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Abstract

It remains unclear whether and, if so, how non-human animals make on-the-fly predictions during 

pursuit. Here, we used a novel laboratory pursuit task that incentivizes prediction of future prey 

positions. We trained three macaques to perform a joystick-controlled pursuit task in which prey 

follow intelligent escape algorithms. Subjects aimed towards the prey’s likely future positions, 

indicating that they generate internal predictions and use them to guide behavior. We then 

developed a generative model that explains real-time pursuit trajectories and showed that our 

subjects use prey position, velocity, and acceleration to make predictions. We identified neurons in 

the dorsal anterior cingulate cortex (dACC) whose responses track these three variables. These 

neurons multiplexed prediction-related variables with a distinct and explicit representation of the 

prey’s future position. Our results provide a clear demonstration that the brain can explicitly 

represent future predictions and highlight the critical role of anterior cingulate cortex for future-

oriented cognition.

Reporting summary.

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.
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INTRODUCTION

Many foragers pursue fleeing prey. The ability to effectively pursue prey is thus a critical 

element in our behavioral repertoires1,2. To pursue effectively, a forager needs to perform a 

series of computations: it must maintain a representation of its current position relative to 

that of the prey, then compute a best path to capture the prey, then execute that path. Because 

the ability to perform such computations can determine foraging success, pursuit has likely 

been an important driver of our cognition and its underlying brain systems3–5.

One way to improve pursuit effectiveness is to predict the future position of the prey and 

head towards the predicted position6. Estimating future positions can be done using the 

prey’s basic Newtonian variables (most importantly, its current position, velocity, and 

acceleration) and can be improved using additional (potentially even recursive) variables, 

such as predictions about the likely evasive strategy of the prey in response to the predator’s 

own future path. By using such information, the forager may be able to formulate a 

representation of the predicted future position of the prey. The ability of non-human animals 

to actively predict positions of prey during pursuit is poorly understood. Nonetheless, 

predictive pursuit is an important part of the repertoire of many species.

Prediction is important for many cognitive and behavioral processes, not just foraging. These 

include motor control, economic decision-making, and abstract long-term planning7–11. 

There is some evidence that foraging animals can predict the long-term future - that is, they 

may be able to travel mentally in time and see themselves in the future12,13. However, 

observations about animal prediction tend to be limited to a small number of highly adapted 

species in unique contexts. And, while future planning of movements is relatively well-

studied, the ability to predict future positions of prey during dynamic behavior with rapidly 

changing goals – which feed into but are distinct from motor plans – is not. In the context of 

pursuit, a critical question is whether future-predicting foragers maintain a specific 

representation of potential future prey positions and whether those representations 

(assuming they exist) make use of specialized processes.

Although the neural bases of predictive pursuit remain unclear, we can draw some inferences 

about its likely neuroanatomy. In particular, the dorsal anterior cingulate cortex (dACC) has 

been implicated in prediction, prospection, and related processes14–17. For example, 

neuroimaging studies indicate that human dACC is a key region for economic prediction18, 

for prospective reasoning8 and for more open-ended prospective processes18. The dACC is 

well-positioned for this role: it receives broad inputs from limbic and cognitive systems, 

integrates these, and generates high-level control signals that regulate behavior in an abstract 

and high-level way16,19–21.

Here, we examined the future predicting abilities of rhesus macaques using a novel virtual 
pursuit task. Subjects used a joystick to move an avatar in an open two-dimensional field 

displayed on a computer screen. Subjects, controlling the avatar, pursued a fleeing prey item 

that used an artificially intelligent (AI) algorithm to avoid predation. By examining the 

properties of a generative model fit to our data, we found that our subjects moved towards 

extrapolated future positions of prey rather than just pointing towards the preys’ present 
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positions. Our subjects’ made their predictions based on three Newtonian variables 

associated with the current state, but not other factors that could further improve predictions 

(such as the effect of the subject’s movements on the future position of the prey). We also 

found that neurons in dACC were selective for those three Newtonian variables (and not 

others), indicating that responses in this region provide sufficient information to generate the 

types of predictions our subjects made. Finally, we found that dACC neurons used a spatial 

code to explicitly represent the predicted future position of the prey, and that this future 

representation is multiplexed with the representation of current Newtonian variables.

RESULTS

Behavioral results

Three macaques (Macaca mulatta, subjects K, H, and C) used a joystick to control the 

position of an avatar (a yellow or purple circle) moving continuously and smoothly in a 

rectangular field on a computer screen (Figure 1, Supplementary Video 1 and Methods). On 

each trial, subjects had up to 20 seconds to capture a prey item (a fleeing colored square) to 

obtain a juice reward. Prey avoided the avatar with a deterministic strategy that combined 

repulsion from the subject’s current position with repulsion from the walls of the field. The 

prey item was drawn randomly from a set of five, identified by color, that differed in 

maximum velocity and associated reward size.

All subjects showed stable behavior within twelve 2-hour training sessions that followed a 

longer training period on joystick use (Supplementary Figure 1 and Supplementary Figure 

2). All data presented here were collected after the training sessions (number of trials, K: 

3229; H: 3890; C: 2512). Subjects successfully captured the prey in over 95% of trials and, 

on successful trials, did so in an average of 5.04 seconds (K: 4.26 sec; H: 5.32 sec; C: 5.54 

sec) and median of 3.62 seconds (K: 3.36sec; H: 3.73 sec; C: 3.93 sec). Subjects’ 

performance varied lawfully with prey type, indicating sensitivity to manipulation of reward 

and/or difficulty (Supplementary Figure 1).

Behavioral evidence of future state prediction

For analysis purposes, we split all data into one-second segments (Supplementary Figure 3). 

