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Background and objective: Observational studies may provide valuable evidence on real-world causal
effects of drug effectiveness in patients with coronavirus disease 2019 (COVID-19). As patients are usually
observed from hospital admission to discharge and drug initiation starts during hospitalization,
advanced statistical methods are needed to account for time-dependent drug exposure, confounding and
competing events. Our objective is to evaluate the observational studies on the three common meth-
odological pitfalls in time-to-event analyses: immortal time bias, confounding bias and competing risk
bias.
Methods: We performed a systematic literature search on 23 October 2020, in the PubMed database to
identify observational cohort studies that evaluated drug effectiveness in hospitalized patients with
COVID-19. We included articles published in four journals: British Medical Journal, New England Journal of
Medicine, Journal of the American Medical Association and The Lancet as well as their sub-journals.
Results: Overall, out of 255 articles screened, 11 observational cohort studies on treatment effectiveness
with drug exposureeoutcome associations were evaluated. All studies were susceptible to one or more
types of bias in the primary study analysis. Eight studies had a time-dependent treatment. However, the
hazard ratios were not adjusted for immortal time in the primary analysis. Even though confounders
presented at baseline have been addressed in nine studies, time-varying confounding caused by time-
varying treatment exposure and clinical variables was less recognized. Only one out of 11 studies
addressed competing event bias by extending follow-up beyond patient discharge.
Conclusions: In the observational cohort studies on drug effectiveness for treatment of COVID-19 pub-
lished in four high-impact journals, the methodological biases were concerningly common. Appropriate
statistical tools are essential to avoid misleading conclusions and to obtain a better understanding of
potential treatment effects. Oksana Martinuka, Clin Microbiol Infect 2021;27:949
© 2021 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.
Introduction

With a growing number of publications on potential therapeutic
candidates for coronavirus disease 2019 (COVID-19) treatment,
high-quality observational studies have added value to the
assessment of drug benefit in the real-world health-care setting
[1,2]. However, the observational study design has important lim-
itations and poses several challenges in the data analysis, particu-
larly regarding the time-dependent nature of the data [3].
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Ignorance of methodological biases in observational studies with
time-to-event analysis may lead to distorted results and false
conclusions on the exposureeoutcome associations [4,5]. The aim
of this article is to review the observational studies on evaluation of
drug effectiveness in individuals with COVID-19 with regard to the
presence of three methodological biases referred to as immortal
time bias, confounding and competing risk bias. This work also
aims to give recommendations on avoiding these biases.

In contrast to randomized clinical trials, in observational cohort
studies a drug of interest is often prescribed after initiation of a
study, e.g. later during follow-up. Immortal time typically occurs
when there is a delay or waiting period between cohort entry and
the time of the first prescription, which is falsely accounted for as
drug-exposed time. Hence, exposed participants must survive the
blished by Elsevier Ltd. All rights reserved.
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initial time period to receive treatment if they are not assigned to
the unexposed cohort [5,6]. Exclusion or misclassification of
observation time often leads to immortal time bias and conse-
quently to artificial overestimation or underestimation of drug
effectiveness [6,7].

Control of both time-fixed and time-varying confounding is
crucial because of the lack of randomization in observational real-
world data [8]. In contrast to time-fixed confounding bias, time-
varying confounding is commonly encountered in longitudinal
observational studies [9e11]. In clinical epidemiology, treatment
exposures are often time-varying and the values of potential con-
founders may change during the observational period, leading to
time-varying confounding [12,13]. A lack of control of confounding
may lead to biased estimates of treatment effects and causal
misinterpretation [11,14].

Another issue that is often observed in observational studies
with survival or time-to-event analysis is the competing risk bias.
By definition, a competing risk is an event that modifies the chance
of occurrence of the primary event of interest and can occur when a
patient is at risk of more than one type of event [15].

Competing risk events are frequently observed in hospital
epidemiology when the follow-up ends with hospital discharge.
In turn, hospital discharge is a competing risk for the hospital
death that is often the outcome of interest [7,16]. In survival an-
alyses, the survivor function and the hazard function are the two
most common methods for representation of survival data. In the
presence of competing risks, the naïve KaplaneMeier estimator
takes the competing risks as censored observations. As a result
the KaplaneMeier analysis overestimates cumulative risks and
produces upwards-biased estimates [16e18]. Furthermore, the
causal treatment effects cannot be completely assessed if the
measures of association are reported only for the event of interest
[7,17,18]. The key recommendations to address all the three
methodological biases are listed as summary points in Box 1.
BOX 1

Summary points

� Time zero, time of treatment initiation and end of follow-

up should be clearly described in the research methods.

