences between samples, further 

analysis is simplified by removing them entirely. This step is implemented by a Python-

based program that removes low-abundance miRNAs (defined as miRNAs with a count of 

fewer than 10 reads per million in more than half of the samples).

Finally, SMiRK performs analysis on the normalized data. After alignment and 

normalization, the resulting data can be highly informative and useful; however, the 

information is still relatively inaccessible since a table of hundreds of numbers is not easily 

understood. Heatmaps have become the standard method or presenting large data sets of 

gene expression across multiple samples. Furthermore, clustering algorithms have been 

developed in order to find and display any patterns that might remain hidden in the data 

[14]. A script written in the R programming language [15] generates two heatmaps of the 

miRNA expression data: one with the samples and miRNAs arranged in the order given 

present in the input, and another upon which unsupervised hierarchical clustering based on 

the Euclidean distances between samples and miRNAs has been performed. The normalized 

data used for the heatmap is also preserved as an output file, suitable for further statistical 

analysis. Together, these scripts allow patterns in the data to be visualized and hypotheses 

about differences between samples to be generated.

SMiRK also performs automated statistical analysis of the data. If two groups of samples are 

specified, then SMiRK will compare the normalized expression levels of every non-low-

abundance miRNA in those two samples. For each miRNA, the Wilcoxon test [16] is used to 

calculate p-values and determine if a statistically significant difference in expression of that 
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miRNA exists. Since the Wilcoxon test is non-parametric, it can robustly test groups of 

samples without relying on any assumptions about their distribution.

A final feature of SMiRK is its modularity and transparency. The output of each step is used 

as the input for each subsequent step, and the intermediate files generated are preserved for 

subsequent analyses. Although beginning users may only wish to use the final output of the 

entire SMiRK pipeline, more advanced users may desire more granular control over the 

processing and analysis of the data. After running SMiRK, users may inspect and modify the 

intermediate files and have the option of running modules of SMiRK individually. For 

example, a user may wish to arrange the samples in a configuration different than that 

produced by the unsupervised hierarchical clustering that SMiRK uses by default. That user 

could take the data from SMiRK after it had been normalized and low-abundance miRNAs 

removed, rearrange the samples and miRNAs with their desired method, and then run the 

heatmap generation module of SMiRK on the data. Although this method would be more 

involved than just running SMiRK, the pre-existing tools provided would make it much 

easier than manually implementing all of the steps. In this way, SMiRK allows investigators 

to choose how involved they are in data analysis. Beginning users can easily run SMiRK 

and make use of its output; but as they become more experienced, they can also examine the 

process and intervene if they wish.

Results

As a proof of concept, SMiRK was run on a dataset of miRNA sequences from human T 

cells, pro-B cells and MEFs, previously reported by Kirigin et al. [17]. The data consisted of 

23,830,788 miRNA reads divided among 12 samples, one from each cell type: ProB, LSK, 

MPP, LMPP, DN1, DN2, DN3, DN4, DP, CD4SP, CD8SP, and MEF The normalization 

and analysis took less than a minute to complete on a standard modern home computer. A 

heatmap (Figure 2) was produced. The heatmap shows that the pro-B cells cluster with the T 

cells, which is expected because they are related cell types. Furthermore, the MEFs were 

clustered away from the other cell types, which are also expected since they are unrelated 

cell types. The samples in the first half of T cell development (cLSK, MPP, LMPP, DN1, 

and DN2) and the second half of T cell development (DN3, DN4, DP, CD4SP, and CD8SP) 

were chosen as the two groups to compare. Of the 215 miRNAs with sufficient abundance to 

warrant further analysis, 39 had a nominal p-value of less than.05, highlighting them as 

candidates for genes involved in T cell maturation. These included mir-10a and mir-126-3p, 

which had been identified in the original study as being downregulated in later stages of T 

cell development; thus, SMiRK recapitulated previous findings from the dataset, 

demonstrating its reliability in detecting biologically relevant changes in miRNA expression. 

These final analysis outputs demonstrate SMiRK’s ability to detect patterns in data and 

display them in an easily understood format.

After processing the miRNA sequence data, SMiRK generates a heatmap of the data in order 

to produce an accessible and informative visualization. Unsupervised hierarchical clustering 

of both the samples and miRNAs is performed. In this heatmap, related cells types have 

been clustered together, with the one unrelated cell type, MEF, occupying a position on the 

dendrogram distal to all other samples.

Milholland et al. Page 4

Source J Genom. Author manuscript; available in PMC 2015 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

In this paper, we describe SMiRK, a pipeline for rapid processing and analysis of data from 

high-throughput miRNA sequencing experiments. Features of SMiRK include adaptor 

trimming, alignment, normalization, data visualization, and statistical analysis. The main 

advantage of SMiRK is that it performs analysis of data without requiring the dedicated 

efforts of a bioinformatician or statistician. Furthermore, its highly automated nature means 

that little human intervention is needed to direct the data analysis, but the program can still 

prove useful to skilled users who wish to use it as a tool set. Web-based tools are generally 

low-throughput and their workflow cannot be easily modified or interfaced with other 

programs. Other locally installed tools, such as CAP-miRSeq [18], are designed for use on a 

cluster environment; these environments have high requirements in terms of both computing 

hardware and user knowledge. Our hope is that SMiRK will present a low barrier to entry 

for novice users, while also providing a path to greater knowledge and familiarity with the 

analysis being performed, as well as a set of tools useful for advanced users. Regardless of 

the investigator, using SMiRK greatly reduces the complexity and time investment involved 

in analysis of miRNA sequencing data. SMiRK provides a high-throughput analysis pipeline 

to match the high-throughput nature of sequencing technology.
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Figure 1. 
Outline the of SMiRK process.
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Figure 2. 
Heatmap generated by SMiRK.
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