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Simple Summary: The biological features of prostate cancer as a tumor with a low alpha beta ratio
have led clinicians to consider the use of higher doses per fraction, thus gaining an advantage both
in terms of clinical outcomes and of logistic opportunities. To date, moderate hypofractionated
schedules are supported by several international clinical guidelines. The subsequent step was
represented by the adoption of extreme hypofractionated schedules, for which recent literature data
report non-inferiority results for the five-fractions regimens. In this scenario, the recent introduction
of MR-guided daily adaptive radiotherapy is a potential paradigm shift, given the ability to increase
the resolution of the pelvis anatomy and to take into account of the daily variations in shape and size
of the nearby healthy structures.

Abstract: In this review we summarize the currently available evidence about the role of hybrid
machines for MR-guided radiotherapy for prostate stereotactic body radiotherapy. Given the novelty
of this technology, to date few data are accessible, but they all report very promising results in terms
of tolerability and preliminary clinical outcomes. Most of the studies highlight the favorable impact of
on-board magnetic resonance imaging as a means to improve target and organs at risk identification
with a consequent advantage in terms of dosimetric results, which is expected to relate to a more
favorable toxicity pattern. Still, the longer treatment time per session may potentially affect the
patient’s compliance to the treatment, although first quality of life assessment studies have reported
substantial tolerability and no major impact on quality of life. Finally, in this review we hypothesize
some future scenarios of further investigation, based on the possibility to explore the superior
anatomy visualization and the role of daily adapted treatments provided by hybrid MR-Linacs.

Keywords: mr-guided radiotherapy; prostate cancer; stereotactic body radiotherapy

1. Introduction

Prostate cancer (PC) is the most frequently diagnosed tumor in the male population
in Europe [1], with high survival rates. Besides surgery, radiotherapy (RT) represents
the best non-invasive alternative in the curative setting and plays a key role in the post-
operative scenario [2–4].

There are several data supporting PC as a tumor with a low alpha-beta ratio that is
more sensitive to higher doses per fraction [5–7].
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This biological characteristic is the main basis for the worldwide propagation of
hypofractionated schedules, which were initially supported by a large number of studies
and are currently implemented in several international clinical practice guidelines [8–11].

The excellent outcomes in terms of toxicity and disease control and the constant tech-
nological advances have led clinicians to investigate the use of extreme hypofractionation,
which combines a superior biological effect with non-negligible logistic advantages [12,13].
To date, very promising results are available in the literature and the role of extreme hy-
pofractionation is expected to gain more attractiveness with the recent introduction of
Magnetic Resonance (MR)-guided RT performed with Linacs equipped with on-board
MR-imaging [14–17].

The advent of these hybrid machines may represent a game-changer for the radiation
oncology community, aiming to improve the accuracy in target volume and organs at
risk (OARs) delineation, based on a better anatomy visualization due to the improved
soft tissue contrast provided by MR. Because the prostate can be clearly identified using
MRI, it is expected that target volumes will decrease, also inter-observer variability will be
reduced in accordance with ESTRO-ACROP guidelines [18,19].

Moreover, MR-Linacs allow a daily online treatment plan adaptation based on the
ability to recalculate the plan prior to each fraction, taking into account changes in shape
and size of the target and surrounding healthy structures [20].

These advantages could significantly reduce the inter-fraction variability, which is a
major problem in extreme hypofractionated schedules [21,22].

In contrast, the longer duration of the treatment session can potentially affect intra-fraction
motion, although cine-MR sequences allow clinicians to constantly monitor organ motion
during the beam-on-time and apply automated beam gating features, where available [23].

However, as recently reported by Hehakaya et al. [24], the setting of PC is a con-
genial field for the development of MR-guided RT, given the opportunity to improve
treatment tolerability with a potentially lower incidence of toxicity and a consequently
favorable outcome in terms of patient-reported outcomes (PROMs). Moreover, the im-
plementation of these hybrid devices represents a theoretical opportunity that also has
positive socio-economic implications, both in terms of professional developments and
for logistical reasons. Furthermore, specifically in the setting of prostate cancer, but also
generally speaking, the improved accuracy in target volume delineation and the possibility
to daily-adapt the target based on real-time anatomy will increase clinicians’ confidence in
proposing extremely hypofractionated schedules with a reduced length of the treatment
and decreased accesses to the facility. Indeed, this device is expected to reinforce the multi-
disciplinary nature of RT by involving multiple professional groups, such as radiologists,
physicists and Radiation Therapy Technologist (RTTs), and leading to a new dynamic in
daily clinical activity [25–27].