Within each segment, we calculated the error (sum of squares) between the model (see 

below) and the behavior at each frame (i.e., each 16.67 ms). For each segment, we computed 

the minimum point on a 201×201 matrix of intensities for each parameter pair (force by 

time, Figure 2, see below). We then averaged over all segments and all trials, separately for 

the three subjects.

We developed a generative model of behavior (see Methods). We used the variable τ (tau) to 

refer to the prediction parameter for each subject. The variable τ comes from the model and 

refers to a fit scalar variable, which is multiplied by future position (see the equations in 

Methods section “Behavioral Model”). In practice, it can be interpreted as the distance into 

the future that the subject prospects to guide his behavior (Figure 2A). The variable τ can 

have positive, negative, or zero values. A positive value for τ indicates that the subject points 

towards the expected future position of the prey - that is, the strategy reflects prediction. A 

Yoo et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2020 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



zero τ indicates that the subject points the joystick directly at the current position of the 

prey. A negative value for τ indicates that the subject points the joystick towards where the 

prey was in the recent past. Note that all of these strategies (within limits) are capable of 

eventually catching all prey, since the subject’s avatar is, by design, faster than the prey. The 

scalar parameter κ (kappa) reflects the amount of force applied toward the direction of the 

predicted position. Thus, a negative value indicates that force is exerted away from (180 

degrees opposite) the prey’s position, whereas a positive value indicates that force is exerted 

towards it.

We also added an inertia term to the model. Specifically, we computed an inertially biased 

path for each 16.67 ms frame. The biased path is a vector sum of the computed best 

predicted direction and the previous direction (Psubject(t) – Psubject(t-1)). In our 

implementation, these two terms have equal weighting. Note that in practice, their relative 

weighting may nonetheless vary because the force term (κ, which is fit in the model), affects 

the weight of the new direction relative to the past direction. This approach for 

implementing inertia is designed to align intuitively with how inertia works (see Methods, 

Supplementary Figure 2, and Supplementary 4).

We called our first model the physics variable based prediction model (PVBP). It assumes 

that subjects’ prediction derives from the prey’s current position, velocity (i.e. both speed 

and direction), and acceleration (which includes both direction and magnitude of 

acceleration), as well as further derivatives, see Supplementary Figure 5). For all three 

subjects, the best fitting τ is positive, indicating that they point the joystick towards the 

prey’s future position. For ease of interpretation, we translated τ into time units by 

calculating the distance between the current position and estimated position, then divided 

that quantity by the average velocity of the prey across the session. The results of this 

calculation indicate that subjects K, H and C pointed the joystick towards the position that 

the prey would occupy in an average of 800 ms, 767 ms, and 733 ms in the future, 

respectively. In the context of the task, these numbers are substantial: they reflect 18.78%, 

14.42%, and 13.23% of the average trial duration for K, H, and C, respectively.

To determine whether the positive prediction parameter τ is significantly greater than zero, 

we performed a bootstrap (randomization test making use of resampling with replacement) 

of heatmap slices from each segment (individual heatmap from 500 segments). This 

resampling was performed 500 times and resulting heatmaps were added. Then the τ and κ 
that best explain each segment (that is, the one resulting in the lowest cost) were selected in 

each resampling. We confirmed that the estimated value τ and κ are both greater than zero 

more than 99% of the time (i.e., p<0.01).

The distance into the future that our subjects predicted did not detectably depend on the 

speed of the prey (linear regression between reward/speed and mean τ, K: β=3.0316, 

p=0.1110; H: β=4.5798, p=0.1791; C: β=7.1007, p=0.0957; the term β refers to the 

regression coefficient for speed against neural activity). We next asked whether taking more 

complex paths (ones with more turns vs. more straight paths) affected prediction span. Prey 

path complexity (as measured by path curvature estimated by average angle method) 

affected prediction. Specifically, subjects predicted less far into the future when the prey 
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path had more curves (K: β=−0.0687; H: β=−0.0567; C: β=−0.0898, p<0.0001 for each). 

Thus, subjects had the ability to dynamically adjust their own prediction in light of changing 

circumstances.

Alternative models do not predict trajectories as well as physics-based prediction

We next compared the physics-based model to two other models implementing different 

prediction algorithms (Figure 2B). First, the veridical prediction (VP) model assumes that 

the subjects will make perfect predictions that incorporate all game dynamics, including 

preys’ repulsion from the walls and the subject’s avatar. This means that a subject that makes 

a veridical prediction takes into account the effect his own movements will have on the 

prey’s strategy. Second, the cost contour map prediction (CCMP) model is the same as VP 

but excludes repulsion from the avatar, meaning that the subject’s prediction model for the 

prey would not take into account their own motion. We compared the performance of each 

model by computing the sum of squares error between the prediction trajectory and the 

observed trajectories over all time bins.

Using the Akaike Information Criterion (AIC), we found that the PVBP fit better than the 

other two models in our well-trained subjects (K: 7.529×106, for subject K, second best was 

VP: 7.542×106; H, PVBP: 8.923×106; for subject H, second best was CMPP: 8.950×106, 

Figure 2D). We fit each segment with distinct τ and κ parameters, and we fit these same two 

parameters for each of our three models. As a consequence, the comparison of models can 

be done directly without concern of potential bias toward any specific model. In other words, 

by fitting each of the three models subject to identical constraints, we ensured a fair 

comparison across models. For the less well-trained subject, C, the CCMP model explained 

trajectories most accurately (7.955×106).

We speculated that one factor that may influence strategy is the speed of the prey. Indeed, we 

found that all three subjects used PVBP more frequently when the speed of the prey was 

faster (Supplementary Figure 6). Note that this observed link between speed and the fit of 

the PVBP occurs even in our third (less fully trained) subject (p < 0.001, logistic regression, 

Supplementary Figure 6). In any case, our model’s classification of strategies appears to be 

robust: the same results were obtained using a different method. Specifically, we fit all 

individual segments to the best model and computed the model that fits the most overall 

number of segments (Figure 2D and Methods).

