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Abstract

Background: Ample evidence suggests a substantial contribution of cellular and molecular
changes in the spinal cord to the induction and persistence of chronic neuropathic pain conditions.
While for a long time, proteases were mainly considered as protein degrading enzymes, they are
now receiving growing interest as signalling molecules in the pain pathology. In the present study
we focused on two cathepsins, CATS and CATX, and studied their spatiotemporal expression and
activity during the development and progression of neuropathic pain in the CNS of the rat 5t
lumbar spinal nerve transection model (L5T).

Results: Immediately after the lesion, both cathepsins, CATS and CATX, were upregulated in the
spinal cord. Moreover, we succeeded in measuring the activity of CATX, which was substantially
increased after L5T. The differential expression of these proteins exhibited the same spatial
distribution and temporal progression in the spinal cord, progressing up to the medulla oblongata
in the late phase of chronic pain. The cellular distribution of CATS and CATX was, however,
considerably different.

Conclusion: The cellular distribution and the spatio-temporal development of the altered
expression of CATS and CATX suggest that these proteins are important players in the spinal
mechanisms involved in chronic pain induction and maintenance.

Background

Neuropathic pain is one type of chronic pain and origi-
nates by definition from a lesion of the nervous system
(for reviews see [1,2]). It is a devastating and difficult to
manage disease mainly because the underlying mecha-
nisms are still poorly understood. Indeed, several types of
cells and highly complex interactions of multiple path-
ways have been implicated in the pathogenesis (for

reviews see [1,3,4]). In this context work on animal mod-
els has emphasized the important contribution of differ-
ences in protein expression to neuropathic pain induction
and maintenance (for reviews see [5-7]). Within this cock-
tail proteases are receiving growing interest [8-12] because
of their enormous destructive potential and the irreversi-
bility of their action (for reviews see [13-16]).
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In our study we focus on a distinct group of proteases, the
cathepsins (CAT), which are cysteine proteases mainly
localized in lysosomes/peroxisomes but are also found in
extralysosomal sites [17]. There are 11 human members
(cathepsins B, C, F, H, K, L, O, S, V, W and X) and in
mouse 8 additional members (cathepsins 1, 2, 3, 6, ], M,
Q and R) in this group of enzymes [18,19]. They play a
vital role in normal cellular protein metabolism such as
the regulation of key protein kinases and phosphatases,
and the induction of specific cytoskeletal rearrangements,
which may account for their involvement in intracellular
signaling, vesicular trafficking, and structural stabilization
[20,21]. Hence, it is not suprising that CAT are implicated
in the manifestation of a number of diseases, including
cancer, arthritis, Morbus Parkinson, Morbus Alzheimer
and age-dependent inflammation [22-27]. Recent studies
suggest that the activation or breakdown of the endo-
somal/lysosomal proteolytic system might also be
involved in pain pathophysiology. Thus, in different
chronic animal pain models an upregulation of some
members (S, B, H, L, D) of the CAT family along the
ascending nociceptive pathway has been reported [9,10]
and CATS has even been implicated in neuropathic hyper-
algesia and allodynia [11,28].

With these strong implications for a role of CAT in neuro-
pathic pain pathogenesis in mind we decided to study the
spatiotemporal expression pattern of two of these pro-
teases, the CATS and the more recently identified CATX,
during the phases of pain induction and maintenance in
a rat neuropathic pain model, the transection of the 5t
lumbar spinal nerve. CATS is a well-described cathepsin
originally identified from lymph nodes and spleen
[29,30] and is well known for its crucial function in the
control of antigen presentation [31]. CATX, on the other
hand, has only recently been localized in the central nerv-
ous system [26] and its expression pattern in pathological
situations implies a role in degenerative processes [27,32].

Results

Cellular and spatiotemporal expression of CATS and
CATX in normal and L5T spinal cord

In unlesioned adult rats CATS- and CATX-immunoreactiv-
ities were found in cells of both grey and white matters
(Fig. 1) throughout the entire length of the spinal cord.
Most CATS-immunopositive cells were of small size and
distributed uniformely (Fig. 1A, C, E, F). While CATS-
immunopositive neurons were rare, CATX-immunoreac-
tivity was found in nearly all neurons (Fig. 1B, D, H) and
only in few small cells (Fig. 1D, J). The immunoreactivi-
ties were associated with spherical granules within the
cytoplasm of cells, sparing the nucleus (Fig. 1E, D, H).