To avoid immortal time bias, follow-up time and treat-

ment status should be properly accounted by the design

or statistical methods.

� To avoid competing risk bias, a competing risk analysis

has to be performed to describe results on all cause-

specific hazards and visualized using cumulative hazard

functions. If there is no follow-up beyond hospital

discharge, the discharge has to be handled as a

‘competing event’ in the statistical analysis.

� Immortal time bias, time-fixed confounding and

competing risk bias can be addressed simultaneously by

applying a cause-specific Cox regression for an event of

interest and a competing event with the inclusion of

treatment as a time-dependent covariate.

� If robust time-varying clinical data are available and

applicable, time-varying confounding should be

addressed using amarginal structural Coxmodel or other

g-methods for causal inference.

� Data analysis should be performed in a stepwise manner,

starting from simple straightforward methods to

increased model complexity.
Methods

Study selection, inclusion and exclusion criteria

A literature search of observational studies on drug effec-
tiveness in hospitalized patients with COVID-19 was performed
in four journals: the British Medical Journal (The BMJ), the New
England Journal of Medicine (NEJM), the Journal of the American
Medical Association (JAMA), and The Lancet. Also, their sub-
journals were selected. These journals were chosen because
they are the leading and most cited medical journals with high
impact factors. This review required original retrospective
observational cohort studies with primary data including time-
to-event data analysis. As a result, comments, correspondence,
opinions, researcher letters and audio interviews were excluded.
The inclusion criteria were hospitalized patients diagnosed with
COVID-19. Both single-centre and multicentre studies were
included. The literature search included studies that investi-
gated drug effectiveness alone or in combination with standard
therapy. Studies that focused on drug preventive rather than
therapeutic effects were excluded. Articles that investigated the
adverse effects of drug therapy only were not included either.
The selection included studies with a comparative control group
in which patients either received standard therapy or no treat-
ment. Studies with different time-dependent clinical outcomes,
such as in-hospital mortality, overall survival and survival
without transfer to the intensive care unit (ICU), were selected
for our review. Finally, the study selection was limited to articles
published between the start of the pandemic in December 2019
and 23 October 2020. The selection procedure of our literature
search is shown in the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) flow diagram (Fig. 1).

Data sources and search strategy

The systematic literature review was performed in the PubMed
database on 23 October 2020. The review was conducted according
to the PRISMA guidelines for reporting systematic reviews [19]. The
list of keywords and detailed search strategy are described in the
Supplementary material (Tables S1 and S2).

Methodological bias assessment

The assessment of biases was performed independently by all
three authors. Each observational study was reviewed in-depth to
determine the possible presence of immortal time bias, con-
founding bias and competing risk bias by screening the Methods
as well as the Results section. The design, methods and statistical
techniques were evaluated. Studies were considered to be sus-
ceptible to the immortal time bias if the time period before
treatment allocation was not addressed in the analysis and, as a
result, time-dependent drug exposure was statistically handled as
a time-fixed exposure. The susceptibility to both time-fixed and
time-varying confounding biases was evaluated. The occurrence
of time-fixed confounding biases was determined if baseline
covariates were not adjusted. However, the evaluation of cor-
rectness, adequacy and effectiveness of the applied adjustment
methods and the degree of residual confounding were outside the
scope of this review. The time-varying confounders were evalu-
ated by examining the presence of time-dependent treatment and
time-varying covariates. Studies were considered vulnerable to
time-varying confounding bias if sophisticated statistical methods
for controlling of time-dependent confounders were not applied.
Studies were considered as being susceptible to competing risk
bias if follow-up of patients was ensured only until discharge and



Fig. 1. Flow diagram of the identified studies in the systematic literature review.
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individuals who were discharged alive were censored at the time
of discharge for quantifying the probability of experiencing the
event of interest. To identify whether the biases were addressed,
the study methodology (i.e. study design and applied analytical
methods) and results were evaluated. In addition, the supple-
mentary materials of the included articles were checked.