Given the relative novelty of this technology, several diagnostic and therapeutic
opportunities can be explored, especially in the setting of PC, such as radiomics or focal
boost investigational studies in order to further tailor the oncologic treatment. Nevertheless,
to date, the published evidence remains quite sparse. [28,29] In this narrative review,
we aim to present the preliminary data currently available in the scientific literature on the
implementation of hybrid Linacs with on-board MR-imaging for daily-adaptive stereotactic
body radiotherapy (SBRT) of the prostate and the future potential challenges arising from
the introduction of this technique.

2. Literature Research

We have performed a narrative review of the available literature concerning the
of hy brid Linacs equipped with on-board MR-imaging for daily adaptive stereotactic
body radiotherapy for prostate cancer. In December 2020, we started a PubMed literature
search using the following research terms: “mr-guided” (MeSH terms) OR “mr guided”
(All Fields) AND “daily-adaptive” (MeSH terms) OR “daily adaptive” (All Fields) AND
radiotherapy” AND “stereotactic body radiotherapy” (MeSH terms) AND “prostate cancer”
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(MeSH terms). Only articles published in English language from peer-reviewed journals
from were considered. Additional references were extracted by a hand search on the
bibliography of all the selected articles.

3. MR-Guided Radiotherapy: Present Evidence

To date, two MR-Linac devices are commercially available, Unity Elekta (Elekta,
Stockholm, Sweden) and MRIdian Viewray (Viewray Inc., Cleveland, OH, USA) [30,31].

Unity Elekta conjugates a 1.5 T magnetic resonance system with a 7 MV linear acceler-
ator and it allows daily-adapted radiotherapy by means of two different workflows: the
adapt-to-position (ATP) procedure is based on a daily update of the iso-center position,
with no need for re-contouring, while in the adapt-to-shape (ATS) workflow, the daily
treatment plan is re-calculated on the re-contoured volumes of the real-time anatomy of
the patient (Figure 1).
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Figure 1. Daily replanning for Magnetic Resonance-guided Stereotactic Body Radiotherapy (MR-guided SBRT).

The MRIdian Viewray combines a 0.35 T split magnetic resonance scanner with a
circular ring-gantry in which all 6 MV Linac components are shielded to avoid magnetic
field interferences. This hybrid machine enables also different types of plan adaptation
ranging from simple re-optimization to a full online-adaptive workflow with re-contouring
and dose re-optimization. Moreover, it allows real-time soft tissue tracking and gating.

For both devices, given the relatively longer treatment time per session, the simulation
process is a crucial factor in order to perform an accurate and refined treatment delivery.
Based on available literature, most experiences reported a similar protocol in terms of
bladder filling and rectal emptying ([32–38]—see Table 1). For both the CT scan (performed
for dose calculation purposes) and the MRI scan, patients were educated to have a half-full
bladder in order to take into account residual volume changes during the plan adaptation
phase (Figure 2).
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Table 1. Literature experiences of MR-guided daily adaptive SBRT for prostate cancer.

Author N◦ of Patients MR-Linac Device SBRT Schedule Main Endpoint of
the Study Results

Alongi et al. [36] 20 Elekta Unity 35 Gy/5 fractions
Dosimetric analysis

and preliminary
PROMs report

Hydrogel improves rectal
sparing with minimal

impact on QoL

Bruynzeel et al. [32] 101 Viewray MRIdian 36.25 Gy/5 fractions Early toxicity
analysis

G ≥ 2 GU = 23.8%
(including 5.9% of G3

according to RTOG
criteria); ≥2 GI = 5.0%

Cuccia et al. [34] 20 Elekta Unity 35 Gy/5 fractions

Assessment of the
impact of rectal

spacer on prostate
motion

Significant impact on
rotational

antero-posterior shifts
with consequently

reduced prostate motion

Tetar et al. [33] 101 Viewray MRIdian 36.25 Gy/5 fractions PROMs analysis

After one year, only 2.2%
of cases reported a

relevant impact on daily
activities due to

GI toxicity

Nicosia et al. [39] 10 Elekta Unity 35 Gy/5 fractions

Dosimetric
comparison between

MR-guided SBRT
and conventional

Linacs SBRT

MR-guided SBRT
resulted in lower

constraint violation rates

Sahin et al. [37] 24 Viewray MRIdian 36.25 Gy/5 fractions Preliminary report of
feasibility

Substantial feasibility of
MR-adaptive SBRT with

acceptable time schedules

Ugurluer et al. [38] 50 Viewray MRIdian 36.25 Gy/5 fractions Early toxicity
analysis

Acute G2 GU = 28%;
Late G2 GU = 6%;
Late GI GU = 2%
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Figure 2. Daily interfraction variability of Planning Target Volume (PTV) and bladder.