The first changes of CATS- and CATX-immunoreactivities
were already notable 1 d after L5T. For both proteins we
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observed upregulations that were restricted to the ipsilat-
eral fasciculus gracilis, the dorsal horn and layer IX in the
ventral horn in the lumbar segment (Figs. 2 and 3).
Within these regions, the number of small CATS- as well
as CATX-immunopositive cells increased substantially
(Fig. 2). Moreover, we found a numerical increase in
CATS-immunopositive neurons, while the number of
CATX-immunopositive neurons was constant. Interest-
ingly, numerous small CATS as well as CATX-immunopo-
sitive cells engulfed large motoneurons in the ventral horn
(Fig. 2G, I). Within the following days the ipsilateral
increase in immunopositive cells in the fasciculus gracilis
spread caudocranially to the upper SC segments and
reached the gracile nucleus at 1 w after injury (Figs. 2L, N
and 3). At that time-point this nucleus exhibited morpho-
logical signs of degeneration (data not shown).

Upregulation of CATS and CATX protein levels and
increase in enzyme activities

We next demonstrated that the changes in CATS- and
CATX-immunoreactivities are reflected by changes in the
levels of the respective proteins and, above all, that these
are also reflected by a change of activity. Therefore, we first
analyzed the protein levels of CATX and CATS in the spi-
nal cord of sham versus L5T animals at 8 d after injury, a
time point when the increase in immunoreactivities in the
spinal cord was at its maximum (Fig. 3).

Western blot analysis (n = 5 per group) revealed the pro-
forms of CATS (37 kD) and CATX (34 kD), as the most
prominent bands, while the prepro- and mature forms
were below the detection level. The proforms of both
enzymes were detected in all segments analyzed (L, lum-
bar; T, thoracic; C, cervical) of the adult rat spinal cord
(Fig. 4A). The L5 nerve transsection produced an upregu-
lation in all SC segments for CATS as well as CATX (Fig.
4A). The strongest increase in protein content was found
in the T segment for both enzymes (CATS 63.6%; CATX
87.4%), while the increase in the L and C-segments was
substantial (34-61.5%) but lower than in the T segment
(Fig. 4A). Moreover, our Western blot analysis showed
that in all SC segments the level of CATX is more than
twice as high as the level of CATS. These results were con-
firmed in a second experiment with 4 animals per group
(see Additional files 1 and 2).

This data is supported by measurements of CATX activity.
CATS activity assays were not performed since the assay
suffered from the lack of a specific substrate and a specific
commercially available inhibitor for the enzyme, leaving
doubts about the specificity of the assay in complex pro-
tein mixtures. At 8 d after L5T CATX activity increased
strongly and highly significant (p < 0.001) in the lumbar
segment (Fig. 4B; 59% compared to sham, 90% compared
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Figure |

CATS- and CATX-immunohistochemistry in normal rat spinal cord. Representative examples of CATS- (A, C, E-G)
and CATX-immunostained (B, D, H-]) sections of the L5 segment. CATS-immunopositive deposits are localized in small glial-

like cells (C, E, F) that distributed homogenously throughout the section (A), while CATX is mostly found in large neurons (D,
H) and only few small cells are intensely stained (D, ]). G, I: Sections incubated with preabsorbed primary antibodies are free of
immunostaining. Scale bars, 500 um (A, B), 50 um (C, D), 20 um (E-)).
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Figure 2

Upregulation of CATS- and CATX-immunoreactivities in the spinal cord at 14 d after L5T. Survey micrographs
illustrate the ipsilateral increase of CATS- and CATX-immunoreactivity in whole spinal cord sections (A, B), in the dorsal horn
(DH) (C-F), the layer IX of the ventral horn (VH) and the fasciculus gracilis (FG). In the FG immunopositive cells exhibit mac-
rophage-like morphology (K, M) and in the VH small immunopositive cells engulf motoneurons (G, 1). At this time point the
ipsilateral nucleus gracilis exhibits more intense CATS- (L) and CATX-staining (N) than the contralateral side. Scale bars, 500
um (A, B, L, N), 20 um (C-J), 10 um (K, M).
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Figure 3

Spatiotemporal progression of CATS-/CATX-immunoreactivities in the spinal cord after L5T. Cranial progres-
sion of cathepsin upregulation during the first 5 weeks after transection. The different expression patterns in the transverse
plane are symbolized by different fillings of the bars. Both cathepsins exhibited the same spatial and temporal distribution pat-
tern up to 35 d after transection.
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Figure 4