Results

Out of 255 articles screened, 11 observational cohort studies on
the drug effectiveness for COVID-19 treatment in hospitalized pa-
tients were included; six articles from The Lancet and its sub-
journals, three articles from the Journal of the American Medical As-
sociation and its sub-journals as well as one from the British Medical
Journal and one from the New England Journal of Medicine (Table 1)
[20e30]. These observational studies investigated the effectiveness
of drugs such as anakinra, azithromycin, chloroquine or hydroxy-
chloroquine, methylprednisolone and tocilizumab. These drugs
were administered alone or in combination with standard therapy.
All of these studies were susceptible to at least one of the three
discussed types of bias (Fig. 2). The results and examples of the
identified biases are given in the following sections.
Occurrence of immortal time bias

Overall, eight studies were susceptible to immortal time bias
[20e25,27,29]; in the three remaining studies, the start of the
follow-up and/or the start of treatment exposure administration
were not clearly defined [26,28,30]. In two of these studies, treat-
ment was artificially converted into a time-fixed exposure by using
different time scales for the treated and untreated cohorts, i.e. for
the untreated group the start of follow-upwas at time zerowhereas
for the exposed cohort the start of follow-up was set at the time of
treatment [21,25]. As a result, artificial conversion of the time scale
made the evaluation of the treatment impossible because of
starting events before follow-up. It is likely that the three studies
with unclear start of treatment administration are also susceptible
to immortal time bias (Table 1) [26,28,30].

To account for immortal time bias, four studies performed
sensitivity analyses and included the results in the secondary
analyses or in the supplementary materials [22,24,27,29]. To
address the immortal time bias, methods such as the landmark
analysis [22], the target trial emulation analysis [24,27] and the
time-dependent Cox regression analysis [29] were performed
(Table 1). For instance, Rosenberg et al. accounted for delayed



Table 1
Characteristics of included studies and their features of immortal time bias

First author
[reference]

Journal title
abbreviation

Study baseline
(time zero)

Start of treatment exposure Susceptibility to
immortal time bias

Accounted for bias Methods addressed immortal
time bias

Primary analysis Secondary analysis

Biran [20] Lancet Rheumatol admission to ICU early in ICU yes no no not reported
Cavalli [21] Lancet Rheumatol admission to hospital day zero (different time scales

for treated and untreated
patients)

yes a no no not reported

Geleris [22] N Engl J Med 24 hours after admission
to hospital

within 48 hours or during
follow-up period

yes no yes landmark analysis

Guaraldi [23] Lancet Rheumatol admission to tertiary hospital at time of hospital admission up
to 24 hours

yes no no not reported

Gupta [24] JAMA Intern Med admission to hospital within 2 days of ICU admission yes no yes nested target trial emulation
analysis

Huet [25] Lancet Rheumatol admission to hospital day zero (different time scales
for treated and untreated
patients)

yes a no no not reported

Kuderer [26] Lancet start of follow-up not
clearly defined

start of treatment not clearly
defined

start of follow-up, start
of treatment is not
clearly defined

n/a n/a not reported

Mah�evas [27] BMJ admission to hospital within 48 hours, more than
48 hours or during follow-up

yes no yes target trial emulation analysis
(mimicking an ITT and an as-
treated)

Mehra [28] Lancet start of follow-up not
clearly defined

within 48 hours after diagnosis
established

start of follow-up is not
clearly defined

n/a n/a not reported

Rosenberg [29] JAMA admission to hospital at any time during
hospitalization

yes no yes sensitivity analysis with time-
dependent treatment status

Wu [30] JAMA Intern Med admission to hospital start of treatment not clearly
defined

start of treatment is not
clearly defined

n/a n/a not reported

Abbreviations: ICU, intensive care unit; ITT, intention-to-treat analysis; n/a, not available.
Journal title abbreviations: BMJ, the British Medical Journal; JAMA, the Journal of the American Medical Association; JAMA Intern Med, the Journal of the American Medical Association Internal Medicine; N Engl J Med, the New England
Journal of Medicine; Lancet, The Lancet; Lancet Rheumatol, The Lancet Rheumatology.

a Treatment was artificially converted to a time-fixed exposure.
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Fig. 2. The summary of biases for the included studies.
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treatment start by using the time-dependent Cox proportional
hazards model in their sensitivity analysis. The resulting hazard
ratio for in-hospital mortality corrected for the immortal time bias
increased in all treatment groups. In particular, for the group
treated with hydroxychloroquine in combination with azi-
thromycin it increased from 1.35 (95% CI 0.76e2.40) to 1.83 (95% CI
1.02e3.28) and for hydroxychloroquine alone from 1.08 (95% CI
0.63e1.85) to 1.46 (95% CI 0.84e2.55), respectively [29].
Occurrence of confounding bias

Out of the 11 studies susceptible to confounding, nine studies
used methods to account for the time-fixed confounding bias
[20,22e29]; the two remaining studies showed results from the
crude (unadjusted) analysis only [21,30]. The most frequently used
methods to control for time-fixed confounding were adjustment in a
regression model or stratification. Seven studies applied the pro-
pensity score weighting methods for confounding adjustment
(Table 2).

