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Abstract

Rhizosphere fungal communities exert important influencing forces on plant growth and

health. However, information on the dynamics of the rhizosphere fungal community struc-

ture of the worldwide economic crop cotton (Gossypium spp.) is limited. In the present

study, next-generation sequencing of nuclear ribosomal internal transcribed spacer-1 (ITS1)

was performed to characterize the rhizosphere fungal communities of G. hirsutum cv. TM-1

(upland cotton) and G. barbadense cv. Hai 7124 (island cotton). The plants were grown in

field soil (FS) that had been continuously cropped with cotton and nutrient-rich soil (NS) that

had not been cropped. The fungal species richness, diversity, and community composition

were analyzed and compared among the soil resources, cotton genotypes, and develop-

mental stages. We found that the fungal community structures were different between the

rhizosphere and bulk soil and the difference were significantly varied between FS and NS.

Our results suggested that cotton rhizosphere fungal community structure variation may

have been primarily influenced by the interaction of cotton roots with different soil resources.

We also found that the community composition of the cotton rhizosphere fungi varied

significantly during different developmental stages. In addition, we observed fungi that was

enriched or depleted at certain developmental stages and genotypes in FS and NS, and

these insights can lay a foundation for deep research into the dynamics of pathogenic fungi

and nutrient absorption of cotton roots. This research illustrates the characteristics of the

cotton rhizosphere fungal communities and provides important information for understand-

ing the potential influences of rhizosphere fungal communities on cotton growth and health.

Introduction

Soil microorganisms play a key role in agricultural ecosystem. The importance of the

mutual influence between microbial communities and agronomic practices is increasingly

being recognized. The rhizosphere is the soil area that adjacent to plant roots, in which the
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interactions between soil microorganism and plant roots are very intense. Plants play

important roles on rhizosphere microbiome assembly and functions [1]. The composition

of rhizosphere microbial communities is affected by the soil, plant developmental stage, and

many other factors [2–6]. Rhizosphere microorganisms are considered pivotal for plant

health and growth due to their involvement in such key processes as the formation of the

root architecture [7]; formation of soil characteristics [8]; decomposition of organic matter

[9, 10]; decomposition and removal of toxins [11, 12]; defense against plant pathogenic

microorganisms and pests [7, 13]; and cycling of carbon [14], nitrogen, phosphorus, and

sulfur [15–18].

Rhizosphere fungi are critical component of the rhizosphere microbial communities, and

play an important role in plant growth and health. In turn, plants largely control rhizosphere

fungi through the production of carbon- and energy-rich compounds and bioactive phyto-

chemicals [19]. Some of the beneficial fungi are directly involved in the cycling of nutrients

and function as an essential link for soil nutrient availability [20–23]. Some fungi are known

for having biocontrol activity against pathogenic microorganisms [23, 24]. These fungi posi-

tively influence plant productivity by enhancing plant growth. However, certain rhizosphere

fungi can negatively influence plant productivity by infecting roots and causing serious dis-

ease. For example, Fusarium graminearum can cause stalk rot disease of maize [25], Verticil-
lium nonalfalfae could cause Verticillium wilt on tree-of-heaven [26], and Macrophomina
phaseolina can cause dry root rot disease [27].

Cotton (Gossypium spp.) is the most important cash crop and is widely grown to produce

both natural fibers and cotton seed soil. Cotton production is threatened by soil-borne plant

pathogens, such as Rhizoctonia spp. [28], Fusarium moniliforme [29], Alternaria alternata [30],

and Verticillium dahliae [31]. Understanding the dynamics of the rhizosphere fungal commu-

nity structure of cotton during different developmental stages will not only provide basic infor-

mation on the dynamics of the cotton rhizosphere fungal community structure but also help

lay a foundation for understanding the mutual influence between rhizosphere fungal commu-

nities and the plant health of cotton. Knox et al. showed that rhizosphere microbial diversity

in cotton is significantly influenced by the cultivar type in the field [32]. However, systematic

studies on the rhizosphere fungal community structure of cultivated tetraploid cotton are still

lacking.

This study characterized the rhizosphere fungal community dynamics across cotton devel-

opmental stage growth using two cotton cultivars in two different types of soil. Our work lays

the foundation for cotton rhizosphere fungal community research and provides insights into

the structure of rhizosphere fungal communities and the potential roles on cotton growth and

health in the agricultural production.