Upregulation of cathepsin protein levels and activities after L5T. A: Western blot analysis of CATX and CATS pro-
form expression in the spinal cord of L5T (n = 5) and sham operated animals (n = 5) at 8 d after injury. Expression levels were
normalized relative to the corresponding a-tubulin band. At this time point the L5 transection induced an upregulation of both
proteins in all SC segments. The expression level of CATX was substantially higher than that of CATS. Data are means + SD.
B: CATX activities in the lumbar SC 8 d after transection in L5T, sham (n = 7, for each group) and naive animals (n = 4). Each
symbol represents the value of a single animal, the bar indicates the mean for the group. CATX activity was significantly higher
in L5T than in sham or naive SC. *** p < 0.001. L, lumbar; C, cervical; T, thoracic.
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to naive). CATB activity was not significantly changed
(data not shown).

Characterisation of CATS- and CATX-expressing cells
Concurrent with the upregulation of CATS and CATX a
strong gliosis appeared in the affected regions. In the ipsi-
lateral fasciculus gracilis we observed numerous ED1-
immunopositive macrophages (Fig. 5A, B), while in the
ipsilateral DH and VH PT66-immunopositive microglia
and GFAP-immunopositive astrocytes were more abun-
dant than in the contralateral side (Fig. 5C-H).

To determine the phenotype of CATS and CATX cells in
vivo we performed double immunofluorescence. The
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majority of CATS-immunopositive cells expressed the
microglia-marker PT66 or the astrocyte-marker GFAP (Fig.
6A'-A""), while only a small number of neurons were
CATS-immunopositive (Fig. 6E). In contrast, CATX-
immunoreactivity colocalizes only with single glial cells
(Fig. 6B'-B"') but was more abundant in neurons (Fig.
6D). All ED1-immunopositive macrophages expressed
both proteins (Fig. 6C'-C"").

Discussion

The dorsal spinal cord is the first relay station in sensory
perception, which receives, transmits and modulates the
signals from peripheral nerves. Recent research has uncov-
ered that peripheral nerve injury triggers cascades of sys-

Figure 5

Reactive gliosis in the lumbar SC 14 d after L5 ligation and transection. ED | -immunopositive macrophages distrib-
uted within the fasciculus gracilis (A, B), while a higher density of PTé6-immunopositive microglial cells (C-E) and GFAP-immu-
nopositive astrocytes (F-H) is also found in the ipsilateral dorsal (DH; D, G) and ventral horn (VH; E, H). Scale bars, 500 um (A,

C, F), 20 um (B, D, E, G, H).
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Figure 6

Phenotyping of CATS and CATX cells. Double-immunfluorescence of the spinal cord shows colocalization of CATS with
the astrocyte marker GFAP (A'-A™) and colocalization of CATX with the microglial marker PT66 (B'-B") and the macrophage
marker ED| (C'-C"). Large motoneurons expressed CATX (D) and CATS (E). Scale bars, 10 um (A, B), 5 um (C), 20 um (D,

E).

temic, cellular and molecular changes [4,33]. Moreover,
there is ample evidence that these dynamic changes con-
tribute to prolonged abnormal pain sensations. In the cur-
rent study we analysed the participation of two cysteine
proteases, the CATS and CATX, in the molecular processes
underlying the induction and maintenance of neuro-
pathic pain. Our results clearly show that immediately
after surgery, concurrent to the onset of mechanical allo-
dynia, both proteases, CATS and CATX, are upregulated in
the spinal cord. Moreover, the upregulation of CATX pro-
tein was accompanied by a substantial increase in activity.
In contrast to the increase in the proform level that of the

CATX activity was highly significant. This apparent contra-
diction might be explained by either an increase of the
active form of CATX, that is still below the detection level
of the Western Blot, or a concomitant regulation of endog-
enous cathepsin inhibitors, the cystatins or thyropins
[34,35]. In fact there is recent evidence in favor of the idea
that the cathepsin inhibitors are also regulated during per-
sistent pain states [36].

Both, CATS and CATX, are widely expressed in the brain
[26] and have been implicated in several neurological
conditions such as Alzheimer's disease [26,37,38], amyo-
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trophic lateral sclerosis [26,27] and age-related inflamma-
tion [26]. Recently, CATS has also been implicated in
neuropathic hyperalgesia and allodynia. Using the gene
chip technology CATS mRNA was found to be upregu-
lated in the ipsilateral L4 and L5 DRG in the PSL and CCI
model [11], while in the SNL or L5T model, CATS mRNA
expression was regulated in the DRG [39,40] and in the
spinal cord [9,10]. Extending the latter results, we were
able to detect the regulation of CATS protein levels and
added a new cathepsin, CATX, to the list of regulated pro-
teases in pain pathology.