In contrast to the time-fixed confounding bias, the time-varying
confounding bias was less recognized. In eight studies where the
exposure was time-varying (see Immortal time bias section), we
presume that treatment initiation was caused by evolving clinical
characteristics of the patient, which led to time-varying con-
founding (Table 2) [20e25,27,29]. In these studies, treatment
exposurewas analysed as a baseline covariate and, as a result, time-
varying confounding was not addressed. For instance, covariates
such as blood cell count as well as biochemical, coagulation and
inflammatory parameters were more likely routinely collected and
influenced the subsequent decisions on drug administration and on
the outcome.

The time-varying confounding was controlled and secondary
results were presented by four studies. For example, in the study
conducted by Geleris et al. the landmarking analysis was based on
the value of time-varying exposure at the landmark point (24 and
48 hours), after which the time-varying exposure may change value
[22]. In the studies conducted by Gupta et al. and Mah�evas et al. an
observational target trial emulation methodology was used and
appropriate adjustment methods, like inverse probability weighting,
were applied [24,27]. In the study conducted by Rosenberg et al. a
time-dependent Cox model that accounted for time-dependent
treatment was used [29].
Occurrence of competing risk bias

Several time-to-event primary outcomes were investigated in
the studies, such as development of acute respiratory distress
syndrome, admission to ICU, administration of invasive mechanical
ventilation, in-hospital death or 30-day in-hospital mortality, sur-
vival without transfer to ICU and overall survival. These end points
were studied as a single event, or as a composite end point of
several events (Table 3).

All in all, ten out of the eleven studies seemed to be susceptible
to competing risk bias because a follow-up ended with hospital
discharge and discharged patients were censored in probability
analyses [20e26,28e30]. In nine out of the ten studies, the classical
KaplaneMeier method was applied to display the treatment effect
and to compare survival probabilities between the treatment and
control groups [20e25,27,29,30]. In one study, performed by
Mah�evas et al., the competing event of discharge alive for the pri-
mary outcome (survival without transfer to ICU) was addressed by
the extension of follow-up for discharged patients, and the cor-
rected KaplaneMeier curves were presented in the supplementary
material [27].

All of the studies used a regression model (logistic regression
and/or the Cox proportional hazard regression model) to quantify
the treatment effect for the primary event of interest. The Cox
proportional hazards model provides a correct estimate of the
treatment effect on the event of interest. Nonetheless, the regres-
sion analysis is incomplete if the hazard ratio for the competing
event is not reported. Only in one sensitivity analysis, conducted by
Gupta et al., discharge was addressed by keeping discharged pa-
tients in the risk set and not treating them as randomly censored.
As a result, the adjusted hazard ratio of the event of interest shifted
from 0.71 (95% CI 0.56e0.92) to 0.72 (95% CI 0.56e0.93). Keeping
discharged patients in the risk set is targeted at estimating a sub-
distribution hazard [31]. We remark that this approach is not
appropriate if the treatment is time-dependent [24].
Discussion

Since the number of studies on COVID-19 treatment effective-
ness and the speed of publishing new data in journals has drasti-
cally increased [32], unbiased results from observational studies are
extremely important as a complement to randomized controlled
trials. The methodological challenges in studying observational
COVID-19 data and performing statistical analysis on drug effec-
tiveness has been described in detail elsewhere [33,34]. However,
our review has demonstrated that methodological issues such as
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immortal time bias, confounding bias and competing risk bias are
commonly found in articles published in high-impact medical
journals.

To our knowledge, for treatment effectiveness assessment, the
best practice is to perform analysis in a stepwise manner, starting
from simple straightforward methods to increased model
complexity. To ensure a complex approach and enhance confi-
dence, the results from simple and extended models should be
presented side by side [35]. This approach can be used to address
time-to-treatment, confounders, and competing risks issues. For
details on the proper statistical techniques and analysis of time-to-
event data in observational studies, we highly recommend the
guidance of Kragh Andersen et al. [36].

