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Therapeutic faecal microbiota transplantation
controls intestinal inflammation through
IL10 secretion by immune cells
Claudia Burrello 1,2, Federica Garavaglia1, Fulvia Milena Cribiù3, Giulia Ercoli3, Gianluca Lopez3,

Jacopo Troisi4,5,6, Angelo Colucci4,5, Silvia Guglietta1, Sara Carloni7, Simone Guglielmetti8, Valentina Taverniti8,

Giulia Nizzoli9, Silvano Bosari 3, Flavio Caprioli9,10, Maria Rescigno7 & Federica Facciotti 1

Alteration of the gut microbiota has been associated with different gastrointestinal disorders.

Normobiosis restoration by faecal microbiota transplantation (FMT) is considered a pro-

mising therapeutic approach, even if the mechanisms underlying its efficacy are at present

largely unknown. Here we sought to elucidate the functional effects of therapeutic FMT

administration during experimental colitis on innate and adaptive immune responses in the

intestinal mucosa. We show that therapeutic FMT reduces colonic inflammation and initiates

the restoration of intestinal homeostasis through the simultaneous activation of different

immune-mediated pathways, ultimately leading to IL-10 production by innate and adaptive

immune cells, including CD4+ T cells, iNKT cells and Antigen Presenting Cells (APC), and

reduces the ability of dendritic cells, monocytes and macrophages to present MHCII-

dependent bacterial antigens to colonic T cells. These results demonstrate the capability of

FMT to therapeutically control intestinal experimental colitis and poses FMT as a valuable

therapeutic option in immune-related pathologies.
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The gut mucosa constitutes a unique environment exposed
to more than 1014 commensal bacteria, which establish a
mutualistic relationship with the host, providing metabolic

functions and contributing to shape the immune system1.
Maintenance of intestinal homeostasis requires several methods
to physically confine commensal bacteria to the intestinal lumen,
while keeping the full capability to control colonization by
pathogenic bacteria1. Variations of this equilibrium induce the
recruitment and expansion of several immune cell types con-
tributing to initiate and propagate intestinal inflammation, or to
restore homeostasis by activating tolerogenic mechanisms2.

Alteration in the composition of the gut microbiota (dysbiosis)
has been associated with a wide range of gastrointestinal diseases,
including recurrent C. difficile infection (CDI)3, inflammatory
bowel diseases (IBD, Crohn’s disease, CD, and Ulcerative colitis,
UC)4,5 and colorectal cancer (CRC)6.

Current theories suggest that IBD onset is secondary to an
exaggerated reaction of gut-associated lymphoid tissue against the
luminal microbiota7. Whether this is a primary defect or it is
secondary to intestinal dysbiosis is still debated. Indeed, a reduced
biodiversity in both mucus-associated and faecal bacterial com-
munities has been observed both in IBD patients and in their first
degree relatives4,8,9. Moreover, IBD patients showed reduced
diversity of their gut microbiome, expansion of pro-inflammatory
bacteria like Enterobacteriaceae and Fusobacteriaceae and deple-
tion of phyla with anti-inflammatory functional properties such
as Firmicutes10. Additionally, changes in mucus-associated
microbiota have been observed in the ileal mucosa of children
with treatment-naïve IBD, independently from intestinal
inflammation4. These observations suggest that intestinal dys-
biosis may be causally related and might precede mucosal
inflammation in IBD patients. This has also been confirmed by
the induction of experimental inflammation upon transfer of
dysbiotic microbiota or single commensal bacterial species in
germ-free mice11.

Intestinal epithelial damage has been proposed to be a key
event favouring bacteria translocation out of the intestinal lumen,
thus facilitating the recognition of antigens derived from the
dysbiotic microflora by pathogenic T cells in IBD patients7. A
complex physical barrier composed by a monolayer of polarized
epithelial cells has been developed to avoid exposure to the
intestinal microbiome12. Additionally, to prevent the bacterial
access to epithelial cells, mucous layers of different densities line
on top of the epithelium. Other host’s cellular components con-
tribute to homeostasis maintenance through the secretion of
antimicrobial peptides (AMPs)12.

Manipulation of the intestinal microbiome is becoming a
therapeutic option in several gastrointestinal disorders13. Faecal
microbiota transplantation (FMT), i.e. the infusion of healthy
donor faeces in the gut of a recipient to treat a disorder associated
with microbiota alterations, is receiving great consideration
thanks to its effectiveness against refractory and recurrent
CDI14,15. Increasing evidences from recent Randomized Clinical
Trials (RCTs) are also supporting the possibility to utilise FMT to
treat mild-to-moderate UC patients16–18. Despite its recent suc-
cesses, it is still largely unknown how FMT functionally mod-
ulates the intestinal immune system. Very limited data are
available on the therapeutic re-equilibration of the gut microbiota
in murine models of intestinal inflammation19,20.

Since the intestinal immune system is sensitive to variations of
luminal and mucus-associated bacteria, we postulated that ther-
apeutic FMT administered during intestinal inflammation might
directly modulate both innate and adaptive mucosal immune
responses towards the control of intestinal inflammation. Given
the predominant role of CD4+ T cells in orchestrating IBD-
related inflammatory processes21, largely due to their

differentiation into IFNγ/IL-17-secreting effector subtypes, we
focused our primary analysis on the functional variations
occurring in these cell populations upon FMT. The effect of
microbiota alterations during colitis induction and upon FMT
treatment in colitogenic mice was additionally assessed on
iNKT cells, a subset of αβ-T cells recognizing both self- and
microbial-derived glycolipids22,23 and heavily influenced by
bacterial-derived antigens in early life24,25. We also recently
showed that colonic iNKT cells are sensitive to microbiota
alterations occurring after short term antibiotic treatment26. To
selectively track this rare cell subset, we took advantage of a novel
reporter mouse strain, the CXCR6EGFP mouse27.

Here we demonstrate that therapeutic administration of FMT
during experimental colitis exerts beneficial effects, which are
associated to the simultaneous activation of several anti-
inflammatory pathways. Upon FMT, variations in the intestinal
ecology towards IL-10-inducing microbial communities and the
production of tolerogenic IL-10 by mucosal innate and adaptive
cell subsets altogether concur to resolve the inflammation.

Results
Therapeutic FMT reduces inflammation in DSS-induced coli-
tis. CXCR6-EGFP/+ mice27 are susceptible to DSS-induced colitis
(Supplementary Fig. 1) and can be used to track intestinal CD4+

T cell subsets, including the relatively rare iNKT cells (Supple-
mentary Fig. 2), under homeostatic conditions26 and during
experimental intestinal inflammation.

Upon establishment of DSS-induced acute colitis, the func-
tional effects of therapeutic FMT were evaluated. Mucus and
faeces derived from normobiotic mice were collected and
microbiota transfer was performed in colitic mice by oral gavage
for 3 consecutive days according to the scheme described in
Fig. 1a. At sacrifice, FMT-treated mice showed reduced signs of
intestinal inflammation, as indicated by decreased weight loss
(Fig. 1b) and increased colonic length (Fig. 1c and Supplementary
Fig. 3a). These effects were associated to an amelioration of the
intestinal inflammation measured by the histological score upon
FMT (Fig. 1d, e and Supplementary Fig. 3b). Moreover, in
agreement with previously published reports19, FMT reduced the
expression of the pro-inflammatory Il1β (Fig. 1f and Supplemen-
tary Fig. 3c) in the colonic mucosa.

To evaluate whether FMT might exert protective effects on gut
barrier functions, the colonic expression of antimicrobial peptides
and mucins was also tested (Fig. 1g, h). The expression of the
tight junction protein Zo-1 was not affected upon FMT treatment
in the colons of colitic mice (Supplementary Fig. 3d). On the
contrary, Camp and S100A8, two antimicrobial peptides playing
anti-inflammatory roles during acute intestinal inflammation28

were upregulated upon FMT administration (Fig. 1g). Similarly, a
tendency toward upregulation of Muc1 and Muc4, two mucins
exerting anti-inflammatory functions in response to pathogens29,
and a downregulation of Muc3 were observed by FMT treatment
in acute DSS-colitis (Fig. 1h).

Thus, our results demonstrate that FMT therapeutic admin-
istration during experimental acute colitis ameliorates intestinal
inflammation.