Doing the fitting this way may seem excessively flexible. That is, using two times the 

number of segments might allow us to fit only noise. (Consider, for example, the case of 

fitting 9 data points with 9th-order polynomial curve). On the other hand, the extra freedom 

may allow us to better fit signal - or, of course, it may fit both noise and signal. The key 

question, then, is whether using a large number of parameters makes the fit better despite the 

possibility of fitting noise. To answer this question, we directly compared the two 

approaches (Supplementary Figure 3). Specifically, we compared a model assigning two 

parameters globally versus one applying two parameters for each one-second segment (i.e., 

Monkey K: 28,164; Monkey H: 35,308; Monkey C: 20,720 parameters, Supplementary 

Figure 3). We then used AIC to compare models. We found that the second-by-second fitting 

resulted in lower AIC values, implying a better fit, than the 2-parameter counterpart. 
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Specifically, in this figure, for all individual subjects, the change in AIC (AIC for global 

parameter model minus AIC for second-by-second model) was positive - implying the 

model fit by second-by-second model explains the data better than the counterpart - for the 

best physics-based model explaining the subject’s behavior.

Overall, the model comparison results showed that subjects predict the upcoming position of 

the prey using Newtonian physics but ignore the walls and their own influence on the prey. 

That is, subjects use a simplified approximation of the structure of the game to make future 

predictions; presumably this simplified one is sufficient to generate good predictions with 

lower mental effort costs. Indeed, the correlation between speed of prey and subjects’ 

reliance on physics based prediction (a result confirmed with two different analytical 

approaches) suggests that prediction might have a computational cost.

Prediction-related information encoded in dorsal anterior cingulate cortex

Based on its role as a nexus for motivational, cognitive, and motor information15,20, and its 

demonstrated role in human prospection8,22, we hypothesized that dACC would be critical 

for predictive pursuit (Figure 3A). We fit a statistically unbiased Linear-Nonlinear 

Generalized Linear Model (GLM23,24) to responses of 150 well-isolated dACC neurons (K: 

n=31; H: n=119). For this analysis, we focused on the entire trial period rather than pre-

selecting epochs.

Position, velocity, and acceleration of the prey were all encoded by significant proportions of 

neurons (Figure 3; position: 62.00%, n=93/150; speed: 35.33%, n=53/150; 36.67%; 

direction: n=55/150, acceleration: 24.67%, n=37/150, p<0.001 in all cases, two-way 

binomial test). The model fit shown in magenta is the shape of reconstructed filter 

(examples, Figure 3C, D). According to the GLM, jerk, the derivative of acceleration, is not 

encoded (see Supplementary Figure 5). Jerk also did not measurably affect the subject’s 

neural responses (it only modulated 2.00% of cells, n=3/150, p=0.1288, two-way binomial 

test). Together, these results indicate that dACC ensembles carry the major raw ingredients 

that our subjects use to predict prey positions.

We wondered whether ostensible coding for prey variables could be the byproduct of coding 

for self-position, since self-position and prey position do tend to be somewhat correlated. We 

therefore repeated our GLM analyses but included self-position, self-direction, and self-

speed as explanatory factors and considered variance explained by prey parameters only 

after accounting for these variables. Doing this, the proportion of neurons selective for the 

prey’s position information remained significant (n=108/167, 64.50%; p < 0.001, two-way 

binomial test), as did neurons selective for prey speed (n=31/167, 22.16%; p<0.001, two-

way binomial test), and direction (n=20/167, 11.98%, p < 0.001, two-way binomial test). 

Note, for this analysis, we included a small subset of neurons, n=17, that were excluded 

from the previous analysis. Results do not differ if we use the same slightly smaller set of 

neurons.

Neurons in dACC encode future position

We next asked whether dACC neurons encode the future position of the prey. For each 

neuron, we refit the GLM using an additional parameter, the position of the prey at time t in 
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the future. We selected the time t (t=833ms) that was most similar to the value of τ resulting 

from our generative model, that is, the one indicating the most likely time span of prediction 

(733, 766, and 800 for the three subjects, respectively) subject to the additional constraint of 

being a multiple of 166.67 (i.e. 10 frames). Note that although this value was chosen in 

advance, it aligns with the empirically derived measure of peak future position coding 

(Figure 4D, see below).

Our analysis approach deals with the problem of correlation between the set of current 

Newtonian variables (including current position) and future position by assigning all 

explanatory power to the set of current variables first, and only counting as significant any 

additional variance explained by future position (see Methods). Despite this conservative 

criterion, we found that responses of 24.67% of dACC neurons are selective for the prey’s 

future position at time t (n=37/150).

Visual inspection of the neurons’ filters shows that their selectivity is complex (examples are 

shown in Figure 4C). That is, they are positionally tuned, but, unlike place cells, have non-

point-like shapes. They contain multiple peaks. They do not appear to be smooth gradients. 

Instead, they appeared to be heterogeneously spatially tuned. In this manner, they resemble 

recently identified non-grid-like space-selective cells in entorhinal cortex23. Notably, 

conventional methods for detecting place/grid-like cells will greatly underestimate the 

proportion of such tuning.

We next asked how strongly dACC neurons encode the future position of the prey. We 

calculated the proportion of log likelihood increase (LLi) between the current position 

model and the current plus future model (Figure 4A). Our neurons showed a wide range of 

marginal variance explained. On average, adding the future position term improved variance 

explained by 6.89% (the mean of this proportion is significantly different from zero, 

p<0.001, Wilcoxon sign-rank test, Figure 4A inset).