Materials and methods

Plants and soil

Two cultivars of cultivated allotetraploid Gossypium species, G. hirsutum cv. TM-1 (upland

cotton) and G. barbadense cv. Hai 7124 (island cotton with higher disease resistance than

upland cotton) were planted in field soil (FS) and nutrient-rich soil (NS) as described in

detail.

The soil samples were prepared according to the following method. The FS was obtained

from 15 to 30 cm below the soil surface in a field that has been continuously planted with cot-

ton for several decades at the Experiment Station of Cotton Research Center of Shandong

Academy of Agricultural Sciences (Linqing County, Shandong Province, 36˚810N, and 115.71˚

130E). The NS is a type of horticultural medium composed of leaf mold, plant ash, bone meal,
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river sand, etc., and it was obtained from Feng Yuan Science and Technology Company

(Jinan, China). All visible biota (e.g., weeds, twigs, worms, and insects) were removed, and the

soil was then crushed and sifted through a sterile 2 mm sieve. Because the sieved soil drained

poorly and was difficult to sample, we mixed sterile sand into the treatment soils at a soil:

sand ratio of 2:1 following Lundberg et al. [33]. The characteristics of the soils were listed in

S1 Materials and methods.

All plants were grown under the same environmental conditions. Each type of soil was

placed in large pots and divided into two groups. For the rhizosphere sample, cotton was

grown in the soil; for the bulk soil sample, cotton was not planted. Cotton seeds were surface

sterilized and germinated, then transplanted into the soils and raised in a tissue culture room

at 28˚C. After germination, the cotton seedlings were transplanted into the various soils and

seedling were raised in a tissue culture room at 28 ˚C. Move the seedlings to a greenhouse

when it developed a second real leaf.

Sampling of the rhizosphere and bulk soil

Invert the pot to remove the soil and plant. Then shake the plant gently to remove the soil that

did not adhere to the root surface. Soil that tightly adhered to the root surface and was not eas-

ily shaken from the root was the rhizosphere soil. Place the roots with attached soil in a sterile

flask with 50 ml of sterile buffered phosphate saline solution and stirred vigorously with sterile

forceps to clean all the soil from the root surfaces. Then remove the cleaned roots and centrifu-

gated the fluid for 15 min at 10,000 rpm. Discard the supernatant and the soil fraction was

quickly frozen using liquid nitrogen, then stored at -80 ˚C. Bulk soil samples were collected

from unplanted pots from ~10 cm below the soil surface. Three biological replicates of each

treatment were performed. The rhizosphere and bulk soil samples of the two cultivars in the

FS and NS were collected at three developmental stages. In total, fifty-four samples were col-

lected. Three biological replicates were performed for each treatment. Detailed information

about the plant management and sampling of the cotton rhizosphere and bulk soil were

described in our previous report [34].

DNA extraction and detection

The DNA from each soil sample was extracted using the Omega D5625-02 Soil DNA Kit

(Omega Biotek Inc., Norcross, GA, USA) as per the manufacturer’s instructions. The DNA

concentration and integrity were detected by a microplate reader (Qubit 3.0 Fluorometer;

Thermo Fisher Scientific, Waltham, MA, USA) and agarose gel electrophoresis (PowerPac

Basic164-5050 and Sub-Cell 96, Bio-Rad Laboratories, Hercules, CA, USA). DNA information

for each sample is listed in the S1 materials and methods.

Preparation of libraries and sequencing

All suitable DNA samples were submitted to BGI Tech Solutions Co., Ltd. (Shenzhen, China)

to construct a sequencing library. ITS1 (the internal transcribed spacer 1) (primer: ITS1-F:
CTTGGTCATTTAGAGGAAGTAA; ITS1-R:GCTGCGTTCTTCATCGATGC) amplicon librar-

ies was generated with DNA from 54 soil samples and sequenced using the Illumina MiSeq

platform (Illumina, San Diego, CA, USA). Operational procedures were carried out in accor-

dance with company SOP (Standard Operating Procedure). Sequence data were treated fol-

lowing the pipeline developed before [35]. Further details on the subsequent bioinformatics

analysis of the sequencing data are listed in the S1 Materials and methods.
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Data analysis

OTU Venn diagram. The presence or absence of operational taxonomic units (OTUs)

was determined for each soil sample, and the common and specific OTU IDs were summa-

rized. A Venn diagram was constructed using the package VennDiagram in R (v 3.0.3).