FMT induces variations in the microbial communities. Next,
variations in the microbial communities in colitic mice treated or
not with FMT were evaluated. Fecal samples of DSS and DSS+
FMT mice were collected at day 11 post colitis induction and
subjected to microbiome profiling using 16S rRNA gene
sequencing on the Illumina MiSeq platform. An unweighted
UniFrac-based comparison of the microbiota isolated from
untreated, DSS and DSS+ FMT-treated recipient mice was
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performed (Fig. 2a and Supplementary figure 4a). Principle
component analysis (PCA) differentiated untreated mice from the
experimental groups (DSS and DSS+ FMT). The intestinal
microbiota of recipient mice receiving or not a FMT did not
macroscopically differ at sacrifice, possibly due to similar relative
abundances of the top 10 most abundant species among DSS and
DSS+ FMT-derived samples (Fig. 2b). Similarly, the microbiota
isolated from DSS-treated mice did not show a lower α-diversity
when compared to DSS+ FMT-derived microbiota, as reflected
by the Chao1 and Shannon indexes (Fig. 2c).

Nonetheless, a detailed phylogenetic analysis of the taxonomic
composition of the microbiome of colitic mice treated or not with
FMT showed that the reduced inflammatory conditions observed
upon FMT administration were associated, with variations in the
abundance of specific taxa, including Firmicutes and Verrucomi-
crobiae30,31. (Fig. 2d–f).

Significant changes towards restoration of normobiosis were
detected among the less abundant families belonging to the
Firmicutes phylum in the DSS+ FMT–derived microbiota. For
instance, Clostridiaceae and Clostridiales, which were expanded in
colitic mice, were reduced upon FMT and returned to levels
comparable to those observed in untreated mice (Fig. 2e).

FMT-derived samples showed significant increases of known
commensals used in probiotics preparations32, including Lacto-
bacillaceae and Streptococcus sp., and of the SCFA-producing taxa
Erysipelotrichaceae, Ruminococcaceae, Odoribacter and Olsenella
(Fig. 2f and Supp Fig. 4B), which are reported to be reduced in
IBD patients4,33.

Of note, metabolomic analysis showed an increased faecal
content of complex sugars including lactose and maltose in DSS-
treated mice, a possible consequence of impaired digestion or
defective intestinal absorption34, whose levels were normalized by
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Fig. 1 Therapeutic FMT ameliorates DSS-induced experimental colitis. a Schematic representation of FMT treatment during acute DSS experimental colitis.
b, c Weight loss (b) and colon length (c) of untreated (triangles and striped boxes), colitic (black dots and black boxes), or colitic mice treated with FMT
(white dots and white boxes). d, e H&E staining (scalebar 100 µm) and cumulative histological score of colon specimens obtained from DSS-treated and
FMT-treated mice; (e) Detailed histological evaluation of mice with decreased histological score (white boxes) compared to DSS-treated mice (black
boxes). f Colonic expression levels of Il1β in colitic (black boxes) and FMT-treated (white bars) mice. g, h Colonic expression levels of Camp, S100A8
(g) and Muc1, Muc3, Muc4 (h) in untreated (white boxes), DSS treated (black boxes) or DSS+ FMT-treated (gray boxes) mice. Statistical significance was
calculated using a Mann–Whitney test for comparison within two groups or Kruskal–Wallis test with Dunn’s multiple comparison correction within more
than two groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 were regarded as statistically significant. Outliers were detected with Grubb’s test. Non
parametric distributions were represented as median+ /- interquartile range. In Box and whiskers plots, centre line represents median; cross, represents
mean. In (b) UT n= 10, DSS n= 10, DSS+ FMT n= 10. In (c) UT n= 12, DSS n= 12, DSS+ FMT n= 14. In (d) UT n= 8, DSS n= 15, DSS+ FMT n= 19. In
(f–h) UT n= 5, DSS n= 6, DSS+ FMT n= 7
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FMT-treatment. Similarly, glutamic acid, a metabolite altered in
IBD patients35, decreased upon FMT while gluconic acid and
Dihydroxiacetone, involved in natural detoxification activities36,
increased upon FMT (Fig. 2g, h).

Altogether, these findings suggest that the beneficial effects of
FMT during intestinal inflammation are associated with a
reshuffling of the microbiota communities towards restoration
of functional normobiosis.

FMT effects rely on the presence of normobiotic ecologies.
Once documented the beneficial effects of FMT, the impact of the
donor microbiota composition on the resolution of intestinal
inflammation was evaluated.

To do so, mucus and faecal samples were obtained from
normobiotic or dysbiotic mice, i.e from healthy mice left
untreated or treated for 7 days with DSS, and FMT was
performed in colitic mice as previously described in Fig. 1a.

Relevant differences between the two types of donors used for
FMT experiments were confirmed by metagenomic analyses
(Fig. 3a, b and Supplementary fig 5A). As previously shown31, the
microbiota of dysbiotic mice was characterized by a contraction
of Bacteroidales S24-7, Lachnospiraceae and Bifidobacteriaceae
and an expansion of Enterobacteriaceae and Bacteriaceae as
compared to that of normobiotic mice (Fig. 3a).

As a consequence, an amelioration of the intestinal inflamma-
tion was reported in mice receiving a normobiotic FMT but not

in those receiving a dysbiotic FMT, as demonstrated by an
increase in colon length (Fig. 3c) and a decrease, albeit not
significant, in the expression levels of colonic pro-inflammatory
Il1b and Tnf (Fig. 3d).

Consistently, the microbial composition of recipient mice that
were transplanted with a dysbiotic FMT was also more similar to
that of DSS-treated mice, enriched in pathobionts such as E.Coli/
Shigella (Fig. 3e), while the microbiota of mice receiving a
normobiotic FMT were more similar to that of untreated mice,
enriched in protective SCFA-producing bacteria (Fig. 3e). Simi-
larly, metabolomic analysis of the faeces of recipient mice treated
with normobiotic FMT revealed the presence of metabolites
associated to scavenging of free radicals (d-glucunolactone)
and metals (gluconic acid)36, to the control of ROS
production and neutrophils activity (hydroxiphenillactic acid)
and chemotaxis (LPA)37, and to SCFA production (Valeric acid)38

(Fig. 3f).
Next, we evaluated if normobiotic donors of different origins

might be equally capable to control intestinal inflammation when
transplanted into colitic mice. Mucus and faecal samples were
isolated form age- and sex-matched C57Bl/6 mice obtained from
different sources, i.e. from two commercial animal vendors
(Charles River srl and Envigo srl) and from in-house bred C57Bl/
6 wild-type colony (IEO animal facility). Interestingly, the FMT
performed with the microbiota isolated from the different
normobiotic donors was equally capable to control intestinal
inflammation, as shown by similar colon length (Fig. 4a),
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histological score (4b) and expression of colonic pro-
inflammatory genes (Fig. 4c)

As previously observed11,39,40, donor mice sharing the same
genetic background, sex and age, but raised in different animal
facilities harbored a microbiota genetically similar, not identical,
(Fig. 4d, and Supplementary fig 5b) but capable to perform
overlapping metabolic activities (Fig. 4e). In accordance to very
recent data41, 90 to 93% of the total taxa relative abundance of
normobiotic mice, regardless of its origin, was composed by a

similar core microbial ecology of Bacteroidales S24-7 (30-45%
among groups), Lachnospiraceae (28-38%), Lactobacillaceae
(6-15%), Ruminococcaceae (5-8%), Rikenellaceae (3−6%), Bifido-
bacteriaceae (1–2%) and Erysipelotrichaeceae (1–5%), that in
dysbiotic mice accounted only for a total 75% (Fig. 4f). These taxa
have been functionally associated to homeostatic metabolic
activities, including SCFA production leading to Treg cells
differentiation and IL-10-production42-44. On the contrary, the
taxa expanded in dysbiotic mice accounting for a 25% of the total
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microbial ecology, which were either completely absent or present
in extremely low abundancies in normobiotic mice, were mostly
Enterobacteriaceae, Bactaeriaceae, Rhodospirillaceae, Streptococ-
caceae, which have been shown to be increased both in colitic
mice and IBD patients4,31(Fig. 4f)

Taken together, these data indicate that beneficial effects of
FMT are strictly dependent on the graft composition, and that
only a healthy microbiota can ameliorate the intestinal
inflammation.