We then asked whether these newly discovered future position cells constitute a separate 

class of neurons from the cells that tracked the current position of the prey. To do this, we 

computed the explanatory variance accounted for by future position (variance explained by 

the combined model minus variance explained by current position) and current position, as 

defined by log likelihood improvement (LLi) in fitting. We found a positive correlation 

between these variables (Figure 4B), indicating current and future position were multiplexed 

in the same population of cells (r = 0.7394, p < 0.001, cf.25).

To quantify the difference between current and future position coding, we fit separate 

models: one incorporated current position plus current Newtonian variables; the other was 

the same but used future position (assuming t=833 ms) instead of current position. For the 

36 neurons with significant tuning for both current and future position, we calculated the 

similarity between the filters, using a technique known as spatial efficiency, SPAEF26 

(Figure 4C). A zero SPAEF indicates orthogonal filters; positive SPAEF indicates similar 

filters; negative SPAEF indicates anticorrelated filters. Although the mean of the spatial 

efficiency for our neurons was positive, it was not significantly so, and spanned a large range 
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of values from negative to positive (mean of population spatial efficiency=0.0440, Wilcoxon 

sign-rank test, p=0.3790).

Finally, we assessed future encoding by examining the accuracy of model fitting to each of 

several possible future times, ranging from 0 to 1333 ms in the future. We ran a type of 

sliding window analysis that involved sampling one frame (16.67 ms) every ten frames 

(166.67 ms) and ignoring the intervening nine frames. We found that the value of 833 ms fits 

the largest number of neurons. (Values around it fit many neurons too). Specifically, the 

plurality, 24.67% of neurons, were tuned for prey position at 833 ms (Figure 4D). The 

roughly equivalent value of the neural and the behaviorally fit prospective distance (733 and 

800 ms for those two subjects) suggests that these neurons encode the future position of prey 

on the same approximate timescale as the subject actively predicts.

We considered the possibility that this peak at 833 ms was due to some unanticipated 

correlation between positions in the future and at the present. If this were so, then the 

average distance of the self and/or prey would show a local minimum at a point in the future 

corresponding to the peak. However, we did not see this. On the contrary, we found that the 

distance increases monotonically for both subjects (Figure 4E).

State information is not confounded with gaze information

Activity in dACC is selective for saccadic direction, and may therefore also correlate with 

gaze direction (although this has not, to our knowledge, been shown27). Consequently, it is 

possible that our spatial kernels may reflect not task state but gaze information. Specifically, 

what appears to be tuning for future position may instead be attributable to the fact that 

monkeys looked towards the predicted future prey position. We tested this possibility by 

calculating the Euclidean distance between eye position and prey position in a range from 

−80 to +80 frames (Figure 5A). The distance between eye and prey position was the closest 

at −5 frames (77.09 pixels), indicating that eye position lagged prey position. Thus, if gaze 

direction were a major confound, it would show up as increased selectivity for past 

positions, not prediction of future positions. Likewise, the chance that prey velocity 

encoding is a by-product of eye velocity encoding was belied by the stark differences 

between gaze speed and prey speed (p <0.001, Wilcoxon sign rank test, but also clear from 

visual inspection of Figure 5B). Finally, we repeated our GLM analyses (see above) but 

included eye position (only for the one subject from which we collected gaze data). We 

found that that the number of tuned neurons for the prey did not substantially change; that is, 

that adding in gaze position as a regressor did not qualitatively change our results (Figure 

5C).

Encoding of reward and reward proximity in dACC

Research based on conventional choice tasks indicates that dACC neurons track values of 

potential rewards28. We next asked how dACC encodes anticipated rewards in our more 

complex task. We found that, averaging over all other variables, the value of the pursued 

reward modulates activity of 8.67% of neurons (n=13/150, using a simple linear regression 

of firing rate against value; this proportion is greater than chance, p=0.038, one-way 

binomial test). Note that this analysis ignores the potential encoding of prey speed, which is 
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perfectly correlated with static reward in our task design. We hypothesized that reward/speed 

would be encoded in a modulatory manner29, that is, that the pursued reward/speed would 

alter the shape of the tuning for other task variables, rather than be multiplexed (Figure 6A). 

To test this hypothesis, we split our dataset by reward size and, as a control, split it 

randomly. We found that for several variables (prey position, prey direction, and prey speed), 

value splits produced greater differences than random ones (purple bar, p = 0.0221 for prey 

speed, and p < 0.001 for other prey variables, Figure 6B). This result indicates that the 

reward information encoded in dACC interacts mathematically with encoding of other 

variables. In other words, selectivity is mixed.

A good deal of research suggests that dACC neurons also signal the approach in time of 

impending rewards30–32, even in continuous tasks33. We thus asked whether it does so here. 

We repeated our GLM, including relative (self-to-prey) distance as an explanatory variable. 

We found that 38.67% of neurons (n=58/150) were tuned for self-prey distance. 

Interestingly, this relationship is heterogeneous - of these 58 neurons, 31.03% (n=18/58) 

showed a positive slope and 18.97 % (n=11/58) showed a negative slope. This bias is not 

itself significant (p=0.2649 for rise and fall bias, n = 18/29; p = 1.000 for monotonic bias, n 

= 29/59, binomial test in all cases). This result indicates that while dACC neurons do track 

the approach to reward, they do not show an overall rise or fall in activity as they do so.