Species annotation. The tag numbers of each phylum in the different soil samples were

summarized in a histogram, and all data were used to construct a histogram using R.

α-diversity analysis. The species accumulation curves of the observed species (Sobs),

Chao, Abundance Based Coverage Estimator (ACE), Shannon, and Simpson indices were cal-

culated using the software Mothur (v 1.31.2). The calculation formula of each index can be

found at http://www.mothur.org/wiki/Calculators. A rarefaction curve was drawn by the soft-

ware R (v3.0.3) based on the expected value of α-diversity. First, the OTU numbers were calcu-

lated based on extracted tags (in multiples of 1000), and then, the rarefaction curve was drawn

using the α-diversity indices calculated with extracted tags. The results are shown in the S1–S5

Figs. With the increase of OUT number, the trend of rare factions was tended to be stable,

indicating the sequencing data was adequate.

β-diversity analysis. β-diversity was analyzed using the software QIIME (v 1.80). Normal-

ization was performed to control for sequencing depth differences in different samples. The

sequences were extracted randomly according to the minimum sequence number of all sam-

ples to generate a new ‘OTU table biom’ file. Then, the β-diversity distance was calculated

based on the ‘OTU table biom’ file. The β-diversity heat map was drawn by the ‘aheatmap’

function in the ‘NMF’ package of R.

Contribution of each factor. The Bray-Curtis dissimilarity analysis and the information

entropy method were used to measure the contribution of the different factors to variability

between samples. We then conducted an analysis of variance by the function aov in the R

package. Interactions between each of the two factors were considered. For each factor, the

contribution rate to fungal community variance was calculated as the mean square of the fac-

tor divided by the sum of the mean square of all factors.

Results

The fungal communities were characterized by next-generation sequencing of nuclear ribo-

somal ITS1. A total of 5,032,042 high-quality reads were obtained with a median read count of

93,186 per sample (range: 51,752–244,354) (S1 Table). The high-quality reads were clustered

into 1,298 microbial OTUs at 97% similarity after the removal of OTUs that were unassigned

or not assigned to the target species.

Fungal communities in the bulk soils of FS and NS

Ascomycota, Basidiomycota, and Zygomycota were the most common fungal phyla in both

the continuously cropped FS and NS treatments, and they accounted for 59.01–95.81% of all

fungal communities (S2 Table; S6 Fig). Excluding unclassified orders (19.39–60.96% of total

fungal communities) in both soils, Eurotiales and Hypocreales were dominant in Ascomycota,

and Mortierellales was dominant in Zygomycota. The dominant orders of Basidiomycota in

the FS were Cystofilobasidiales and Sporidiobolales, whereas the dominant orders in the NS

were Thelephorales and Agaricales.

The differences in the fungal communities between the FS and NS soils at the genus level

were significant. The relative abundance of certain fungal genera, such as Penicillium, Gliomas-
tix, and Engyodontium, was significantly lower in the FS than NS (P< 0.05), whereas the rela-

tive abundance of certain fungal genera, such as Pseudozyma, Panaeolus, and Lecanicillium in

the FS was slightly but not significantly higher than that in the NS (S2 Table).
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Fungal communities of the cotton rhizosphere in the FS and NS

Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla in the rhizosphere

fungal communities and accounted for approximately 33.45–88.51% of the total fungal com-

munities in the NS (11.48–66.15% were unclassified) and 85.18–93.88% of the total fungal

communities in the FS (6.03–14.65% were unclassified) (Fig 1; S3 Table). Ascomycota was neg-

atively selected in the rhizosphere in the NS but was enriched in the rhizosphere in the FS (Fig

1; S2–S4 Tables). The dominant orders of Ascomycota and Zygomycota in the rhizosphere

were the same as those in the bulk soil (S3 Table). However, the dominant orders of Basidio-

mycota in the bulk soil from the FS rhizosphere samples were Agaricales and Auriculariales,

whereas the dominant orders in the bulk soil from the NS rhizosphere samples were Sporidio-

bolales and Agaricales (S3 Table).