A T2-weighted gradient-echo sequence is acquired for a better visualization of the
prostate gland. After the re-optimization of the plan, a further cine MR, usually acquired
on sagittal and coronal planes, is performed to check organ motion during the beam-on
time (Figure 3).
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Figure 3. Cine Magnetic Resonance (CineMR) sequence before the delivery of MR-guided SBRT.

The Viewray system, in addition to T2-weighted imaging, currently has a True Fast
Imaging with steady-state-free precession (TRUFI) sequence. The system enables simple
couch shifts, as well as more elaborated online plan adaptation strategies [40].

Currently available evidence reports MR-guided SBRT as a safe and feasible treatment
option. Alongi et al. [36] reported excellent preliminary results in terms of PROMs in a
cohort of 25 patients who received 35 Gy in 5 fractions, with no evidence of acute G ≥ 3
adverse events. Interestingly, the favorable results in terms of quality of life (QoL) outcomes
after a median treatment time of 56 min (range, 34–86) per fraction, indicate the tolerability
of MR-guided SBRT for prostate cancer and show that the longer treatment time per session
has only a minimal impact on QoL. In agreement with these findings, also the study
by Bruynzeel et al. [32], performed using a 0.35 T MR-Linac, reported early promising
results in a phase II study enrolling 104 patients, with only 5.9% of grade 3 genitourinary
toxicity according to RTOG criteria. Similarly, on QoL evaluation, no relevant differences
were detected at any time point of the study, with the exception of role functioning.
These data were recently updated with a final PROMs analysis after one year of follow-up,
which confirmed the absence of G ≥ 3 adverse events. Furthermore, at 12 months after the
end of treatment, QoL returned to baseline conditions, with only 2% of patients reporting
persistent bowel symptoms [33].

A further recent paper has been published by Uguerler et al. [38] reporting in a series
of 50 patients with a median follow-up of 10 months with no evidence of G3 acute or late
toxicity. Although observing a 36% rate of G2 GU adverse events, when available, late GI
and GU toxicity rates were respectively 2% and 6%.

In this scenario, the use of rectal spacers for mitigating prostate motion represents a
helpful tool to maximize the safety and accuracy of extremely hypofractionated treatments
for prostate cancer [41,42]. To date, the use of this device has been safely reported by
Alongi et al. in a series of 20 patients who received MR-guided prostate SBRT using rectal
hydrogel spacer. Interestingly, the authors recorded a significant advantage in terms of
rectal sparing and target coverage, in comparison with a cohort of patients who did not
receive the administration of the rectal spacer. In addition, despite the invasive procedure,
no adverse impact on QoL was observed using PROMs assessment [43].

The same sample of patients was also analyzed in a subsequent study with the
aim of evaluating a potential positive effect in terms of intra-fraction motion mitigation.
The authors recorded a statistically significant effect of the rectal hydrogel spacer on
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rotational antero-posterior displacements compared to patients without spacers. Although
these data are preliminary, they suggest a potential effect of prostate fixation due to the
squeezing effect towards the pubic bone, but mature evidences is still needed to support a
potential clinical impact of these dosimetric advantages [44–46].

Consistent with this, the study by Nicosia et al. [39] also highlights the beneficial
impact of a superior anatomy visualization provided by MR-guided radiotherapy. In a
dosimetric comparison between 40 patients receiving prostate SBRT using MR-Linac or a
Volumetric Modulated Arc Therapy (VMAT) technique with or without fiducials, the au-
thors recorded a significantly lower rate of constraints violation in the MR-Linac cohort
compared to Volumetric Modulated Arc Therapy - Image Guided Radiation Therapy
(VMAT-IGRT) patients treated without fiducials. Thus, the authors suggest that in VMAT-
IGRT, only the implementation of fiducials can lead to a comparable quality in terms of
real dose-distribution, which consequently highlights the advantages of MR-Linacs as a
fiducial-free technique for extreme prostate hypofractionation.

4. MR-Guided Radiotherapy: Future Directions
4.1. Boost of the Dominant Intraprostatic Lesion

Despite the limited literature currently available, MR-guided SBRT in PC leads the way to
several therapeutic opportunities to be explored. Among these, the administration of a boost to
the dominant intraprostatic lesion (DIL), defined as the largest radiologically detected nodule in
a milieu of a multifocal disease, is a critical issue for the RT scientific community [47,48]

Sparse emerging evidence suggests that the administration of doses ≥90 GyEQD2 to the
dominant macroscopic node has a potentially favorable impact on biochemical control and
biochemical disease-free survival. Furthermore, the administration of a higher dose to the DIL is
thought to improve biochemical and local control, based on evidence reporting the macroscopic
dominant nodule as the first site of local relapse after curative radiotherapy [49–52].