DISCUSSION

Pursuit is an important element of the behavioral repertoire of many foragers2,5,34. The 

algorithmic bases of pursuit have recently attracted the interest of scholars in ecology, 

engineering, psychology, and other disciplines6,33,35–39. Nonetheless, we know very little 

about how pursuit decisions occur in real time, and we know even less about their neuronal 

underpinnings. Here, we examined how macaques pursue virtual prey in a continuous, time-

varying task. We developed a generative model based on a large dataset. The result of this 

model suggests that our subjects follow a predictive strategy. That is, instead of pointing 

towards the position of the prey, they extrapolate the future positions of prey and use this 

prediction to adjust their heading. This strategy is more efficient (yields more reward per 

unit time) but may be more computationally demanding than a simpler one that would 

involve pointing at and tracking the current position of the prey. These results demonstrate 

that pursuing animals can adopt complex future-predicting strategies that improve 

performance.

We found that dACC neurons track the elemental physical variables our subjects use to 

predict the future and explicitly encode the prediction. Specifically, we found that firing rate 

responses of neurons in dACC encode three Newtonian variables (position, velocity, and 

acceleration) that our subjects used to track the prey and predict future prey positions. The 

same neurons carry an additional representation of the future position of the prey that is 

multiplexed with the Newtonian variables rather than maintained in a separate pool of 

specialized neurons. Both representations make use of a two-dimensional response field, 

akin to place fields in hippocampus, but not localized to a single position. Specifically, 

spatial representation in dACC is qualitatively similar to place representations of non-grid 

cells in entorhinal cortex23. It is notable that dACC uses partially distinct spatial tuning 
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functions to track the present and future positions of the prey, thus in principle allowing 

unambiguous decoding for a given population response.

Our work is directly inspired by important studies identifying mechanisms underlying 

pursuit in other animals36,37,40. Our work goes beyond these studies by developing a 

generative model, that is, a model that seeks to understand how the data are generated41. 

One benefit of the generative model is that it lets us probe how the decision is made at every 

time step and make guesses about the underlying mental process leading to decision. The 

generative model in turn is vital for extending our understanding of mechanism to the 

neuronal level.

This model allows us to generate results that provide novel insight into the role of dACC in 

cognition. First, our results emphasize the core role of dACC in prediction, a role that is 

central to other theories, albeit not ones that directly involve pursuit8,14,17,18,42,43. One 

recent study is particularly relevant to these results17. The authors examined hemodynamic 

activity in human dACC during a complex decision-making task in which subjects had to 

track previous rewards and use a reinforcement learning-like mechanism to formulate a 

future prediction and make the best choice. They found that dACC tracks multiple variables, 

but was particularly selective for long-term estimates of expected prediction errors. These 

results highlight the key role of dACC in prediction in general and suggest its role is 

conserved across species (see also17). Second, our findings highlight the importance of 

dACC to navigation. While studies of navigation typically focus on the medial temporal 

lobe, a growing body of work has begun to explore the role of cingulate cortex, which 

receives direct projections from medial temporal regions22,44.

There are several important limitations to the present work. First, and most obviously, our 

subjects were not performing a truly naturalistic task; they were performing a laboratory task 

that required specialized training. Future studies will be needed to ascertain whether these 

results relate to natural pursuit contexts that are ostensibly similar, such as pursuit of insects 

in the peripersonal space45,46. Second, and relatedly, the task space we used was greatly 

constrained - both agents were restricted to a small rectangular space and had strict speed 

limits. Subjects had full information about the position of the prey at all times. To 

understand prediction more fully, it will be critical to extend to contexts in which some 

information is hidden.

Traditional laboratory tasks that study topics of interest to cognitive neuroscience - decision-

making and executive control - have discrete steps and force the brain to adjust to that 

structure47. One reason we developed the prey pursuit task is that it embeds those cognitive 

processes in a continuous time-varying task. Doing so allows us to study one of the brain’s 

greatest strengths - its ability to adjust and change its mind on the fly as new evidence comes 

in47–50, and to incorporate that into future plans.
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Material and Methods

Subjects.

All animal procedures were approved by the University Committee on Animal Resources at 

the University of Rochester and/or the University of Minnesota and were designed and 

conducted in compliance with the Public Health Service’s Guide for the Care and Use of 

Animals. Three male rhesus macaques (Macaca mulatta) served as subjects for the behavior; 

two of them also served as subjects for the physiology. Age of subjects was 9 (subject K), 10 

(subject C), and 10 (subject H), Subjects had never previously been exposed to decision-

making tasks in which they could use a joystick to pursue a moving prey. Previous training 

history for these subjects included two types of foraging tasks51,52, intertemporal choice 

tasks53, several types of gambling tasks54–56, attentional tasks (similar to those in ref57), and 

two types of reward-based decision tasks58,59.

Experimental apparatus.

The joystick was a modified version of commercially available joysticks with a built-in 

potentiometer (Logitech Extreme Pro 3D). The control bar was removed and replaced with a 

control stick (a 15 cm plastic dowel) topped with a 3 cm diameter plastic sphere designed to 

be easy for macaques to manipulate. The joystick position was read out by a custom coded 

program in Matlab running on the stimulus-control computer. The joystick was controlled by 

an algorithm that detected the positional change of the joystick and limited the maximum 

pixel movement to within 23 pixels in 16.67 ms.

Task design.

At the beginning of each trial, two shapes appeared on a gray computer monitor placed 

directly in front of the subject. The yellow (subject K) or purple (subjects H and C) circle 

(15-pixel diameter) represented the subject. Subject position was determined by the joystick 

and was limited by the screen boundaries. A square shape (30-pixel length) represented the 

prey. The movement of the prey was determined by a simple AI (see below). Each trial 

ended with either the successful capture of the prey or after 20 seconds, whichever came 

first. Successful capture was defined as any spatial overlap between the avatar circle and the 

prey square. Capture resulted in immediate juice reward; juice amount corresponded to prey 

color: orange (0.3 mL), blue (0.4 mL), green (0.5 mL), violet (0.6 mL), and cyan (0.7 mL).