As the primary step, a complete competing risk analysis should
be presented that includes a cause-specific Cox regression analysis
for the event of interest and for all competing events [7,33,36,37].
An initial model should include baseline covariates, further, time-
fixed confounders need to be adjusted. This analysis provides in-
sights into the effect of treatment and covariates on each event type
separately [38]. To account for non-randomized treatment admin-
istration and reduce the effects of confounding, the model can be
Table 2
Characteristics of included studies and their features of time-fixed and time-varying con

First author
[reference]

Type of exposure Susceptibility
to time-fixed/
time-varying
confounders

Accounted
for time-fixed
confounding bias

Acc
tim
con

Pri
ana

Biran [20] time-dependent
exposure

yes/yes yes no

Cavalli [21] time-fixed
exposure at day
zero

yes/no no no

Geleris [22] time-dependent
exposure

yes/yes yes no

Guaraldi [23] time-dependent
exposure

yes/yes yes no

Gupta [24] time-dependent
exposure

yes/yes yes no

Huet [25] time-fixed
exposure at day
zero

yes/no yes no

Kuderer [26] unclear defined yes/unclear yes un

Mah�evas [27] time-dependent
exposure

yes/yes yes no

Mehra [28] unclear defined yes/unclear yes un

Rosenberg [29] time-dependent
exposure

yes/yes yes no

Wu [30] unclear defined yes/unclear no un

Abbreviations: IPW, inverse probability weighting; IPTW, inverse probability of treatme
extended using more complex procedures, such as propensity
score-based methods. Further, to estimate the causal treatment
effect, more sophisticated analysis for time-varying confounders,
such as g-methods (i.e. the inverse probability of treatment
weighted marginal structural models, g-computation formula and
g-estimation of structural nested models) must be applied [8,10].
For instance, in the excellent study by Ursino et al., the g-compu-
tation approach was applied to evaluate the potential treatment
effect of corticosteroids and interleukin antagonists like tocilizu-
mab and anakinra [39]. In addition, we refer to the textbook of
Hern�an et al. for the detailed tutorial on causal inference and g-
methods [40].

In the presence of competing risks, we discourage the use of
KaplaneMeier plots for effect visualization because of the high risk
of potentially misleading conclusions. Instead, cumulative cause-
specific hazards can be calculated and should be plotted for the
events of interest and for the competing events [41]. This method
allows us to account for competing events and to display treatment
exposure differences [16]. More generally, the multistate method-
ology offers several advantages for survival data analysis with
multiple outcomes. A multistate model allows us to evaluate the
founding bias

ounted for
e-varying
founding bias

Methods controlling
for confounding bias

mary
lysis

Secondary
analysis

Time-fixed Time-varying

no semiparametric multivariate
methods: regression models,
PS matched analysis and PS
covariate adjustment

not reported

no n/a not reported

yes stratification; semiparametric
multivariate methods:
regression models, PS matched
analysis and PS covariate
adjustment, IPW

landmark
approach

no stratification; semiparametric
multivariate methods:
regression models

not reported

yes semiparametric multivariate
methods: regression models
and IPW

by conducting
the nested
target trial
emulation
approach and
using IPW

no semiparametric multivariate
methods: regression model

not reported

clear n/a semiparametric multivariate
methods: regression models

not reported

yes standardization;
semiparametric multivariate
methods: regression models,
PS and IPTW

by conducting
the target trial
emulation approach
and using IPTW

clear n/a semiparametric multivariate
methods: regression models,
PS matched analysis

not reported

yes by design: hospital-stratified
random sampling; at analysis
stage: semiparametric
multivariate methods:
regression models

time-dependent
Cox regression

clear n/a n/a not reported

nt weighting; PS, propensity score.



Table 3
Characteristics of included studies and their features of competing risk events

First author [reference] Primary end point/outcome Competing event Competing risk analysis Cause-specific
regression analysis
for competing event

Graphical representation
of survival curves

In primary analysis In secondary analysis

Biran [20] in-hospital mortality discharge alive no no no event-free survival
probabilities; i.e. KM plot a

for overall survival
Cavalli [21] overall survival (at day 21),

MV-free survival
discharge alive,
discharge without
need for MV

no no no event-free survival probability;
i.e. KM plots for overall survival
and MV free survival

Geleris [22] intubation or death without
intubation as a composite
endpoint

discharge alive
without need for
intubation

no no no event-free survival probability;
i.e. KM plot

Guaraldi [23] composite of IMV or death,
in-hospital death

discharge alive
without need for IMV

no no no cumulative incidence probabilities
for MV or death, and death alone;
i.e. 1eKM