Our immunohistochemical analysis, following the tem-
poral development of neuropathic pain, supports the view
that the upregulation of CATS and CATX expression is
dynamic and proceeds along the fasciculus gracilis up to
the medulla oblongata. Immediately (1 d) after transec-
tion CATS and CATX expressions increase. For both pro-
teins this increase is restricted to the fasciculus gracilis, the
dorsal horn and the layer IX in the ventral horn in the
lumbar segment. As early as 2 d after injury the upregula-
tion in the fasciculus gracilis spread cranially and reached
the gracile nucleus at 1 w after injury. At that time point
this nucleus exhibited morphological signs of degenera-
tion. We never found cathepsin upregulation on the con-
tralateral side of the lesion or in sham operated animals.
This characteristic spatio-temporal pattern suggests that
the upregulation of CATS/X expression accompanies the
degenerative process of the transected axons [41].

Whether the cathepsins contribute to the mechanism of
degeneration and are causally involved in the pain
processing or whether the differential expression is an epi-
phenomenon is difficult to answer on the basis of the data
provided here. However, there is recent evidence that
CATS is directly involved in the pain process by modulat-
ing the cytokine response [28]. Cathepsins display rather
diverse physiological actions. CATS for instance is well
recognized for its crucial function in the control of antigen
presentation [31] and its role in the degradation of the
extracellular matrix. In contrast to CATS, little is known
about the physiological function of CATX. But the high
expression of CATX in antigen-presenting monocytes/
macrophages [42,43], glial cells [26] and dendritic cells
[32], its upregulation in the gastric mucosa of patients
with Helicobacter pylori gastritis [44] and in the plasma of
patients with multiple trauma [45] as well as its involve-
ment in the production of bradykinin potentiating pep-
tide [46] also imply a role in inflammatory processes.

Conclusion

Our results suggest a strong regulation of both, CATS and
CATX, in the spinal cord of an animal model of neuro-
pathic pain. Whether the cathepsins contribute to the
mechanism of degeneration and are causally involved in
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the pain processing or whether the differential expression
is an epiphenomenon is difficult to answer on the basis of
the data provided here. Further experiments such as appli-
cation of specific cathepsin inhibitors are required before
the exact role of single cathepsin subtypes in the pain
process can be unraveled.

Methods

Surgery

Male Wistar rats (Janvier, Le Genest Saint Isle, France)
with a weight of 200-250 g were used. Animals were
housed in a climate-controlled room on a 12-12 light-
dark cycle. Food and water were available ad libitum. All
procedures were approved by the local animal usage com-
mittees according to German guidelines on animal care
and use.

Prior to the operation, rats were deeply anesthetized with
pentobarbitone at a dose of 50 mg/kg i.p. The L5T model
was achieved by transection of the left L5 spinal nerve in
a procedure modified from Kim and Chung [47,48]. In
sham controls the sciatic nerve was exposed but not
transected.

Rats were sacrificed at day 1 (1 d) - 35 d for Western Blot
analysis (L5T n = 5, sham n = 5), immunohistochemistry
(L5T n = 2-4, sham n = 4) and activity assays (L5T n = 4,
sham n = 7, naive n = 4).

Behavioral tests

Withdrawal tests for evaluation of tactile allodynia were
measured by the use of the dynamic plantar aesthesiom-
eter. The animals were placed into raised plexiglass boxes
with mesh flooring and allowed to acclimatize for at least
15 min until exploratory behavior ceased. Sampling was
conducted by a metal filament which was applied manu-
ally to the ventral mid-plantar hind paw. The force raised
(0-50 g) with time (20 s) until the rat lifted its paw. The
mean withdrawal threshold for both hind paws was taken
from a set of three applications, not less than 2 min apart.