FMT influences colonic immune cells relative abundance.
Given the strict interdependence between intestinal immune
system and the host microbiota45, we next aimed to explore
immune pathways selectively modulated by FMT, We thus asked
if therapeutic FMT administration in colitic mice induced var-
iations in the frequencies and in the functional activities of the
immune cell colonic infiltrate. The presence of specific bacterial
strains in the gut has been linked to the differentiation and
expansion of conventional11 and unconventional25 CD4+ T cells.
An increase of iNKT cell frequency, but not absolute numbers,
(Fig. 5a) was observed in DSS-treated mice after FMT, while CD4
+ T cells were decreased both in frequency and numbers (Fig. 5a),
in line with their reduced proliferative capacity (Fig. 5b). Given
that iNKT cells isolated from FMT-treated and untreated mice
exhibited similar Ki67 expression (Fig. 5b), the increase of iNKT
cell percentages on total CD3+ lymphocytes was likely a con-
sequence of the overall reduction of CD4+ T cells rather than of
their expansion (Fig. 5b). On the contrary, colonic CD8+ T cells
frequency (Supplementary Fig. 6a) and phenotype (Fig. 5c) were
not affected by FMT-treatment.

Interestingly, we found that FMT treatment was able to reduce
the inflammation-driven expansion of the innate lymphocytes
ILC2 and ILC346,47 in the lamina propria of acute DSS-treated
mice (Supplementary Fig. 6b, c)

Antigen presenting cells (APC) and immune cells of myeloid
origin infiltrating the inflamed lamina propria have been shown
to contribute to sustain and propagate intestinal inflammation2.
Following therapeutic FMT, a reduction in F4/80+ macrophages
and CD11b+Ly6G+ neutrophils frequency (Fig. 5d) and partially
in absolute numbers (Fig. 5e) was observed. In contrast, CD19+B
cells and CD11c+dendritic cells were mostly unaffected (Fig. 5d,
e).

Further, several evidences suggest that mucosal T-helper cells
activation during intestinal inflammation depends on antigenic
stimulation2. After FMT, both the number of colonic MHC-II-
expressing professional APC, including dendritic cells and
macrophages, (Fig. 5f) and MHC-II expression levels on APC
(Fig. 5g) were strongly reduced, suggesting that FMT might
directly act on the antigen presenting capacity of professional
APC.

To note, similar findings were observed in the TNBS-induced
experimental colitis model (Supplementary Figure 7)

Taken together, these data indicate that therapeutic FMT exerts
a specific effect on infiltrating immune cells population frequency
and phenotype.

CD4+ T cells cytokine skewing requires antigen presentation.
We next evaluated if FMT administration might influence specific
immune cells functional activities that are directly correlated to
bacterial antigens presentation.

The faeces of untreated, DSS-treated and FMT-treated mice
were collected and used to stimulate in-vitro intestinal lamina
propria mononuclear cells (LPMC) freshly isolated from healthy
mice (Fig. 6a).

As observed in vivo, MHC-II levels on dendritic cells,
macrophages and monocytes were down-regulated upon
in vitro exposure to normal (untreated) or FMT-derived
microbiota (Fig. 6b). Similarly, the expression of CD86, a co-
stimulatory molecule critically involved in T cell stimulation, was
reduced on APC exposed to untreated or FMT-derived micro-
biota as compared to those exposed to the faeces of DSS-treated
mice (Supplementary Fig. 8a).

Cytokines produced by mucosal antigen presenting cells play a
pivotal role in the initiation and propagation of intestinal
inflammation, as in the maintenance of homeostasis48. To
evaluate the cytokine milieu generated upon exposure to FMT-
derived microbiota, we analysed the supernatants of stimulated
intestinal LPMC (Fig. 6c). Interestingly, LPMC exposed to FMT-
derived microbiota showed reduced levels of pro-inflammatory
cytokines, such as TNF, IL1β and IFNγ (Fig. 6c), which were
instead increased in the supernatants of LPMC exposed to DSS-
derived microbiota.

FMT-derived microbiota was also capable to differently skew
the cytokine profile of antigen presenting cells (Fig. 6d, e). Indeed,
the frequency of pro-inflammatory TNF-producing intestinal
dendritic cells and macrophages was strongly reduced upon
exposure to FMT-derived microbiota (Fig. 6d). Conversely, FMT-
derived microbiota increased the frequency of IL-10-producing
intestinal dendritic cells and monocytes (Fig. 6e).

Correspondingly, CD4+ T cell expansion occurred only after
stimulation with DSS-derived, but not with normal or FMT-
derived microbiota (Fig. 6f). To note, FMT-derived microbiota
slightly increased the frequency of Foxp3+ Treg cells (Supple-
mentary Fig. 8b).

DSS-derived microbiota also induced a strong upregulation of
CD69 on intestinal CD4+ T cells, while untreated or FMT-
derived microbiota failed to do so (Fig. 6g). Likewise, only FMT-
derived microbiota significantly increased IL-10 secretion by
CD4+ T cells, in an MHC-II dependent fashion (Fig. 6h).
Importantly, also IFNγ secretion was dependent on antigen
presentation (Fig. 6h).

Fig. 4 Similar ecologies from different FM donors elicit same beneficial effects. a, b Colon length (a) and cumulative histological score (b) of DSS (black
boxes), DSS+ IEO-FMT (white boxes), DSS+ CR-FMT (dotted boxes) and DSS+ Envigo-FMT (striped boxes) treated mice. c Colonic expression of
Tnf and Il1b in DSS (black boxes), DSS+ IEO-FMT (white boxes), DSS+ CR-FMT (dotted boxes) and DSS+ Envigo-FMT (striped boxes) treated mice
d Comparison of relative abundancies of different taxa between Envigo- (outer chart), Charles River- (CR) (middle chart) or IEO-derived faecal microbiota.
e Partial Least square-discrimination analysis (PLSD-DA) on metabolomics data between Envigo- (blue), Charles River- (CR, green) or IEO (red)-derived
faecal microbiota. f Comparison of relative abundancies of different taxa between normobiotic-, IEO-, CR- Envigo- and dysbiotic-derived fecal microbiota.
Statistical significance was calculated using a Mann–Whitney test for comparison within two groups or Kruskal–Wallis test with Dunn’s multiple
comparison correction within more than two groups. *P < 0.05, **P < 0.01, ***P < 0.001 were regarded as statistically significant. Outliers were detected
with Grubb’s test. Non parametric distributions were represented as median+ /- interquartile range. In Box and whiskers plots, centre line represents
median; cross, represents mean; dots represent outliers. In (a–c) DSS n= 7, DSS+ IEO-FMT n= 10, DSS+ CR-FMT n= 10, DSS+ Envigo-FMT n= 10. In
(d, f) IEO-FMT n= 9, CR-FMT n= 10, Envigo-FMT n= 9, nFMT= 7, dFMT= 7. In (e) DSS n= 5, DSS+ IEO-FMT n= 6, DSS+ CR-FMT n= 5, DSS+
Envigo-FMT n= 5
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Taken together these data confirm a crucial role for bacterial
antigen presentation in the tolerogenic skewing of innate and
adaptive colonic immune populations upon FMT treatment.

IL-10 critically contributes to FMT beneficial effects. In vitro
experiments indicated that IL-10 production by intestinal
immune cells might be critically involved in the tolerogenic
mechanisms triggered by therapeutic FMT during experimental

colitis. We thus evaluated if these mechanisms occurred in vivo
upon FMT, and if IL-10 production by immune cells might be
responsible for the observed therapeutic effects of FMT.