The number of OTUs in the FS rhizosphere (205.33 ± 22.47) was higher than that in the

FS bulk soil (140.67 ± 28.61), whereas the number of OTUs in the NS rhizosphere (146.44 ±
40.22), was lower than that in the NS bulk soil (181.11 ± 20.37) (S5 Table). The α-diversity of

fungi was significantly higher in the FS rhizosphere than in the FS bulk soil (P< 0.05); however,

it was significantly lower in the NS rhizosphere than in the corresponding bulk soil (P< 0.05).

The bulk soil α-diversity of fungi was higher in the NS than in the FS (P< 0.05), whereas the

rhizosphere fungal α-diversity was lower in the NS than in the FS (P< 0.05; Fig 2; S5 Table).

Fungal genera were enriched or negatively selected in the rhizosphere compared with the cor-

responding bulk soil (S6 and S7 Tables). For example, in the NS, the relative abundance of Mor-
tierella, Gliomastix, and Engyodontiumwas significantly higher in the bulk soil compared with

the rhizosphere soil, where it was much lower or almost undetectable (P<0.05; S8 Table). In con-

trast, the relative abundance of Rhodosporidium and Trichoderma in the NS rhizosphere soil was

higher than that in the respective bulk soil, where it was lower or almost undetectable (P<0.05;

S8 Table). In the FS, the relative abundance of Mortierella,Guehomyces, and Fusarium was

higher in the bulk soil than in the rhizosphere soil, where it was lower or undetectable (P>0.05;

S9 Table). The relative abundance of Penicillium, Alternaria, and Preussiawas higher in the FS

rhizosphere soil than in the bulk soil, where these genera were almost undetectable (P<0.05; S9

Table). The abundance of other rhizosphere fungal genera was highly variable and differed

between soils. Comparisons of the fungal genera whose relative abundance changed inversely in

different soils between the rhizosphere and corresponding bulk soil are listed in Table 1.

Fig 1. Relative abundance of the fungal community in all treatments. Two types of soils: nutrient-rich soil (N) and

continuous cropping field soil (F). Three cotton plant developmental stages: seedling stage (s), budding stage (b), and

flowering stage (f). Two cultivated species: upland cotton (G. hirsutum L. cv TM-1) (T) and sea island cotton (G.

barbadense L. cv Hai 7124) (X) and control pots (C) that lacked cotton plants. Each sample was labeled by a three-letter

code, such as NsT, which indicates seedlings of Sea Island cotton grown in nutrient-rich soil.

https://doi.org/10.1371/journal.pone.0207903.g001
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Variation in rhizosphere fungal communities during development in FS

In the FS, the number of stage-specific OTUs was highest in the seedling stage and decreased

gradually through development: upland cotton (T): 90 (seedling stage), 76 (budding stage),

and 83 (flowering stage); and island cotton (X): 121 (seedling stage), 53 (budding stage), and

Fig 2. α-diversity of the rhizosphere fungi. From left to right and top to bottom, the box plots show the Sob, Chao,

ACE, Shannon, and Simpson indices.

https://doi.org/10.1371/journal.pone.0207903.g002

Table 1. Fungal genera that were affected inversely by cotton roots in the two soil resources with differences in relative abundance between the bulk soil and rhizo-

sphere soil> 0.15% (P< 0.05).

Developmental stage Genera Relative abundance in FS (%) Relative abundance in NS (%)

Control Rhizosphere Control Rhizosphere

Seeding Gliomastix 0.00±0.00 0.42±0.28 2.68±0.89 0.00±0.00

Retroconis 0.00±0.00 0.17±0.07 1.59±0.21 0.00±0.00

Budding Gibberella 0.00±0.00 0.28±0.17 0.89±0.24 0.21±0.08

Gliomastix 0.00±0.00 0.65±0.48 2.95±0.50 0.00±0.00

Penicillium 0.40±0.06 14.13±4.99 9.94±1.89 3.84±1.99

Retroconis 0.00±0.00 0.34±0.12 1.97±0.39 0.00±0.00

Guehomyces 4.56±1.16 0.00±0.00 0.00±0.00 0.88±0.34

Flowering Engyodontium 0.01±0.00 0.41±0.20 2.52±0.96 0.07±0.00

Gliomastix 0.00±0.00 0.16±0.09 2.91±0.71 0.00±0.00

Mortierella 0.17±0.07 2.03±0.88 16.2±4.56 1.14±0.07

Penicillium 0.50±0.17 2.61±1.30 12.78±1.58 5.47±0.96

https://doi.org/10.1371/journal.pone.0207903.t001
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48 (flowering stage). And the number of overlapping OTUs in the seedling and budding stages

was higher than that in the budding and flowering stages (S7 Fig).