Gupta [24] in-hospital death
(30-day mortality)

discharge alive no yes b no b cumulative incidence probabilities
for mortality; i.e. 1eKM

Huet [25] admission to ICU for IMV
or death as a composite
endpoint

discharge alive before
ICU or without need
for IMV

no no no event-free survival probabilities;
i.e. KM plots for event-free of IMV,
death, and IMV or death

Kuderer [26] 30-day all-cause mortality discharge alive no no no forest plot for 30-day all-cause mortality
Mah�evas [27] survival without transfer to

ICU (at day 21)
no competing event not necessary, CR is addressed by extended follow-up no competing risk bias event-free survival probability; i.e. KM plot

for survival without ICU admission
Mehra [28] in-hospital mortality discharge alive no no no forest plot for in-hospital mortality
Rosenberg [29] in-hospital mortality discharge alive no no no cumulative incidence probabilities for

in-hospital mortality; i.e. 1eKM
Wu [30] development of ARDS and

death among those with ARDS
discharge alive among
those with ARDS

no no no event-free survival probability; i.e. KM
plots for overall survival

Abbreviations: ARDS, acute respiratory distress syndrome; CR, competing risk; ICU, intensive care unit; IMV, invasive mechanical ventilation; MV, mechanical ventilation; KM, KaplaneMeier.
a The KM curves provided for the secondary end point (overall survival).
b Discharge was addressed by keeping discharged patients in the risk set and not treating them as randomly censored. Keeping discharged patients in the risk set targets at estimating a sub-distribution hazard. This approach is

not appropriate if the treatment is time-dependent.
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time dynamics of disease progression by describing the occurrence
of the events as transitions between different states [42]. This also
makes it possible to visualize primary outcomes of interest and
competing events simultaneously over a time period in a single plot
[43].

The article by Lapadula et al. presents an appropriate analysis on
antiviral treatment assessment in patients with COVID-19 [44]. In
their study, the landmark analysis was applied to estimate survival
rates conditional on a landmark time (7 days after intubation) to
adjust for immortal time bias. The exposure was modelled to each
treatment (remdesivir, hydroxychloroquine and lopinavir/ritona-
vir) as time-dependent covariates. The competing risk bias was
addressed by estimation of two cause-specific hazard functions: for
the event of interest such as in-patient hospital death and for the
competing event such as discharge, respectively. As a result, the
competing risk analysis showed that remdesivir was significantly
associated with hospital discharge (hazard ratio 2.25; 95% CI
1.27e3.97) and with a non-significantly lower mortality (hazard
ratio 0.73; 95% CI 0.26e2.1). Moreover, the cumulative hazard plots
were used to visualize potential treatment effects [44]. This
example addresses all three methodological biases and clearly
demonstrates the need to study competing events.

With our study, we assessed the presence of methodological
biases and provided recommendations. Several study limitations
are noteworthy, such as the inclusion of only four journals and their
sub-journals. As a result, we cannot extend the results obtained to
other journals. Another limitation is that an incomplete or unclear
description of the study methodology or/and results in the inves-
tigated publications could have resulted in incorrect interpretation
of the analyses.

Conclusions

Immortal time bias, confounding bias and competing risk bias
alone or in combination were present in all of the 11 reviewed
observational studies on treatment effectiveness evaluation for hos-
pitalized patients with COVID-19. These biases may have led to a se-
vere overestimation or underestimation of COVID-19 treatment
effectiveness estimates. As a result, the drugsmay appear to be either
more effective or conversely to have little to no effect. In fact, making
valid causal inferences from real-world observational data is a
demanding task that requires high-quality data and adequate statis-
tical methods as well as clinical knowledge and statistical expertise.

Even though every study has its unique features, which should
be addressed in a tailor-made analysis, the summary points (Box 1)
and the following recommendations could be taken into account to
prevent or decrease the occurrence and the severity of the meth-
odological biases. To overcome immortal time bias, time-
dependent treatment exposures should be included in the Cox
regression model as a time-dependent variable [45]. In the pres-
ence of time-varying confounders, a marginal structural Cox model
can be used and estimated using inverse probability of treatment
weights [8]. In the competing risks setting, the cause-specific
hazard ratios could also be obtained from the time-dependent
Cox regression model. Furthermore, treatment effects should be
visualized with cumulative hazard functions for the event of in-
terest and all competing events [37,46]. Finally, corrected estimates
should be reported as primary findings in the primary results
section.
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