Higher amounts of colonic IL-10 (Fig. 7a) as well as increased
frequencies of IL-10-producing APC (Fig. 7b, c) and CD4+ T and
iNKT cells (Fig. 7d) were observed in the colons of FMT-treated
mice as compared to DSS-treated mice. Interestingly, the
increased IL-10 secretion by T cells observed in FMT-treated
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comparison within two groups or Kruskal–Wallis test with Dunn’s multiple comparison correction within more than two groups. *P < 0.05, **P < 0.01, ***P
< 0.001 were regarded as statistically significant. Outliers were detected with Grubb’s test. Non parametric distributions were represented as median+ /-
interquartile range. In Box and whiskers plots, centre line represents median; cross, represents mean; dots represent outliers. In (a–c) DSS n= 12, DSS+
FMT n= 12. In (d–g) DSS n= 16, DSS+ FMT n= 16
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Fig. 7 IL-10 contributes to FMT beneficial therapeutic effects. a IL-10 colonic expression in DSS-(black boxes) and DSS+ FMT-(white boxes) treated mice.
b, c Representative histograms of IL-10 expression (b) and cumulative Mean fluorescence intensity (MFI) (c, left panel) and frequency (c, right panel) of IL-
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mice normalised upon inflammation resolution (Supplementary
Fig. 9b). To test the contribution of IL-10 on the anti-
inflammatory properties of FMT, DSS-treated mice were
administered FMT concomitantly to IL-10 receptor (IL-10R)
blockade (Fig. 7e). Inhibition of the tolerogenic functions of IL-10
on IL-10R expressing cells, such as antigen presenting cells
(APC), T cells and epithelial cells49, hampered FMT protective
effects as shown by reduced colon length (Fig. 7f), increased
weight loss (Fig. 7g) and higher colonic expression of Tnf, Ifnγ
and Il1β (Fig. 7h). These effects were not observed when IL-10R
was blocked in colitic mice without a concomitant FMT
administration, suggesting a direct contribution of the microflora
in the IL-10-mediated control of inflammation. As expected, IL-
10R blockade reverted the inhibition of CD4+ T cells prolifera-
tion occurring upon FMT (Fig. 7i). IL-10R blockade also affected
IL-10 production by T and iNKT cells, possibly through a
feedback regulatory loop (Supplementary Fig 9c).

Protective bacteria selective elimination impairs FMT effect.
To further correlate the gut microbiota composition to the
induction of protective immune-mediated functions during
intestinal inflammation, therapeutic FMT was performed with
mucus and faeces isolated from mice previously pre-treated for
two weeks with different antibiotics targeting either Gram-
positive organisms (vancomycin), Gram- negative bacteria
(streptomycin), strict anaerobes (metronidazole) or having a
broad spectrum bacterial depletion capability (ABX) (Fig. 8a)50.

The taxonomic composition of the different donor microbiota
was analysed by 16 S rRNA gene sequencing before administra-
tion to colitic mice. As expected, the α-diversity in antibiotic-
treated samples was lower as compared to those derived from
normobiotic samples (Fig. 8b), evidence confirmed also by plating
of the faecal material in aerobic and anaerobic conditions
(Fig. 8c).

The detailed phylogenetic analysis of the taxonomic composi-
tion highlighted a relevant dysbiosis in the antibiotic- treated
donor samples as compared to the untreated ones (Fig. 8d, e). In
particular, metronidazole treatment favored the selective persis-
tence of Lactobacillaceae, Bifidobacteriaceae and Erysipelotricha-
ceae, as well as of Ruminococcacceae and Bacteroidales S24-7,
families belonging to the protective normobiotic microbial
ecologies31 previously described in Fig. 4. On the contrary,
pathobionts such as Christensenellaceae, Burkholderiales, Lister-
iaceae and Gastranaerophilales significantly emerged in
Vancomycin-treated samples at the expenses of the above-
mentioned protective families. Streptomycin-treatment, instead,
favoured a limited presence of Erysipelotrichaceae and Rumino-
coccaceae while not expanding pathobionts, but rather allowing
the survival of families whose function could be protective or
detrimental according to the context1,51. As a proof of concept,
the microbial population of broad spectrum antibiotic-treated
mice was completely depleted, as confirmed by the plating of their
faecal material (Fig. 8c).

Of note, FMT performed with metronidazole-treated micro-
biota retained a full capability to control intestinal inflammation
(Fig. 8f, g and Supplementary Fig 10). Importantly, this was
associated with a selective increased production of IL-10 by
colonic APC (Fig. 8h), as to confirm the previously suggested IL-
10 promoting activity of Lactobacillaceae and
Bifidobacteriaceae52.

In conclusion, our data show that the gut microbiome
modifications after FMT exert a profound impact on the mucosal
immune system. The composition of the microbial ecology
transferred by FMT is pivotal to its beneficial anti-inflammatory
effects by supporting changes in immune cell frequencies, the

reduction of colonic ifnγ and il1β, the increase in antimicrobial
peptides and mucins, and the decrease of bacterial antigen
presentation by APC. Most importantly, normobiotic FMT
induces the skewing of innate and adaptive immune cells toward
a tolerogenic IL-10 secreting cytokine profile that, altogether,
concur to restore intestinal homeostasis (Fig. 9).

Discussion
FMT is becoming the first-line therapy in antibiotic resistant
recurrent CDI14,15. However, its therapeutic application to other
gastrointestinal diseases is at the very beginning and data on its
mechanism of action during intestinal inflammation are still
scarce. While it is known that restoration of normobiosis corre-
lates with clinical remission in successful trials involving UC
patients16–18, it is still unclear whether FMT might have an effect
on the immune system. To date, data in BALB/c mice suggest that
FMT can induce CD4+CD25+ regulatory T cells and reduce
colonic expression of Il1β and Ifnγ19.

In our study, we show for the first time that the manipulation
of the gut microbiota by FMT induces variations in both innate
and adaptive immune cell frequencies and cytokine profiles and
that this correlates with a general amelioration of the inflam-
matory status in colitic animals. Moreover, analyses of the gut
microbiota in our model showed that 3 days of therapeutic FMT
are sufficient to introduce modifications in the dysbiotic micro-
biota, with a relevant change in the relative proportions of Fir-
micutes. These results are in agreement with findings from
successful FMT clinical trials on UC patients and from animal
models of intestinal inflammation. In particular, data in UC
patients showed that clinical remission correlated with stable
modifications of the gut microbiota towards functional normo-
biosis restoration16–18 and that this shift in intestinal microbial
ecology was sufficient to trigger reduction of inflammatory genes
such as ifnγ, il1β and tnf53. Further, in IBD patients and in animal
models of intestinal inflammation4,33,54 changes in the levels of
Erysipelotrichaceae and Lactobacillacee have been described.
Interestingly, we found that these taxa were also similarly altered
in DSS-treated mice, and their abundances were restored upon
therapeutically successful FMT.

It is now acknowledged that the gut microbiota composition
is heavily influenced by age, gender, genotype, diet and envir-
onmental factors55. In this context, animal models are valuable
tools to study complex biological phenomena, such as those
occurring during intestinal inflammatory processes, while
controlling confounding variables. It also emerged from several
recent studies that different research institutions or commercial
vendors might harbour variations in the microbiological
environment39,40, leading to differences in microbiota compo-
sition. Here we showed that the microbiota derived from three
different sources were equally capable to control intestinal
inflammation in our experimental model, and this capability
was dependent on the presence of a core microbial ecology
composed by Bacteroidales S24-7, Lachnospiraceae, Lactoba-
cillaceae, Ruminococcaceae, Rikenellaceae, Bifidobacteriaceae
and Erysipelotrichaceae. As recently shown also in metabolic
diseases41 and in murine models of intestinal inflammation31,
this core ecology consists of bacteria from different phyla
sharing similar metabolic functions (i.e: SCFA production, Ph
control, free radicals scavenging) and, when maintained at a
certain population level, capable to create environmental con-
ditions sufficient to inhibit the growth of pathogenic species/
pathobionts and support optimal host health.

A healthy gut environment, shaped by the presence of a healthy
functional microbial ecosystem, is thus fundamental to instruct
the immune system towards homeostasis.
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Several reports describe the pivotal role of T cells as key players
in the initiation and maintenance of intestinal inflammation. For
instance, we56 and others57,58 reported that IBD patients show
increased amounts of intestinal Th1, Th17 and Th1/17 cells
whose pathogenic role has been associated to the recognition of
bacterial antigens7,59,60. In addition to conventional CD4+

T cells, other T cell subsets, like iNKT cells, can secrete IL17A and
IFNγ in the gut and affect bacterial colonization of the intes-
tine20,61 but their role in intestinal inflammation is less well
defined62.

In our study, in vitro stimulation of intestinal lamina propria
cells with faecal content from untreated, DSS or FMT-treated
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mice induced a different cytokine profile in both innate and
adaptive immune cells, suggesting that the alterations in the
microbiota ecology during colitis and upon FMT are directly
linked to changes in the functional status of the mucosal immune
system.