An analysis of α-diversity indicated that in the FS, the Sobs, Chao, and ACE indices were

higher in the cotton rhizosphere fungal communities during all three developmental stages

compared with that in the bulk soil (P< 0.05). The three indexes all highest in seedling stage,

and pretend different change of different cotton genotype. In the rhizosphere soil of TM-1, the

three indexes were decreased gradually from the seedling stage to the flowering stage, but not

significantly. And in island cotton rhizosphere soil, the three indexes were decreased signifi-

cantly from seedling stage to budding stage (P<0.05), increased from budding stage to flower-

ing stage (P>0.05; Fig 2; S5 Table). Analysis of Shannon and Simpson indices indicated that α-

diversity were highest in budding stage.

Variation in rhizosphere fungal communities during development in NS

In the NS, the number of stage-specific OTUs was highest in the budding stage (T: 71, 139, 85;

X: 112, 138, 82). And overlapping OTUs of the seedling and budding stages was richer than

that in the budding and flowering stages. The number of overlapping OTUs in all three devel-

opmental stages was higher in the FS than in the NS (S2 Fig). α-diversity analysis indicated

that in the NS, the rhizosphere harbored a fungal community of higher α-diversity than bulk

soil. The Sobs, Chao, and ACE indices of rhizosphere soil fungal communities were highest

in budding stage (P< 0.05). But Shannon and Simpson indices have no significant difference

between difference developmental stages, which indicated that the evenness of budding stage

was lower than seeding and flowering stages.

Variation in rhizosphere fungal communities in general level

Each developmental stage presented dominant fungal genera with a high relative abundance.

We determined the genera that had high relative abundance (relative abundance > 0.5) in the

different developmental stages. In the rhizosphere soils, Penicillium, Fusarium, and Mortierella
presented a higher relative abundance in all three developmental stages in the FS and Penicil-
lium, Fusarium, and Talaromyces presented a higher relative abundance in all three develop-

mental stages in the NS. In addition, each developmental stage harbored the specific dominant

rhizosphere fungal genera (S10 Table). The number of dominant genera was highest in the

budding stage.

We also analyzed how the fungal community was affected by the presence of cotton. A large

change was defined as a difference in the relative abundance between the rhizosphere and bulk

soil at>1 or <-1. We defined a genus for which relative abundance was greater in the rhizo-

sphere soil than in the bulk soil as an enriched fungal genus (EFG) and a genus for which

relative abundance was lower in the rhizosphere soil than in the bulk soil as a depleted fungal

genus (DFG). In FS, Penicillium was common EFG of TM-1 and Hai 7124 in seedling and

flowering stage. Guehomyces were common DFG of TM-1 and Hai 7124 in seedling and bud-

ding stage. Mrakia were common DFG of TM-1 and Hai 7124 in seedling stage and Hypho-
loma were common DFG of TM-1 and Hai 7124 in flowering stage. In addition, each genotype

has special EFG or DFG: Preussia were special EFG of TM-1in seedling stage; Penicillium were

special EFG of Hai 7124 in budding stage; Mortierella were special EFG of Hai 7124 in flower-

ing stage. In NS, common genus of TM-1 and Hai 7124, which relative abundance effected by

cotton root significantly, were all DFG. For example, Verticillium, Retroconis, Gliomastix, Gib-
berella and Metarhizium were common DFG in seedling stage, Verticillium, Retroconis, Glio-
mastix, Engyodontium and Mortierella were common DFG in budding stage, Retroconis,
Gliomastix, Engyodontium and Mortierella were common DFG in budding stage. In addition,

Cotton rhizosphere fungal community structure
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Penicillium were special DFG of Hai 7124 in seedling stage and budding stage; Mortierella
were special DFG of Hai 7124 in seedling stage; Gibberella and Rhodosporidium were special

DFG of Hai 7124 in flowering stage (S10 Table).