In these series, the boost delivery was performed using a variety of techniques, includ-
ing External Beam Radiotherapy (EBRT), SBRT and brachytherapy. Interestingly, only the
ASCENDE-RT trial reported an increased incidence of genito-urinary effects [53].

In contrast, the recently published primary endpoint analysis of the multicenter
prospective HYPO-FLAME trial reported acceptable acute GI and GU toxicity rates in a
population of 100 men with intermediate and high-risk prostate cancer [54]. More mature
data now provide further evidence in terms of clinical benefits, including the currently
ongoing FLAME phase III trial [55].

In this scenario, the ability to rely on daily MR-guided imaging allows clinicians
to improve the quality of IGRT and increase the confidence in the delivery of a focal
boost based on daily re-calculation of the plan that accounts for inter-fraction variability.
Of note, the correct visualization of the DIL may be difficult, for example in the case of
concomitant androgen deprivation therapy, also because diagnostic MRI is still superior
in terms of soft tissue contrast compared with the on-board MRI of hybrid machines [56].
Moreover, as reported by van Schie et al., the T2-signal of healthy prostate decreases during
radiotherapy, making the identification of the DIL more complex [57].

4.2. Margin Reduction/Single Shot Treatments

The exploration of hypofractionation in recent years has led clinicians to consider the
possibility of introducing single fraction regimens. As this option has been preliminary
reported for SBRT of oligometastases [58], it is currently under investigation also in the set-
ting of PC SBRT. The prospective multicenter phase I/II study ONE SHOT is investigating
the feasibility and efficacy of 19 Gy single fraction SBRT with urethral sparing in patients
with low and intermediate risk prostate cancer [59].

To date, only phase I results have recently been published with no acute grade ≥3 toxic-
ity reported. The study recruitment is ongoing, and phase 2 results are eagerly awaited [60].

As recently hypothesized in a dosimetric study by Dunlop et al. [61], MR-Linacs
may represent the best device for the delivery of single fraction PC SBRT. The authors
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investigated the technical feasibility of MR-guided prostate SBRT in 5, 2 or 1 fractions
and reported no constraints violations in 30 plans. Only in 4 out of 10 plans of the 2- and
1-fraction regimens, target coverage criteria in terms of PTV D95% were not met in order
to comply with Organs At Risk (OARs) constraints. On this basis, the authors planned
to conduct a study to evaluate the clinical feasibility of a two fraction schedule. In this
dosimetric study, an isotropic margin of 2 mm was applied to generate the PTV.

As mentioned above, it remains a matter of debate whether the use of a rectal spacer
can lead to a margin reduction strategy. As recently reported by Mannerberg et al. [62],
the daily volume changes of the bladder and rectum result in a large displacement of the
prostate, which increases the risk of a potential target underdosing. Combined with the
time-consuming procedure of daily online adaptive treatments, a margin reduction in the
absence of a stable immobilization of the prostate appears to be unwise at the moment.

4.3. Sexual Function Preservation

Given the ability of MRI to better visualize pelvic structures, in the context of prostate
SBRT, there is an increased attention being paid on preserving sexual function. The refined
quality of the diagnostic process has led to an earlier detection of the disease, prompting
the scientific community to reflect on the optimal balance between safety and efficacy,
including the occurrence of erectile dysfunction [63]. The onset of this side effect is based
on a multifactorial pathogenesis that includes both organic and psychological factors [64].

To date, the biological rationale for erectile dysfunction after RT is thought to be based
on a mechanism of vascular sclerosis; however, it is unclear which healthy structure is
directly involved in the development of this late sequela [65].

Moreover, the radiation-induced inflammatory response of the prostate gland may
potentially contribute to facilitate this injury, along with eventually concurrent ADT or
the injection of rectal immobilization devices, for which conflicting data in terms of pro-
inflammatory effects have been reported [66,67].

The study by Spratt et al. [68] focused attention on sparing of the internal pudendal
arteries, with encouraging results. A recent review by Ramirez-Fort et al. highlights the
role of the ejaculatory ducts and the neurovascular plexus; the latter is adherent to the
posterior part of the prostate gland and is therefore difficult to avoid with current image-
guided radiotherapy modalities. Assuming an anatomic similarity to the brachial plexus,
the authors hypothesize a similar dose constraint in conventional fractionation with a
Dmax<75 Gy to 2 cc ([64,65,69]—Figure 4).