Additionally, our data indicate that variations in the intestinal
microbial ecology are also capable to skew, both in vitro and
in vivo, the cytokine profile of antigen presenting cells from pro-
inflammatory to tolerogenic45.

In particular, we show that in acute models of intestinal
inflammation, IL-10 secretion by APC and T cells upon FMT is
temporally linked to the resolution of inflammation, confirming
a direct contribution of IL-10-mediated functional activities in

intestinal homeostasis63 also in the context of FMT. IL-10 is an
anti-inflammatory cytokine known to critically maintain
intestinal immune homeostasis64. IL-10-deficient mice and
patients with genetic defects in the IL-10/IL-10R pathway
develop intestinal inflammation in the presence of a normal gut
microflora. Moreover, the presence of specific commensal
bacteria such as Lactobacilli and Bifidobacteria have been
directly associated to the secretion of tolerogenic IL-1052 and
has been implicated in the maintenance of intestinal home-
ostasis65. Several studies report that a probiotic preparation
(#VSL3) composed by a cocktail of eight strains of Lactobacilli
and Bifidobacteria is effective in controlling intestinal
inflammation32

Fig. 8 Antibiotic treatment selectively abolishes FMT beneficial effects. a Schematic representation of the experiment. b Rarefaction curves showing
microbial richness (Chao1 index,top panel) and microbial richness and evenness (Shannon index,bottom panel). Black line, untreated-, red line ABXFMT-,
blue line Strepto FMT-, Green line Metro FMT-, Violet line Vanco FMT- derived samples. c Plating of faecal material derived from untreated, treated with
the antibiotic cocktail (ABX) or with streptomycin (Strepto), Metronidazole (Metro) or Vancomycin (Vanco) in aerobiosis (left) and anaerobiosis (right). d
Comparison of relative abundancies of different taxa between faecal microbiota obtained from normobiotic (outer chart) and Streptomycin-treated mice
(inner chart, left panel), or Metronidazole-treated (inner chart, middle panel) or Vancomycin-treated mice(inner chart, right panel). e Heat map comparing
the expression levels of the different taxa between faecal microbiota obtained from normobiotic, Streptomycin-, Metronidazole- or Vancomycin-treated
mice. f, g Colon length (f) and il1b colonic expression (g) in DSS-treated (black boxes), DSS+Untreated FMT (white boxes), DSS+ABX FMT (red boxes),
DSS+ Streptomycin FMT (blue boxes), DSS+Metronidazole FMT (green boxes) and Vancomycin (Violet boxes)-treated mice. h Frequencies IL-10
secreting colonic total CD45+ immune cell populations or gated dendritic cells (CD11c+ ), neutrophils (Cd11b+ Ly6g+ ), Macrophages (Cd11b+ F4/80
+ ), B cells (CD19+ ) and CD4+ T cells isolated from DSS-treated (black boxes), DSS+ untreated FMT (white boxes), DSS+ABX FMT (red boxes), DSS
+ Streptomycin FMT (blue boxes), DSS+Metronidazole FMT (green boxes) and DSS+Vancomycin FMT (Violet boxes)-treated mice. Statistical
significance was calculated using a Mann–Whitney test for comparison within two groups or Kruskal–Wallis test with Dunn’s multiple comparison
correction within more than two groups. *P < 0.05, **P < 0.01, ***P < 0.001 were regarded as statistically significant. Outliers were detected with Grubb’s
test. Non parametric distributions were represented as median+/− interquartile range. In Box and whiskers plots, centre line represents median; cross,
represents mean; dots represent outliers. In (b–e) UT n= 4; DSS, DSS+Abx FMT n= 5; DSS+ Strepto FMT, DSS+Metro FMT n= 6; DSS+ FMT Vanco
n= 3. In (f–h) UT n= 4; DSS n= 5; DSS+Abx FMT, DSS+ Strepto FMT, DSS+Metro FMT, DSS+ FMT Vanco n= 6
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The resolution of intestinal inflammation has been also linked
to the activation and the functional plasticity of CD4+ T cells
from pro-inflammatory to tolerogenic/IL-10-producing sub-
types63,66. Upon therapeutic FMT, both CD4+ and iNKT cells
produce IL-10. Importantly, since IL-10 also negatively affects the
proliferative capacity of cells the overall increased availability of
colonic IL-10 might be directly responsible for the reduced pro-
liferative capacity of T cells together with the decreased antigen
presentation by APC, as shown by their reduced levels of MHC-
II.

In this manuscript we show that colonic APC, such as neu-
trophils and macrophages, both recruited in the inflamed gut67,68

are also strongly reduced in frequency and absolute number upon
therapeutic FMT. This is in line with findings showing that
macrophages contribute to IBD pathogenesis and are direct target
of anti-TNF therapy, which induces their apoptosis69 and/or a
regulatory M2 phenotype67.

Finally, we also show that the levels of MHCII and the fre-
quency of MHCII+ professional APC in the colonic lamina
propria are strongly down-regulated upon FMT. Importantly,
colonic HLA-DR expression levels discriminate between healthy,
quiescent and active IBD patients70, confirming a prominent role
of MHCII-dependent antigen presentation in IBD immuno-
pathology. Since IFNγ up-regulates MHCII molecules, the
observed reduction of colonic IFNγ after FMT could explain the
decrease of MHCII surface levels and it might be instrumental for
reducing the presentation of bacterial antigens to CD4+T cells.

In conclusion, we demonstrate that modulation of intestinal
microbiota by FMT during experimental colitis exerts multiple
effects in both adaptive and innate mucosal immune responses.
The restoration of normobiosis, possibly also through cooperative
interactions among commensal species, could be the first hint to
simultaneously trigger several immune pathways leading to tol-
erogenic functions of innate and adaptive immune cells that
altogether contribute to the resolution of the inflammatory pro-
cesses. Further studies will highlight if defined microbial species
or community-based effects contribute to tolerogenic mechan-
isms in the gut.

These findings on overall represent an important contribution
toward the elucidation of the complex interplay between the
immune system and the gut microbial ecosystem and are
instrumental for better understanding the immune events
occurring during therapeutic FMT in humans.

Methods
Mice. C57BL/6 mice (Charles River, IT) and CXCR6 EGFP/+mice (B6.129P2-
Cxcr6tm1Litt/J; IMSR_JAX: 005693) background C57BL/6, purchased as GFP/GFP
from JAX, USA, and bred to heterozigosity with C57BL/6 mice) of 8–10 weeks of
age were housed at the IEO animal facility in SPF conditions. Experimental groups
of mice receiving the different FMT treatments were kept in separated cages.
Littermates of same sex and age were randomly assigned to the different experi-
mental groups.

Animal procedures were approved by the Italian Ministry of Health (Auth. 127/
15, 27/13, 913/16, 415/17) and by the OPBA of the European Institute of Oncology,
IEO, Italy.

Experimental colitis models. For the induction of DSS-induced acute colitis, mice
were given 2% (w/v) dextran sodium sulphate (DSS, MW 40 kD; TdB Consultancy)
in their drinking water for 7 days followed by 2 days of recovery. The weight curve
was determined by weighing mice daily. At sacrifice, colons were collected, their
length was measured and divided in portions to be fixed in 10% formalin for
histological analyses, snap-frozen for RNA extraction and for lamina propria
mononuclear cells (LPMC) immunophenotyping.

Faecal microbiota transplantation (FMT). FMT was performed through oral
gavage of mucus (first day) and faeces (second and third days) preparations from
donor mice. This protocol facilitates the engraftment of the mucus-associated
bacteria. Donor mice were untreated (normobiotic) donors, DSS-treated (dysbio-
tic) or treated with metronidazole (1 g/L), vancomycin (1 g/L), streptomycin (2 g/L)

or a cocktail of the three antibiotics combined in order to deplete distinct taxa of
bacteria. Mucus was scraped from colons, diluted in PBS and administered to
recipients at 1:1 ratio. Faeces were collected, diluted in PBS (50 mg/ml) and
administered to recipients by oral gavage (10 mg/mouse) one day after the end of
acute DSS administration.

For in vivo IL-10R blockade, mice were injected intraperitoneally with 250 µg
InVivoMAb anti-mouse IL-10R (BioXCell, clone 1B1.3 A), or its Isotype
(BioXCell), daily for 4 days starting from one day before FMT treatment.