Tissue preparation

For immunoblotting, spinal cord and brain tissues were
homogenized in triple detergent lysis buffer (50 mM
HEPES pH 7.4, 150 mM NaCl, 10 mM EDTA, 1% Nonidet
P40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl
sulfate, complete protease inhibitor cocktail (Roche
Applied Science, Mannheim, Germany) using a Teflon/
glass homogenizer at 4°C. Homogenized samples were
kept on ice for 30 min und subsequently centrifuged for
10 min in a precooled centrifuge at 12,000 g. The super-
natant was collected and subsequently diluted 1:1 in 2x
Laemmli sample buffer and boiled for 5 min. Protein
determination was performed by the method of Neuhoff
and coworkers [49].
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For immunohistochemistry, animals were transcardially
perfused with phosphate-buffered saline (PBS) followed
by 4% paraformaldehyde (PFA) in 0.1 M phosphate
buffer (PB). The brain, the spinal cord and the ipsi- and
contralateral nerves L4-L6 were excised and postfixed for
24 h in the perfusion fixative. Spinal cords were subdi-
vided into the spinal cord segments according to the num-
bers of the related spinal nerves and all segments and the
L5 (ipsi- and contralateral) nerves were embedded in par-
affin. Serial, transversal 18-pm-thick sections were cut
throughout all spinal cord segments, the hindbrain and
the peripheral nerves. Sections were mounted on Super-
frost slides (Carl Roth, Karlsruhe, Germany).

For CATX activity assays, the tissues were thawed sepa-
rately on ice and homogenized in 7-fold volume (w/v) of
100 mM NaCl, 50 mM NaOAc, 4 mM EDTA-Na,, 0.1%
Triton X-100, pH 5.0 [50]. All procedures were carried out
at 4°C. After incubating the samples for 60 min on ice,
they were centrifuged (60 min at 13,000 g) for elimina-
tion of debris. Supernatants were stored in aliquots at -
80°C until further use. Protein contents of the prepara-
tions were measured by the method of Neuhoff [49].

Western blots

Proteins were electrophoretically separated on a 10%
polyacrylamide gel containing SDS and transferred onto a
PVDF-membrane (Carl Roth, Karlsruhe, Germany) at 4°C
with 200 mA for 1.5 h. Blocking was performed with 1.5%
milk powder and 1% BSA in TBS-Tween (0.1% Tween, 20
mM TBS) at RT for 1 h. Incubation with the primary anti-
bodies goat anti-mouse CATX (1:500; R&D Systems, Wies-
baden, Germany) or goat anti-human CATS (1:200; R&D
Systems) was conducted in blocking buffer overnight at
4°C. The next day blots were incubated in HRP-coupled
anti-goat (1:50,000 in 1.5% milk powder in TBS-Tween;
Amersham Biosci., Miinchen, Germany) at RT for 1.5 h,
followed by detection with the ECL-Plus system (Amer-
sham Biosci.).

To control protein loading, the blots were incubated with
mouse anti-chick a-tubulin (1:400,000; Sigma, Deisen-
hofen, Germany) followed by HRP-coupled anti-mouse
(1:50,000 in 1.5% milk powder in TBS-Tween; Amersham
Biosci.) and the ECL-Plus system as described above.

Immunohistochemistry

Antibodies

Primary antibodies were used to document CATS and
CATX and to identify the cathepsin-expressing cells. We
used the following antibodies: goat anti-rat CATS (anti-
CATS; 1:100-200, Santa Cruz Biotechnology, Santa Cruz,
USA suitable for detection of prepro-, pro- and mature
form of CATS); goat anti-mouse CATX (anti-CATX;
1:100-200; R&D systems, Abingdon, UK; suitable for
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detection of prepro-, pro- and mature form of CATX), the
microglia/macrophage marker mouse anti-phosphotyro-
sine (anti-PT66; 1:1000; Sigma), the astrocyte marker
mouse anti-glial fibrillary acidic protein (anti-GFAP;
1:2500-5000; Chemicon, Hampshire UK) and the macro-
phage marker mouse anti-rat CD68 (anti-ED1; 1:5000;
Serotec, Diisseldorf, Germany).

Stainings

Single immunohistochemical stainings were performed
on deparaffinized sections after antigen retrieval (5 min
cooking in 0.01 M citrate buffer pH 6.0, for all primary
antibodies except ED1). Following the first antiserum
incubations, sections were treated by the corresponding
biotinylated secondary antibody (Axxora, Lorrach, Ger-
many), and the ABC reagent (Axxora). Peroxidase reaction
was carried out with 3,3'-diaminobenzidine as the chro-
mogene and intensified with silver-gold [51]. Specificity
of the stainings was either confirmed by omitting primary
antibodies or by preabsorption with a five-fold (by
weight) excess of specific blocking peptides for 2 h at RT
(for anti-CATS and anti-CATX) (Fig. 1G and 1I).