Contribution of each factor to the variation of cotton rhizosphere fungal

community

We analyzed the β-diversity of the samples based on a Bray-Curtis dissimilarity analysis. A

cluster analysis indicated that samples from the same soil resources were clustered into one

group (Fig 3A). The β-diversity of the different soils (mean Bray-Curtis: 0.97) was significantly

higher than the β-diversity of the different developmental stages (mean Bray-Curtis N: 0.66, F:

0.60) (P< 0.01; S11 Table; Fig 3B). Statistical analyses were conducted to assess the contribu-

tion of each factor to the structure of the fungal community in the cotton rhizosphere, and

the results indicated that species-level soil factors contributed approximately 42.27% to the

fungal community structure in the cotton rhizosphere, which was higher than the other factors

(P< 0.05; S11 Table).

Discussion

Difference in fungal community structure between the rhizosphere and

bulk soil of cotton

Plant roots have a remarkable effect on the physical and chemical characteristics of soil, such

as its structure and water retention [36–38]. The physical and chemical characteristics of root-

associated soil are important because they determine both the physiological aspects of the root

functions, such as water and nutrient uptake, and they influence microbial activity relevant to

root growth [39–41]. Plant roots also release root exudates, volatile substances, border cells,

and polymers into the soil environment and regulate the community structure of the rhizo-

sphere microbiome through complex interactions with soil microorganisms [42–48], thereby

promoting the colonization of beneficial microorganisms and inhibiting the colonization of

harmful microorganisms [49]. Many studies have confirmed the existence of differences in the

Fig 3. β-diversity analysis of the different treatments. A: Cluster analysis of the different treatments. B: Bray-Curtis

distance analysis of the different treatments.

https://doi.org/10.1371/journal.pone.0207903.g003
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microbial communities of rhizosphere soil and the surrounding bulk soil of Arabidopsis, rice

and Populus [6, 33, 50].

In the present study, the dominant fungal phyla in the rhizosphere of the two cultivars of

cultivated allotetraploid Gossypium species were Ascomycota, Basidiomycota, and Zygomy-

cota, which is consistent with that in the bulk soils. The relative abundance of each phylum in

rhizosphere soil differed from that in the bulk soil to different degrees. The fungal communi-

ties influenced by cotton roots were mainly distributed in Basidiomycota. The dominant

orders of Ascomycota and Zygomycota were consistent in the rhizosphere and bulk soils,

whereas the dominant orders of Basidiomycota differed. In the rhizosphere soil, the dominant

orders of Basidiomycota were Agaricales and Auriculariales in the FS and Agaricales and Tre-

chisporales in the NS, which differed from that of the bulk soil. Thus, we speculate that the

soil-derived fungal community composition determined the rhizosphere fungal community

of cotton, whereas the cotton root affected the soil fungal community composition to a large

extent. The β-diversity analysis and contribution analysis of each factor based on the Bray-

Curtis dissimilarity confirmed that the soil resource in this study is the main factor that deter-

mines the rhizosphere fungal community.

Rhizosphere fungal communities varied in the FS and NS

The characteristic of the soil itself is an important factor that affects the community structure

of the plant rhizosphere microorganisms. Moreover, the microorganism composition of soil is

the main cause of variation in the community structure of the rhizosphere microbiome [51,

52]. In this study, significant differences were presented in the rhizosphere fungal communi-

ties between different sources of soil. The difference was presented in two aspects: 1) The influ-

ences of cotton roots on the different fungal species were different. For example, in the NS, the

relative abundance of Engyodontium, Mortierella, and Penicillium was lower in the pots con-

taining cotton plants, whereas the relative abundance of Clitopilus, Fusarium, and Rhodospori-
dium was higher in the pots containing cotton plants. 2) The influence of cotton roots on

some fungal communities differed substantially between the NS and FS soil. For example, the

relative abundance of Mrakia, Rhodosporidium, and Talaromyces in the rhizosphere soil was

higher in the NS but lower in the FS compared with that in the bulk soil. This difference might

be attributed to the different characteristics of the two soil resources. Thus, we concluded that

the cotton rhizosphere fungal community structure variation was mainly determined by the

interaction of cotton roots with the different sources of soil.