The path of the prey was generated interactively using A-star pathfinding methods, which 

are commonly used in video gaming60. For every frame (16.67 ms), we computed the cost of 

15 possible future positions the prey could move to in the next time-step. These 15 positions 

were spaced equally on the circumference of a circle centered on the prey’s current position, 

with a radius equal to the maximum distance the prey could travel within one time-step. The 

cost in turn was based on two factors: the position in the field and the position of the 

subject’s avatar. The field that the prey moved in had a built-in bias for cost, which made the 

prey more likely to move towards the center (Figure 1B). The cost due to distance from the 

subject’s avatar was transformed using a sigmoidal function: the cost became zero beyond a 

certain distance so that the prey did not move, and it became greater as distance from the 

subject’s avatar decreased. Eventually, the costs from these 15 positions were calculated and 
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the position with the lowest cost was selected for the next movement. If the next movement 

was beyond the screen range (1920×1080 resolution), then the position with the second 

lowest cost was selected, and so on. The maximum speed of the subject was 23 pixels per 

frame (and each frame was 16.67 ms). The maximum and minimum speeds of the prey 

varied across subjects and were set by the experimenter to obtain a large number of trials 

(Figure 1). Specifically, speeds were selected so that subjects could capture prey on <85% of 

trials; these values were modified using a staircase method. If subjects missed the prey three 

times consecutively, then the speed of the prey was reduced. Once the subject intercepted the 

prey in a trial where the staircase method was used, then the selection of prey speed was 

randomized again. To ensure sufficient time of pursuit, the minimum distance between the 

initial position of each subject avatar and prey was 400 pixels.

Training level estimation.

Three subjects were trained for the same amount of time (8 weeks). As training progressed, 

each subject was exposed to a progressively more difficult (faster) suite of prey, up to a fixed 

maximum. Subject K and subject H reached a similar range for maximum speed of prey 

during the training period (K:15 pixels per frame; H: 14 pixels per frame). However, subject 

C only attained a maximum speed of 8 pixels per frame (Supplementary Figure 6). It is for 

this reason we refer to him as the less well-trained subject.

Behavioral model.

To fit each subject’s movement, each trial was divided into 1-second-long segment. Each 

segment included 61 data points (because we used 16.67 ms resolution). We modeled these 

trajectories using a single prediction and a single force parameter for the entire trial, as a 

simplifying assumption. Nonetheless, it is reasonable to assume that throughout a long, 20-

second period, there would be an active adjustment of prediction and force. Actual 

comparison by AIC supported our intuition, and we used segment as the unit of analysis 

throughout (values of ‘AIC of segment/AIC of trial’ was 0.9328, 0.9214, 0.9227, for 

subjects K, H, and C (or whatever) respectively.

Overall, the position of the subject was generated according to the following:

Psubject(t + 1) = κ f (Psubject(t)) + m

where Psubject(t) is position of the subject at time t, m is the inertia of subject as calculated 

from the joystick, and κ is the force parameter. The vector κf(Psubject(t)) was then summed 

with the inertia m that was defined as following:

m = Psubject(t) − Psubject(t − 1)

Pprey(t) indicates the position of the prey at time t. The function with respect to subject 

position at time t was defined as:

f (Psubject(t)) = Pprey(t + 1) − Psubject(t)
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Then the position of the prey at time t+1 was:

Pprey(t + 1) = Pprey(t) + τ∑n = 0
k dnPprey(t)

dtn

Where the n indicates the order of derivation with respect to the time. Thus, n=1 indicates 

velocity, and n = 2 indicates acceleration.

The Physics Variable-Based Prediction (PVBP) model incorporates one previous time step 

to predict the prey’s next position. This approach is similar to a Kalman filter61. The other 

two models we tested do not utilize any past information. The model assuming prediction 

using the cost contour map (CCMP model) considers only the lowest cost location at the 

next time step. The model assuming veridical prediction (VP) automatically finds the exact 

position of the prey at the next time step. Once the prey’s position on the next time step is 

predicted, the model computes how far this predicted position is from the agent’s current 

position. A prediction value of 1 indicates that the future position will be as far as from the 

agent’s current position as the prey’s current position. The best-fitting parameter pairs were 

determined by performing a grid search across the ranges of both parameters.

During this search, we tested the range of the prediction parameter between −400 to 400 

subjects H and C, and −200 to 200 for subject K. (Units for this range correspond to the 

distance the prey moved in the previous timestep). Subjects H and C had a larger range, 

because over 5% of their trajectories resulted either in −200 or 200 in prediction parameter 

value. Representative parameters for explaining each segment were selected based on the 

value of the sum of squared error between the actual segment and the segment generated by 

the model.

Significance testing for estimating parameters of behavioral model.

To determine whether the positive prediction parameter was significantly greater than zero, 

we performed a bootstrap of heatmap slices from each segment. This resampling was 

performed 500 times, and selected heatmaps were added. Then, the parameter set resulting 

in the lowest cost was selected in each resampling.

Model evaluation.

To evaluate model performance and compare among models, we computed the Akaike 

Information Criteria (AIC) using the likelihood of each model (Figure 2, and Supplementary 

Figures 4 and Supplementary Figures 5). We first calculated the mean and variance of all the 

sum-of-squared errors across trajectories. Then we estimated the likelihood assuming a 

normal distribution centered on the mean of the sum-of-squared errors with a variance 

equivalent to the variance of the sum-of-squared errors across all trajectories. To validate 

whether subjects used a single prediction and force across the all the trials or adaptively 

changed their prediction method, we compared the AIC value between cases where the 

parameter pair varied across all trajectories, using only the single best parameter pair.
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Electrophysiological recording.