Murine cell isolation. For LPMC isolation, Peyer’s Patches were removed, colonic
lamina propria lymphocytes (LPL) were isolated via incubation with 5 mM EDTA
at 37 °C for 30 min, followed by further digestion with collagenase IV and DNase at
37 °C for 1 h. Cells were then separated with a Percoll gradient.

In some experiments after isolation cells were re-stimulated in vitro for 3 h with
PMA/Ionomycin in the presence of Brefeldin A for cytokine secretion.

Flow cytometry analysis. Cells were stained with combinations of directly con-
jugated antibodies described in Supplementary Table 3. iNKT cells were identified
by CXCR6-EGFP expression or mCD1d:PBS57 Tetramer (NIH Tetramer core
facility) staining.

Intracellular staining of cytokines was performed after cells fixtion and
permeabilization with Cytofix/Cytoperm (BD) before addition of the antibodies.
Samples were analysed by a FACSCanto II flow cytometer (BD), gated to exclude
nonviable cells. Data were analysed using FlowJo software (BD). The complete list
of the antibodies and dyes used in the study are described in Supplementary
Table 3.

RT-qPCR of tissue mRNA. Total RNA from colonic tissues was isolated using
TRIZOL and Quick-RNA MiniPrep (ZymoResearch) according to manufacturer’s
specifications and following the MetaHIT project guidelines. cDNAs were gener-
ated from 1 µg of total RNA with reverse transcription kit (Promega). Gene
expression levels were evaluated by qPCR and normalized to Rpl32 gene expres-
sion. The primer sequences are collected in Supplementary Table 2.

Immunofluorescence. Intestinal samples were fixed overnight in paraformalde-
hyde, L-Lysine pH 7.4 and NaIO4 (PLP buffer). They were then washed, dehy-
drated in 20% sucrose for at least 4 h and included in OCT (Sakura). 10μm-thick
sections were re-hydrated with 0.1 M Tris HCl pH: 7.4 buffer and blocked with
0.3%triton X-100, 2% FBS 0.1 M Tris-HCl buffer. Slides were incubated with the
primary antibody (anti ZO-1 FITC, 1:100) for 2 hrs. Nuclei were counterstained
with DAPI (1:30.000; Roche) and mounted with Vectashield (Vectorlabs).

Histological analysis. Tissue processing was performed with a LEICA PELORIS
processor before paraffin embedding71. Murine samples were included using an
automated system (SAKURA Tissue-Tek). After Hematoxylin and Eosin staining,
snapshots of histology were taken using an Aperio CS2 microscope with a scanning
resolution of 50,000 pixels per inch (0.5 µm per pixel with 10x objective and 2.5 µm
per pixel when scanning at ×4). Scoring of disease activity was performed
according to the criteria described in Supplementary Table 1.

Microbiota identification. Faeces and mucus scraped from the colon were stored
at −80 °C until the DNA was extracted with G NOME DNA isolation kit (MP)
following the protocol described in72 Partial 16 S rRNA gene sequences were
amplified using primer pair Probio_Uni and /Probio_Rev, targeting the V3 region
of the 16 S rRNA gene sequence73. The 16S rRNA gene sequencing was performed
using a MiSeq (Illumina) at the DNA sequencing facility of GenProbio srl (www.
genprobio.com)73.

Following sequencing, the obtained individual sequence reads were filtered by
the Illumina software to remove low quality and polyclonal sequences. All Illumina
quality-approved, trimmed and filtered data were exported as.fastq files. The.fastq
files were processed using a custom script based on the QIIME software suite74.
Quality control retained sequences with a length between 140 and 400 bp and mean
sequence quality score > 20 while sequences with homopolymers > 7 bp and
mismatched primers were omitted. To calculate downstream diversity measures
(alpha and beta diversity indices, Unifrac analysis), 16S rRNA Operational
Taxonomic Units (OTUs) were defined at ≥ 99 % sequence homology using
uclust75 and OTUs with less than 10 sequences were filtered. All reads were
classified to the lowest possible taxonomic rank using QIIME74 and a reference
dataset from the SILVA database. Biodiversity of the samples (alpha-diversity) were
calculated with Chao1 and Shannon indexes. Similarities between samples (beta-
diversity) were calculated by unweighted uniFrac76. The range of similarities is
calculated between the values 0 and 1. PCoA representations of beta-diversity were
performed using QIIME 74.

TNBS-induced experimental colitis. For TNBS-induced acute colitis, mice were
rectally challenged with 3 mg of Picrylsulfonic acid (TNBS, MW 293.17 Fluka). The
weight curve was determined by weighing mice daily. At sacrifice colons were
collected, their length was measured and divided in portions to be fixed in 10%
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formalin for histological analyses, snap-frozen for RNA extraction and for lamina
propria mononuclear cells (LPMC) immunophenotyping.

Metabolomic analysis. Metabolome extraction, purification and derivatization
was carried by means of the MetaboPrep kit (Theoreo srl, Montecorvino Pugliano
[SA], Italy) according to the manufacturer’s instruction.

Two µL samples of the derivatized solution were injected into the GC-MS
system (GC-2010 Plus gas chromatograph coupled to a 2010 Plus single
quadrupole mass spectrometer; Shimadzu Corp., Kyoto, Japan). Chromatographic
separation was achieved with a 30 m 0.25 mm CP-Sil 8 CB fused silica capillary GC
column with 1.00 µm film thickness from Agilent (Agilent, J&W Scientific, Folsom,
CA, USA), with helium as carrier gas. The initial oven temperature of 100 °C was
maintained for 1 min and then raised by 4 °C/min to 320 °C with a further 4 min of
hold time. The gas flow was set to obtain a constant linear velocity of 39 cm/s and
the split flow was set at 1:5. The mass spectrometer was operated in electron impact
(70 eV) in full scan mode in the interval of 35-600 m/z with a scan velocity of 3333
amu/sec and a solvent cut time of 4.5 min. The complete GC program duration was
60 min. Untargeted metabolites were identified by comparing the mass spectrum of
each peak with the NIST library collection (NIST, Gaithersburg, MD, USA). To
identify metabolites identity, the linear index difference max tolerance was set at
10, while the minimum matching for the NIST library search was set at 85%. The
chromatographic data for PLS-DA analysis were tabulated with one sample per row
and one variable (metabolite) per column. According to MSI level 1 standard77, the
VIP putative metabolites identity was confirmed by means of an independent
analytical standard analysis. The normalization procedures consisted of data
transformation and scaling. Data transformation was made by generalized log
transformation and data scaling by autoscaling (mean-centered and divided by
standard deviation of each variable).

Metabolomics data analysis. Partial least square discriminant analysis (PLS-DA) 78

was performed on Internal Standard peak area 79 normalized chromatogram using
R (Foundation for Statistical Computing, Vienna, Austria). Mean centering and
unit variance scaling was applied for all analyses. Classes separation was archived
by PLS-DA, which is a supervised method that uses multivariate regression tech-
niques to extract, via linear combinations of original variables (X), the information
that can predict class membership (Y). PLS regression was performed using the plsr
function included in the R pls package80. Classification and cross-validation was
performed using the corresponding wrapper function included in the caret pack-
age. A permutation test was performed to assess the significance of class dis-
crimination. In each permutation, a PLS-DA model was built between the data (X)
and the permuted class labels (Y) using the optimal number of components
determined by cross validation for the model based on the original class assign-
ment. Variable Importance in Projection (VIP) scores were calculated for each
component. A VIP is a weighted sum of squares of the PLS loadings, taking into
account the amount of explained Y-variation in each dimension.

To identify the most meaningful changes in two conditions, the volcano plot
was used. This combines a measure of statistical significance from a statistical test
(p value) with the magnitude of the change, enabling quick visual identification of
those data points (metabolites) that display large magnitude changes that are also
statistically significant. The volcano plots were constructed by plotting the negative
log of the p value on the y axis. This results in data points with low p values (highly
significant) appearing toward the top of the plot. The x axis was the log of the fold
change between the two conditions. The log of the fold change is used so that
changes in both directions appear equidistant from the center. Plotting points
results in two regions of interest in the plot: those points that are found toward the
top of the plot that are far to either the left- or right-hand sides. These represent
values that display large magnitude fold changes (hence being left or right of
center) as well as high statistical significance (hence being toward the top).