Microbial diversity in soil is one of the major components determining soil health [28], and

it is believed to be one of the main drivers in disease suppression [28–31]. Rhizosphere micro-

bial diversity can improve a plant’s resistance to soil-borne disease [23]. Previous studies have

shown that continuous cropping can decrease the structural and functional diversity of the soil

microbiome [53, 54]. In agricultural production, soil quality degradation and aggravated plant

diseases were the main reason that caused crop yield reduction in continuous cropped soil

[55–57]. The fundamental reason for continuous cropping obstacles is related to disorders or

deterioration of rhizosphere microorganisms (including rhizosphere fungi) [58, 59]. Bacterial

diversity was presented in our previous study [34]. In the present study, the pots that did not

contain plants had lower fungal α-diversity in the FS than in the NS, thus corroborating that

long-term continuous cropping of cotton decreases fungal α-diversity, which in turn may be

one of the important factors inducing continuous cotton-cropping obstacles. However, after

planting with cotton, the fungal α-diversity of rhizosphere soils from the FS was increased

compared with that in the bulk soil and higher than that of the NS. We speculate that fungal

communities in continuously cotton-cropped FS might contain an abundance of fungi that
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are closely linked to cotton growth, nutrient absorption, and stress tolerance, and the func-

tional limitation of such fungal communities is the main reason for continuous cotton-crop-

ping obstacles.

Developmental stages contributed to the variation of the fungal

community in the cotton rhizosphere

Baudoin et al. proposed that the quantity and quality of root exudate input into the rhizosphere

differ at different plant developmental stages, leading to differences in the composition of rhizo-

sphere microbial communities between plant developmental stages [60]. Other studies have also

demonstrated that rhizosphere microbes are significantly affected by the developmental stages

of plants [61–65]. Our results indicated that the community composition of the cotton rhizo-

sphere fungi varied significantly during different developmental stages. The species richness of

the rhizosphere fungal communities was highest in the seedling stage in the FS and in the bud-

ding stage in the NS. In addition to the common dominant fungal genera of all three develop-

mental stages, the rhizosphere fungal communities had a stage-specific dominant genus. The

number of dominant genera was the highest in the budding stage, which may be related to the

plant requiring specific materials or releasing certain hormones into the soil during this stage.

EFG and DFG suggesting physiological characteristics of the cotton root

Rhizosphere microbial community structure could change plant physiological characteristics,

for example, regulating plant growth and development [66], improve plant resistance to exter-

nal stress [67], and improve plant nutrient absorption capacity [68]. And inversely, plant char-

acteristics, for example, developmental stage [69], genotype [70], and nutritional absorption

capacity [68] have great influence to plant rhizosphere fungal community structure, through

root exudate chemical composition [71–73]. In the present study, changes of fungal genera var-

ied between different treatments. Special fungal genera of genotype, developmental stages, and

soil type suggesting special physiological characteristics of the cotton. Penicillium were pro-

moted in FS which might attributed to the function of certain strains in Penicillium, for exam-

ple, Penicillium chrysogenum [74], Penicillium citrinum [21], Penicillium albidum [75], and

Penicillium oxalicum [76] were needed for cotton planting in continuous soil. Preussia was pro-

moted in rhizosphere of TM-1 planting in FS, in seedling stage, which might attributed to the

function of certain strains in Preussia, for example, Preussia sp. BSL-10 [77]. Most of reports

about Gibberella, Verticilliumwere the pathogenicity to plants, such as Gibberella zeae [78], Ver-
ticillium dahliae [31]. In NS, Gibberella and Verticillium was inhibited in seedling and budding

stage but promoted in rhizosphere of Hai 7124 in flowering stage, suggesting the inhabitation

of cotton were decreased in flowering stage. In addition, EFGs and DFGs were differently TM-1

and Hai 7124 as well, which might be associated with the difference of species characteristics.

Our study provides insights into the structural variation of rhizosphere fungal communities

under the influence of soil resources, developmental stage, and genotype, which might play

key roles in cotton growth and health. The soil resources, cotton developmental stage, and

cotton genotype all impacted the cotton rhizosphere fungal community composition. The

composition of the cotton rhizosphere fungal community was primarily determined by the

soil resources and regulated to a certain degree by the plant developmental stage and genotype.