One subject (H) was implanted with multiple floating microelectrode arrays (FMAs, 

Microprobes for Life Sciences, Gaithersburg, MD) in the dorsal anterior cingulate cortex 

(dACC). This is the region that we define as Area 2415 and that corresponds to dACC in 

most other primate studies, including those from our lab52,54,62. Each FMA had 32 

electrodes (impedance 0.5 MOhm, 70% Pt, 30% Ir) of various lengths to reach multiple 

layers within dACC. Neurons from subject K were recorded with laminar V-probes (Plexon, 

Inc, Dallas, TX) that had 24 contact points with 150 μm inter-contact distance. Continuous, 

wideband neural signals were amplified, digitized at 40 kHz and stored using the Grapevine 

Data Acquisition System (Ripple, Inc., Salt Lake City, UT). Spike sorting was done 

manually offline (Plexon Offline Sorter). Spike sorting was performed blind to any 

experimental conditions to avoid bias.

Details of LN model.

To test the selectivity of neurons for various experimental variables, we constructed 

Generalized Linear Models with navigational variables (GLM23,24). The GLM models 

estimated the spike rate (ri) of one neuron during time bin t as an exponential function of the 

weighted sum of the relevant value of each variable at time t, which the weights are 

determined by set of coefficients (wi). The estimated firing rates from the GLM models can 

be expressed as:

r = exp(∑
i

Xi
Twi)/dt

Where r denotes a vector of firing rates for one neuron over T time points across the session, 

and i indexes the variables of interest, e.g. position of avatar on screen. The vector of firing 

rates over T time points provide the benefit for modeling the neural activity without specific 

time-locking to behavioral event. Xi is a matrix in which each column represents a set of 

“state variables” of the animal (e.g. one of twelve speeds, determined by post-hoc binning) 

obtained from binning the continuous variable so that all the columns for a particular row are 

0, except for one column. Unlike conventional tuning curve analysis, GLM analysis does not 

assume the parametric shape of the tuning curve a priori. Instead, the weights, which define 

the shape of tuning for each neuron, were optimized by maximizing the Poisson log-

likelihood of the observed spike train given the model-expected spike number, with 

additional regularization for the smoothness of parameters in a continuous variable, and a 

lasso regularization for parameters in a discrete variable. Position parameters were smoothed 

across rows and columns separately. The regularization hyperparameter was chosen by 

maximizing the cross-validation log-likelihood based on several randomly selected neurons. 

The unconstrained optimization with gradient and Hessian was performed (MATLAB 

fminunc function). Model performance of each neuron was quantified by the log-likelihood 

of held out data under the model. This cross-validation procedure was repeated 10 times (10-

fold cross-validation), and overfitting was penalized. Through multiple levels of penalties, 

we can compare performance of models with varying complexity.
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Forward model selection.

Model selection was based on the cross-validated log-likelihood value for each model. We 

first fit n models with a single variable, where n is the total number of variables. The best 

single model was determined by the largest increase in spike-normalized log-likelihood from 

the null model (i.e., the model with a single parameter representing the mean firing rate). 

Then, additional variables (n-1 in total) were added to the best single variable model. The 

best two-variable model was preferred over the single variable model only if it significantly 

improved the cross-validation log-likelihood (Wilcoxon Signed Rank Test, α = 0.05). 

Likewise, the procedure was continued for the three-variable model and beyond if adding 

more variables significantly improved model performance, and the best, simplest model was 

selected. The cell was categorized as not tuned to any of the variables considered if the log-

likelihood increase was not significantly higher than baseline, which was mean firing rate of 

fitted neurons across the session.

Future position models.

We examined the effect of future position by fitting a GLM having ‘future position’ and 

‘current position’ together as the input variable. Then we compared to the GLM model with 

the only current position. Difference between the two models was evidence that additional 

variance was explained by including future position.

Comparison between current and future position filters.

For this purpose, we constructed two GLMs: one with current position and current 

Newtonian variables (velocity and acceleration), and another with future position and 

current Newtonian variables. Then we selected the neurons that showed significant tuning 

for both models. To compare the similarity between two positional filters, we used the 

SPAtial EFficiency metric (SPAEF) that prior literature suggests to be more robust than the 

2D spatial correlation26. It quantifies the similarity between two maps:

SPAEFF = 1 − (A − 1)2 + (B − 1)2 − (C − 1)2

A is the Pearson correlation between two maps, B is the ratio between the coefficients of 

variation for each map, and C is the activity similarity measured by histogram profiles. 

Values near −1 indicate anticorrelated maps (one tends to be high when the other is low); 0 

indicates uncorrelated maps; 1 indicates perfect matching between the two.

Velocity dependent Physics Variable-Based Model (PVMP) prediction bias.

We examined whether PVBP is preferred when the velocity of prey is high (Supplementary 

Figure 6). We first obtained the average velocity of the prey at each segment, and then 

categorized each segment as belonging to either the physics or non-physics variable-based 

prediction based on which fit result was best. With the prey velocity and segment category, 

we performed logistic regression with velocity as a predictor and category as the dependent 

variable (glmfit in MATLAB).
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Data availability.

A portion of the data is available on Github (https://github.com/sbyoo/prospectpursuit/). Full 

data are available from the corresponding author upon request.

Code availability.

Code is available at https://github.com/sbyoo/prospectpursuit/.

Statistics.

Error bars of log-likelihood fit increase in neural analysis are obtained by a bootstrapping 

cross-validation procedure (50x, (Figure 4A). Error bars in percent tuned neuron are 

obtained by calculating mean for 50-time bootstrapping (Figure 4D, Figure 5C, Figure 6B). 