In vitro T-cell activation assay. Colonic lamina propria and mesenteric lymph
node leukocytes were collected from untreated mice. 2 × 106 cells were plated and
exposed to 0.05 mg of bacteria (wet weight) derived from faeces of untreated, DSS-
treated or FMT-treated mice at the time of sacrifice. Gentamycin (50 µg/ml) and a
cocktail of antibiotics (P/S) were added after 2 h of incubation. The cells were left in
culture for 96 h. In some experiments, anti-MHCII blocking antibody (clone M5/
114.15.2, TONBO) was added at a final concentration of 10 µg/ml. At the end of
the experiment cells were analysed with flow cytometry. Their viability was checked
with Zombie Yellow™ Fixable Viability Kit (Biolegend).

Tissue ELISA of murine IL-10. Colonic tissues were homogenized in 300 µl RIPA
Buffer (Cell Signaling Technology) supplemented with Phosphatase inhibitors
(Sigma) and Protease inhibitors (Complete Ultra tablets, Roche). The samples were
then incubated at 4 °C for 30 min under slow rotation and then centrifuged at
13,000 r.p.m. (16.2 × g) for 15 min at 4 °C. The supernatant was quantified at the
NanoDrop with Bradford Assay (BioRad). mIIL-10 was measured on 6.25 µg of
lysate using the ELISA assay (Purified anti-mouse IL-10 and Biotin anti-mouse IL-
10, Biolegend) performed following manufacturer’s instructions.

Faecal bacteria plating. One faecal pellet from each mouse was smashed, filtered
with 100 µm nylon cell strainer and resuspended in 1 mL of sterile PBS. A con-
centration of 200 µL were then plated on Chocolate II Agar plates (BD) and grown
at 37 °C under aerobic conditions overnight or in anaerobic conditions for 48 h.

Quantification and statistical analysis. Statistical analysis was performed with
GraphPad Prism 5 (GraphPad Software). Statistical significance was calculated
using a Mann–Whitney test for comparison within two groups or Kruskal–Wallis
test with Dunn’s multiple comparison correction within more than two groups.
*P < 0.05, **P < 0.01, ***P < 0.001 were regarded as statistically significant. Outliers
were detected with Grubb’s test. Non parametric distributions were represented as
median+/− interquartile range.

Data availability
16S rRNA raw data for Figs. 2a–f, 3a, b, 4d, f, 8b, e and Supplementary 4a, b, 5a, c,
are available in SRA Online Repository associated to BioProject PRJNA494680.

Received: 4 January 2018 Accepted: 25 October 2018

References
1. Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis

and disease. Nature 535, 75–84 (2016).
2. Kaser, A., Zeissig, S. & Blumberg, R. S. Inflammatory bowel disease. Annu.

Rev. Immunol. 28, 573–621 (2010).
3. Antharam, V. C. et al. Intestinal dysbiosis and depletion of butyrogenic

bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin.
Microbiol. 51, 2884–2892 (2013).

4. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s
disease. Cell Host Microbe 15, 382–392 (2014).

5. Lepage, P. et al. Twin study indicates loss of interaction between microbiota
and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236
(2011).

6. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal
tumorigenesis and modulates the tumor-immune microenvironment. Cell
Host Microbe 14, 207–215 (2013).

7. Duchmann, R. et al. Tolerance exists towards resident intestinal flora but is
broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102,
448–455 (1995).

8. Hedin, C. et al. Siblings of patients with Crohn’s disease exhibit a biologically
relevant dysbiosis in mucosal microbial metacommunities. Gut 65, 944–953
(2016).

9. Shah, R. et al. Composition and function of the pediatric colonic mucosal
microbiome in untreated patients with ulcerative colitis. Gut Microbes 7,
384–396 (2016).

10. Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to
anti-integrin biologic therapy in inflammatory Bowel diseases. Cell Host
Microbe 21, 603–610 e603 (2017).

11. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous
bacteria. Cell 139, 485–498 (2009).

12. Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and
immunity. Trends Immunol. 32, 256–264 (2011).

13. McIlroy, J., Ianiro, G., Mukhopadhya, I., Hansen, R. & Hold, G. L. Review
article: the gut microbiome in inflammatory bowel disease-avenues for
microbial management. Aliment. Pharmacol. & Ther. 47, 26–42 (2017).

14. Cammarota, G. et al. European consensus conference on faecal microbiota
transplantation in clinical practice. Gut 66, 569–580 (2017).

15. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium
difficile. New Engl. J. Med. 368, 407–415 (2013).

16. Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation
for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389,
1218–1228 (2017).

17. Rossen, N. G. et al. Findings from a randomized controlled trial of fecal
transplantation for patients with ulcerative colitis. Gastroenterology 149,
110–118 e114 (2015).

18. Moayyedi, P. et al. Fecal microbiota transplantation induces remission in
patients with active ulcerative colitis in a randomized controlled trial.
Gastroenterology 149, 102–109 e106 (2015).

19. Tian, Z. et al. Beneficial effects of fecal microbiota transplantation on
ulcerative colitis in mice. Dig. Dis. Sci. 61, 2262–2271 (2016).

20. Selvanantham, T. et al. NKT cell-deficient mice harbor an altered microbiota
that fuels intestinal inflammation during chemically induced colitis. J.
Immunol. 197, 4464–4472 (2016).

21. Caprioli, F., Pallone, F. & Monteleone, G. Th17 immune response in IBD: a
new pathogenic mechanism. J. Crohn’s & Colitis 2, 291–295 (2008).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07359-8 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5184 | https://doi.org/10.1038/s41467-018-07359-8 | www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


22. Facciotti, F. et al. Peroxisome-derived lipids are self antigens that stimulate
invariant natural killer T cells in the thymus. Nat. Immunol. 13, 474–480
(2012).

23. Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells
in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417
(2007).

24. Olszak, T. et al. Microbial exposure during early life has persistent effects on
natural killer T cell function. Science 336, 489–493 (2012).

25. An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of
host intestinal natural killer T cells. Cell 156, 123–133 (2014).

26. Burrello, C. et al. Short-term oral antibiotics treatment promotes
inflammatory activation of colonic invariant natural killer T and conventional
CD4(+) T cells. Front. Med. 5, 21 (2018).

27. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+NKT cells
patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

28. Koon, H. W. et al. Cathelicidin signaling via the Toll-like receptor protects
against colitis in mice. Gastroenterology 141, 1852–1863 (2011). e1851-1853.

29. Ueno, K. et al. MUC1 mucin is a negative regulator of toll-like receptor
signaling. Am. J. Respir. Cell Mol. Biol. 38, 263–268 (2008).

30. Munyaka, P. M., Rabbi, M. F., Khafipour, E. & Ghia, J. E. Acute dextran sulfate
sodium (DSS)-induced colitis promotes gut microbial dysbiosis in mice.
J. Basic Microbiol. 56, 986–998 (2016).

31. Osaka, T. et al. Meta-analysis of fecal microbiota and metabolites in
experimental colitic mice during the inflammatory and healing phases.
Nutrients 9, E1329 (2017).

32. Bibiloni, R. et al. VSL#3 probiotic-mixture induces remission in patients
with active ulcerative colitis. Am. J. Gastroenterol. 100, 1539–1546
(2005).

33. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in
inflammatory bowel disease. Cell 158, 1000–1010 (2014).

34. Michielan, A. & D’Inca, R. Intestinal permeability in inflammatory bowel
disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediat.
Inflamm. 2015, 628157 (2015).

35. Kolho, K. L., Pessia, A., Jaakkola, T., de Vos, W. M. & Velagapudi, V. Faecal
and serum metabolomics in paediatric inflammatory bowel disease. J. Crohn’s
& Colitis 11, 321–334 (2017).

36. Sears, M. E. Chelation: harnessing and enhancing heavy metal detoxification--
a review. Sci. World J. 2013, 219840 (2013).

37. Beloborodova, N. et al. Effect of phenolic acids of microbial origin on
production of reactive oxygen species in mitochondria and neutrophils.
J. Biomed. Sci. 19, 89 (2012).

38. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host
immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

39. Roy, U. et al. Distinct microbial communities trigger colitis development upon
intestinal barrier damage via innate or adaptive immune cells. Cell Rep. 21,
994–1008 (2017).