Supporting information

S1 Fig. Rarefaction of samples based on the Simpson index.

(TIF)

Cotton rhizosphere fungal community structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0207903 October 18, 2019 10 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s001
https://doi.org/10.1371/journal.pone.0207903


S2 Fig. Rarefaction of samples based on the ACE index.

(TIF)

S3 Fig. Rarefaction of samples based on the Sobs index.

(TIF)

S4 Fig. Rarefaction of samples based on the Chao index.

(TIF)

S5 Fig. Rarefaction of samples based on the Shannon index.

(TIF)

S6 Fig. Relative abundance of fungal phyla in the bulk soil of both soils.

(TIF)

S7 Fig. Total number of OTUs of specific and common fungi in different treatments.

(TIF)

S1 Materials and methods.

(DOC)

S1 Table. Statistics and analyses of the sequencing data.

(XLS)

S2 Table. Relative abundance of fungi in the bulk soil.

(XLS)

S3 Table. Relative abundance of fungi in the rhizosphere soil.

(XLS)

S4 Table. Relative abundance increases in the rhizosphere fungal phyla compared with

that in the bulk soils.

(XLS)

S5 Table. OTU numbers and α-diversity of each sample.

(XLS)

S6 Table. Fungal genera showing increases or decreases in relative abundance in the rhizo-

sphere soil compared with the bulk soil in the field soil treatment.

(XLS)

S7 Table. Fungal genera showing increases or decreases in relative abundance in the rhizo-

sphere soil compared with the bulk soil in the nutrient-rich soil treatment.

(XLS)

S8 Table. Relative abundance of fungal genera that were affected by the presence of cotton

roots in the nutrient-rich soil.

(XLS)

S9 Table. Relative abundance of genera that were affected by the presence of cotton roots

in the field soil.

(XLS)

S10 Table. EFG and DFG of TM-1 and Hai 7124 during different developmental stages in

FS and NS.

(XLS)

Cotton rhizosphere fungal community structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0207903 October 18, 2019 11 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207903.s018
https://doi.org/10.1371/journal.pone.0207903


S11 Table. β-diversity between samples.

(XLS)

Author Contributions

Conceptualization: Changle Ma, Furong Wang, Hui Zhang, Jun Zhang.

Data curation: Qinghua Qiao, Chuanyun Zhang.

Formal analysis: Qinghua Qiao, Jingxia Zhang, Furong Wang.

Funding acquisition: Changle Ma, Jun Zhang.

Investigation: Qinghua Qiao, Jingxia Zhang, Changle Ma, Furong Wang, Yu Chen, Chuanyun

Zhang.

Methodology: Qinghua Qiao, Changle Ma, Furong Wang, Hui Zhang.

Project administration: Jun Zhang.

Resources: Yu Chen, Jun Zhang.

Software: Qinghua Qiao, Furong Wang.

Supervision: Hui Zhang, Jun Zhang.

Validation: Changle Ma, Furong Wang.

Writing – original draft: Qinghua Qiao, Changle Ma.

Writing – review & editing: Furong Wang, Hui Zhang, Jun Zhang.

References
1. Perez-Jaramillo JE, Mendes R, Raaijmakers JM. Impact of plant domestication on rhizosphere micro-

biome assembly and functions. Plant molecular biology. 2016; 90(6):635–44. https://doi.org/10.1007/

s11103-015-0337-7 PMID: 26085172

2. Tkacz A, Cheema J, Chandra G, Grant A, Poole PS. Stability and succession of the rhizosphere micro-

biota depends upon plant type and soil composition. ISME J. 2015; 9(11):2349–59. https://doi.org/10.

1038/ismej.2015.41 PMID: 25909975

3. Kazeeroni EA, Al-Sadi AM. 454-pyrosequencing reveals variable fungal diversity across farming sys-

tems. Front Plant Sci. 2016; 7:314. https://doi.org/10.3389/fpls.2016.00314 PMID: 27014331

4. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, et al. The soil micro-

biome influences grapevine-associated microbiota. mBio. 2015; 6(2):e02527–14. https://doi.org/10.

1128/mBio.02527-14 PMID: 25805735

5. Bulgarelli D, Garrido-Oter R, Münch Philipp C, Weiman A, Dröge J, Pan Y, et al. Structure and function
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