Although longer treatment sessions in this setting may theoretically result in greater
organ displacement with a consequent major inflammatory exposure, MR-guided RT may
help clinicians in identifying these pelvic substructures with the aim of reducing the dose
exposure and consequently preserve sexual function. However, further studies are needed
to confirm this approach.

4.4. Re-Irradiation

Another potential area of interest for MR-guided prostate SBRT is local re-irradiation
after curative or post-operative RT [70].

Furthermore, in this setting, solid evidence is currently lacking and generally consists
of small and mono-institutional retrospective series [71–80].

Nevertheless, preliminary data are very promising in terms of toxicity, biochemical
control and ADT-free survival, prompting clinicians to consider this therapeutic alternative
in a scenario in which there is a lack of consensus regarding clinical management [81].

In addition, the availability of refined imaging modalities such as PET-CT with more
sensitive tracers and multiparametric-MR has increased the accuracy in identifying the site
of local relapse, improving the confidence in proposing a more tailored treatment [82].
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Specifically for MR imaging, it should be noted that local recurrence detection can
potentially be hampered by T2-signal distortions induced by the previous RT treatment;
nevertheless, the integration of diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced (DCE) imaging is expected to overcome these limitations [83,84].

Through an online adaptive workflow, MR-guided SBRT treatments can provide a
better sparing of healthy structures, which is a crucial issue especially in the setting of
re-irradiation. Compared to conventional CT-based image-guidance, the MRI-based IGRT
may be the optimal choice for prostate re-irradiation SBRT.

5. Patient Selection

Patient selection is a crucial issue for the treatment with a hybrid MR guided RT
device. Several criteria can be strongly evaluated anticipatedly for each patient to address
to MR-guided RT. Considering that this innovative hybrid radiation technology is com-
plex, it requires more resources than conventional IGRT. Moreover, all patients should
be accurately screened for MR compliance. Physical limitations such as the presence of
non-MR compatible pacemakers or other electronic devices in the body that may interact
with magnetic fields are a reason to exclude them from this treatment, as are patients with
clinical limitations such as severe claustrophobia or other severe psychological disorders.
Moreover, the simulation process has to include the coil in the immobilization phase,
thus representing a potential issue in the case of overweight patients who may not be
compatible with the field of treatment of MR-Linacs. Given the novelty of this technology
and the relatively paucity of data, to date there are no standardized limitations in terms of
body mass index or weight to determine the patient fitness for this technology.

Regarding extreme hypofractionation, not all patients are ideal candidates. It is known
that patients with a large prostate size and prior Transurethral Resection of the Prostate
(TURP) may not be ideal candidates for SBRT [85–87]. Similarly, patients who have signifi-
cant baseline urinary symptoms may not be ideal candidates for SBRT. These baseline as-
sessments are crucial for both conventional Linac- and MRI Linac-based prostate SBRT [88].
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The high technical complexity and enormous costs of MR-guided RT technology
usually limit the availability of more than one hybrid radiation delivery unit per RT
department. Therefore, backup solutions are difficult to address in the event of technical
problems. Additionally, some MR-guided RT treatment planning and delivery technologies
are independent and stand-alone systems. Subsequently, in case of a technical failure,
any attempt to treat the patient at another RT site remains challenging.

6. Conclusions

MR-guided RT definitely seems to be a reliable RT advancement for the treatment of
PC in a variety of situations, including prostate SBRT with a daily MR-guided adaptive
workflow, dose escalation strategies with or without an intraprostatic focal boost on the
DIL, and re-irradiation in cases of local recurrences after prior RT. The currently available
MRgRT systems are in the early stages of their potential clinical application and in the
midst of continuous improvements in this field (e.g., radiomics features, etc.). During
recent years, radiomic models were studied to assess PC aggressiveness, taking into
account imaging textures or features that are extracted from the labeled region of functional
MRI sequences [89].

Although promising, the underlying understanding of the most informative features
and predictive models remains limited. Future radiomic models could predict molecular
characteristics (e.g., androgen resistance) and combined with such biological features could
help clinicians to better predict PC aggressiveness [90].

A new setting that will certainly increase the clinical use of MRgRT in PC in the near
future is the integration of new algorithm tools (artificial intelligence) to exploit even more
specific features from multiple MRI sets of functional imaging or to provide a large amount
of data for an immediate application on an adaptive flow chart or even to support the
decision-making process of radiation oncologists.
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