40. Nozu, R., Ueno, M. & Hayashimoto, N. Composition of fecal microbiota of
laboratory mice derived from Japanese commercial breeders using 16 S rRNA
gene clone libraries. J. Vet. Med. Sci. 78, 1045–1050 (2016).

41. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type
2 diabetes. Science 359, 1151–1156 (2018).

42. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate
colonic Treg cell homeostasis. Science 341, 569–573 (2013).

43. Arpaia, N. et al. Metabolites produced by commensal bacteria promote
peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

44. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the
differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

45. Macpherson, A. J. & Harris, N. L. Interactions between commensal
intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485
(2004).

46. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in
inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

47. Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate
lymphoid cells. J. Exp. Med. 213, 569–583 (2016).

48. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol.
14, 329–342 (2014).

49. Fung, T. C. et al. Lymphoid-tissue-resident commensal bacteria promote
members of the il-10 cytokine family to establish mutualism. Immunity 44,
634–646 (2016).

50. Zackular, J. P., Baxter, N. T., Chen, G. Y. & Schloss, P. D. Manipulation of
the gut microbiota reveals role in colon tumorigenesis. mSphere 1, 00001
(2016).

51. Hand, T. W., Vujkovic-Cvijin, I., Ridaura, V. K. & Belkaid, Y. Linking the
microbiota, chronic disease, and the immune system. Trends Endocrinol.
Metab.: TEM 27, 831–843 (2016).

52. Di Giacinto, C., Marinaro, M., Sanchez, M., Strober, W. & Boirivant, M.
Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-
10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol. 174,
3237–3246 (2005).

53. Shaw, M. H., Kamada, N., Kim, Y. G. & Nunez, G. Microbiota-induced IL-
1beta, but not IL-6, is critical for the development of steady-state TH17 cells in
the intestine. J. Exp. Med. 209, 251–258 (2012).

54. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory
bowel disease: current status and the future ahead. Gastroenterology 146,
1489–1499 (2014).

55. Human Microbiome Project C. Structure, function and diversity of the healthy
human microbiome. Nature 486, 207–214 (2012).

56. Nizzoli, G. et al. Pathogenicity of in vivo generated intestinal Th17
lymphocytes is IFNgamma dependent. J. Crohn’s Colitis 12, 981–992 (2018).

57. Nistala, K. et al. Th17 plasticity in human autoimmune arthritis is driven by
the inflammatory environment. Proc. Natl Acad. Sci. USA 107, 14751–14756
(2010).

58. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel
disease. Gut 52, 65–70 (2003).

59. Duchmann, R. et al. T cell specificity and cross reactivity towards
enterobacteria, bacteroides, bifidobacterium, and antigens from resident
intestinal flora in humans. Gut 44, 812–818 (1999).

60. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal
bacterial antigens. Nature 510, 152–156 (2014).

61. Nieuwenhuis, E. E. et al. Cd1d-dependent regulation of bacterial colonization
in the intestine of mice. J. Clin. Investig. 119, 1241–1250 (2009).

62. Biancheri, P. et al. Absence of a role for interleukin-13 in inflammatory bowel
disease. Eur. J. Immunol. 44, 370–385 (2014).

63. Huber, S. et al. Th17 cells express interleukin-10 receptor and are controlled
by Foxp3(-) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-
dependent manner. Immunity 34, 554–565 (2011).

64. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-
10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

65. Duranti, S. et al. Elucidating the gut microbiome of ulcerative colitis:
bifidobacteria as novel microbial biomarkers. FEMS Microbiol. Ecol. 92,
fiw191 (2016).

66. Sag, D., Krause, P., Hedrick, C. C., Kronenberg, M. & Wingender, G. IL-10-
producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J.
Clin. Investig. 124, 3725–3740 (2014).

67. Vos, A. C. et al. Anti-tumor necrosis factor-alpha antibodies induce regulatory
macrophages in an Fc region-dependent manner. Gastroenterology 140,
221–230 (2011).

68. Fournier, B. M. & Parkos, C. A. The role of neutrophils during intestinal
inflammation. Mucosal Immunol. 5, 354–366 (2012).

69. Caprioli, F. et al. Reduction of CD68+macrophages and decreased IL-17
expression in intestinal mucosa of patients with inflammatory bowel disease
strongly correlate with endoscopic response and mucosal healing following
infliximab therapy. Inflamm. bowel Dis. 19, 729–739 (2013).

70. Fais, S. et al. HLA-DR antigens on colonic epithelial cells in inflammatory
bowel disease: I. Relation to the state of activation of lamina propria
lymphocytes and to the epithelial expression of other surface markers. Clin.
Exp. Immunol. 68, 605–612 (1987).

71. Cribiù, F. M. et al. Implementation of an automated inclusion system for the
histological analysis of murine tissue samples: a feasibility study in DSS-
induced chronic colitis. Eur. J. Inflam. 16, 1–12 (2018).

72. Furet, J. P. et al. Comparative assessment of human and farm animal faecal
microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol. 68,
351–362 (2009).

73. Milani, C. et al. Assessing the fecal microbiota: an optimized ion torrent 16 S
rRNA gene-based analysis protocol. PloS ONE 8, e68739 (2013).

74. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community
sequencing data. Nat. Methods 7, 335–336 (2010).

75. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461 (2010).

76. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for
comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235
(2005).

77. Sumner, L. W. et al. Proposed minimum reporting standards for chemical
analysis Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metab.: Off. J. Metab. Soc. 3, 211–221 (2007).

78. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of
chemometrics. PLS Methods 58, 109–130 (2001).

79. Sysi-Aho, M., Katajamaa, M., Yetukuri, L. & Oresic, M. Normalization
method for metabolomics data using optimal selection of multiple internal
standards. BMC Bioinforma. 8, 93 (2007).

80. Mevik, B.-H., Wehrens, R. The pls Package: Principal Component and Partial
Least Squares Regression in R. J. Stat. Softw. s1, (2007).

Acknowledgements
We thank the members of Prof. Rescigno’s group for the invaluable scientific support,
Erika Mileti for technical assistance during the revision, the IEO Animal Facility for the
excellent animal husbandry and the NIH Tetramer Facility for providing mCD1d:PBS57

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07359-8

16 NATURE COMMUNICATIONS |          (2018) 9:5184 | https://doi.org/10.1038/s41467-018-07359-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Tetramers. This work was made possible through grants of AIRC (Start-Up 14378 to
F.F.) and Fondazione IRCCS Policlinico Maggiore Milano (5 × 1000 Research Award to
F.C.).

Author contributions
C.B. performed experiments, analysed and interpreted the data; F.G., G.N., S.C. per-
formed experiments; F.M.C., G.E., G.L. performed and interpreted histological analyses;
J.T., A.C. performed and interpreted metabolomic analyses; S.Guglietta, S.B. revised the
manuscript; S.Guglielmetti, V.T. grew bacteria; F.C., M.R. contributed to interpretation of
the data and gave important intellectual contributions and revised the manuscript; F.F.
designed, conceived and supervised the study and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-07359-8.

Competing interests: The authors declare no competing interests

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07359-8 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5184 | https://doi.org/10.1038/s41467-018-07359-8 | www.nature.com/naturecommunications 17

https://doi.org/10.1038/s41467-018-07359-8
https://doi.org/10.1038/s41467-018-07359-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10�secretion by immune cells
	Results
	Therapeutic FMT reduces inflammation in DSS-induced colitis
	FMT induces variations in the microbial communities
	FMT effects rely on the presence of normobiotic ecologies
	FMT influences colonic immune cells relative abundance
	CD4+ T�cells cytokine skewing requires antigen presentation
	IL-10 critically contributes to FMT beneficial effects
	Protective bacteria selective elimination impairs FMT effect

	Discussion
	Methods
	Mice
	Experimental colitis models
	Faecal microbiota transplantation (FMT)
	Murine cell isolation
	Flow cytometry analysis
	RT-qPCR of tissue mRNA
	Immunofluorescence
	Histological analysis
	Microbiota identification
	TNBS-induced experimental colitis
	Metabolomic analysis
	Metabolomics data analysis
	In vitro T-cell activation assay
	Tissue ELISA of murine IL-10
	Faecal bacteria plating
	Quantification and statistical analysis

	References
	References
	Acknowledgements
	ACKNOWLEDGEMENTS
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