Other error bars are the standard error of the mean (SEM) (Figure 5E, Figure 6A, 

Supplementary Figure 1). No statistical methods were used to pre-determine sample sizes, 

but our sample sizes are similar to those reported in previous publications both from our lab 

and other labs (ref 41 for the behavioral model, ref 51 and 52 for the neural data). Data were 

assumed to be normally distributed, but this was not formally tested. Trial conditions were 

generated randomly. Selection of subjects was arbitrary. Data collection and analysis were 

not performed blind to the conditions of the experiments. No data points were excluded.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental paradigm and behavioral results. (A) Cartoon of virtual pursuit task. Subject 

uses a joystick to control an avatar (circle) and pursue prey (square) on a computer screen. 

(B) Raincloud plot showing each subject’s capture times in an example session (limit was 20 

seconds). The box plot indicates 2nd and 3rd quartile of the data; midline indicates the 

median of the data (K: 3.36 sec, H: 3.73 sec, C: 3.93 sec). The dots under the probability 

density functions indicate individual data points. (C) Avatar and prey trajectories on 

example trials. Grey: path of avatar; red/blue: path of prey. Color gradient indicates the time 

progression through the trial.
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Figure 2. 
Model description and fitting results. (A) Cartoon of model for generating future position 

based on prediction. Solid black arrow indicates movement from previous time frame to the 

current one. The resulting movement (red/blue dashed arrow) vectors are constrained to a 

maximum speed and inertia (black dashed arrow). (B) Fitting results: Akaike Information 

Criterion (AIC, left) across all the trajectories and percentage of trials best explained by each 

model (right). For calculating the AIC, we summed the log-likelihood across the whole data 

set from each subject individually and used the quantity (2 × number of the segments) as the 

number of free parameters. This quantity was: subject K, 28,164; subject H, 35,308; subject 

C, 20,720 parameters. Predictive models provide better fits than zero prediction ones. (C) 
Example trajectories and corresponding fit trajectories generated by predictive and non-

predictive models. (D) Heatmap plots of model performance explaining subject’s pursuit 

segment across parameter space from a single subject (Subject K) for physics based model 

(left), cost model (center), and veridical (right). The small gray circle at the peak indicates 

the best parameter combination explaining that subject’s behavior, that is, the one that 

generates the smallest distance between the actual segment and model-predicted segment.
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Figure 3. 
Basic neural results. (A) Cartoon showing location of recorded brain areas in dACC; sagittal 

and coronal views. (B) Filters (tuning surfaces) of two example neurons showing selectivity 

for current position of the prey. (C) Example neuron showing tuning for speed (black line) 

and the corresponding model fit (magenta line). (D) Example neuron showing tuning for 

prey direction (black line) and the corresponding model fit (blue line). (E) Preponderance of 

tuning for the Newtonian physics variables tested. Tuning for future position is counted only 

if the neuron is selectively tuned for future position above and beyond current position.
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Figure 4. 
Properties of future position selectivity. (A) The proportion of variance explained by 

including a future position as a regressor for spatial tuning for each neuron. Only neurons 

that are selective for the current position are shown. Neurons are sorted according to the 

amount of additional variance explained by future position. Inset: histogram of log-

likelihood increase (LLi, a measure of explanatory power) observed after adding the future 

position of the prey to the GLM. (B) LLi for current and future position are correlated on a 

cell-by-cell basis. Red solid line indicates the linear regression line; n=150 neurons; 

significance: two-tailed t-test. (C) Example filters from neurons that are significantly tuned 

for both current and future prey position. Y-axis of the central plot indicates SPAtial 

EFficiency (SPAEF), a measure of the similarity of two-dimensional filter (see Results)26. 

Higher SPAEF indicates that the matrices are more similar to each other. Only significant 

neurons are shown; cells are sorted by spatial efficiency. (D) Sliding window analysis for 

future position encoding strength. Plot shows the proportion of neurons significantly 

selective for a future position at several possible future delays. This curve peaks at around 

700–800 ms, which corresponds to the average prediction distance for all three subjects. (E) 
The distance between current prey position and future prey position at time t rises roughly 

linearly with time. This finding indicates that the peaks found in panel D are not likely to be 

an artifact of some unforeseen periodicity in the relative paths of the subject and prey. 

Dashed line: maximum distance of 1 grid, which is diagonal distance. This provides a 

reference for the units on the y-axis. The measure of center is mean value 50 bootstrapping, 

and error bars are the standard deviation.
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Figure 5. 
Analyses that control for potential gaze confounds. (A) The Euclidean distance between the 

eye position at t=0 and prey position (orange solid line) / self position (blue solid line). Error 

shading: standard error of the mean. Only data from subject K are shown (n=147280 

frames). (B) Speed distribution of prey movement and smooth eye pursuit. (C) Proportion of 

neurons whose responses are selective for three key variables using our GLM procedure 

(red) and in an analysis in which all variance is assigned to eye position first (green). All 

three variables are still significant in the population when including gaze position (total 

number of neurons in the analysis is 31). The measure of center is mean value computed by 

a 50x bootstrap; error bars: standard deviation.
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Figure 6. 
Modulatory effect of reward size on tuning for prey variables. (A) Responses of an example 

neuron selective for the angle between self and prey; changes in the reward size of prey 

(divided into three bins post-hoc) appear to change the gain and not the offset of the 

neurons; that is, reward interacts multiplicatively with angle. Shading: standard deviation. 

(B) This pattern is also observed in the population. The proportion of neurons significantly 

tuned for prey variables (prey position, prey direction, and prey speed) when splitting data 

randomly (grey bar) or according to the value of pursued prey (purple bar). The difference of 

value split was significant (p = 0.0221 for prey speed, and p < 0.001 for other prey 

variables). Precise p-value was p = 0.1887 (prey position), p=0.1516 (prey direction), p = 

0.7039 (prey velocity). Significance test: two-tailed t-test. The measure of center is mean 

value computed by a 50x bootstrap; error bars: standard deviation. Each filled circle 

indicates a single bootstrap sample.
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