Immunofluorescence double THC was performed on
deparaffinized sections after antigen retrieval. Therefore,
we labeled sections simultaneously with primary antibod-
ies and subsequently incubated them with biotinylated
secondary antibody (1:300; Axxora) followed by fluores-
cein isothiocyanate-labeled Avidin (1:400; Axxora) and
CY3-labeled secondary antibody (1:500; Dianova, Ham-
burg, Germany).

CATX activity assay

Spinal cord tissues were used for CATX enzyme activity
tests. CATX activity was measured in 25 mM CH;COONa/
1 mM EDTA/5 mM DTT (pH 3.5) with 10 pM MCA-R-P-
P-G-F-S-A-F-K(Dnp)-OH (R&D Systems) as substrate. In
parallel assays, the specific CATB inhibitor CA-074 (1 uM,
Bachem, Weil am Rhein, Germany; Ki = 2 nM for purified
rat CATB and 40-200 uM for CATH and CATL; [52]) and
the non-specific cysteine protease inhibitor E-64 (5 uM,
Sigma) were added in order to distinguish between CATB
activity and the entire cysteine protease activity. A clear
determination of CATB activity is essential as CATB is also
able to hydrolyze the substrate at these conditions. Activ-
ity of other proteases being able to cleave MCA-R-P-P-G-
F-S-A-F-K(Dnp)-OH, like CATL and ECE-1, was undetect-
able (data not shown). Assays were performed at RT in
black 96 multiwell plates (Falcon) in a total volume of 50
pl. Prior starting the assay by addition of substrate, the
enzyme solutions were pre-incubated for 5 min with the
different inhibitors or diluent at RT. After a 30 min incu-
bation time the assays were stopped by the addition of 50
pl stop solution (100 mM CH,CICOOH, 70 mM
CH,COOH, 30 mM CH;COONa, pH 4.3) and measured
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Figure 7

Behavior and histopathology after L5 transection. A, B: Time course of neuropathic mechanical allodynia in the ipsilat-
eral hind paw expressed as ipsilateral threshold (A) and Diffscore (B, difference between contralateral and ipsilateral with-
drawal threshold) in L5T and sham operated animals. The L5T lesion led to a pronounced mechanical allodynia for up to 28 d.
C, D: Representative example of ED |-immunostained proximal stump of transected L5 at 14 d after injury. The whole stump
is densely filled with ED | -immunopositive macrophages (C) aligning along the trajectory of the axons (D). hab, habituation.
Scale bars, 200 um (C) and 20 um (D).

at 340/430 nm, according to the procedures described by
[53]. The activities of the proteases were calculated on the
basis of relative fluorescent units. The total cathepsin
activity was assessed by taking the difference between
non-inhibited and E-64 inhibited samples. CATB activity
corresponded to the part of the response that could be
inhibited by CA-074. The difference between the fluores-

cence measured in the presence of the CATB inhibitor and
the fluorescence measured in the presence of E-64 was
attributed to CATX activity.
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Data analysis

Animals

Animals included in the present study fulfilled the follow-
ing behavioral and anatomical criteria: (i) strong mechan-
ical allodynia measured by the aesthesiometer and
defined as an ipsilateral threshold difference between pre-
and post-surgery of at least 5 g (Fig. 7A) and a DiffScore
(contralateral threshold minus ipsilateral threshold) of a
minimum of 5 g (Fig. 7B) and (ii) persistent L5 transsec-
tion (short survival times) and/or infiltration of L5 by
numerous ED1-immunopositive macrophages (long sur-
vival times) (Fig. 7C, D).

Western blots

Band intensities were quantified using the analysis soft-
ware TINA 2.09 (raytest Isotopenmefigerite GmbH,
Straubenhardt, Germany) and normalized relative to the
intensity of the corresponding a-tubulin bands. All data
are presented as relative percentage of the means + SD.
Statistical significance was determined using the Student's
t-test. P-values of less than 0.05 were considered to be sta-
tistically significant.

Immunohistochemical stainings

Peroxidase-labeled immunohistochemistry sections were
visualized at the microscopic level (Axioskop2; Zeiss,
Oberkochen, Germany) under brightfield illumination
and Nomarski optics, while fluorescent structures were
analyzed by epifluorescence (Axioskop2). Structures were
identified with the aid of the atlas of [54]. The anatomic
terminology used in this study is based on this atlas.
Images were captured with an imaging system (JVC, KY-
F75U camera) connected to a computer equipped with an
image program (Diskus 4.50, Hilgers, Konigswinter, Ger-
many).

Alterations of staining intensity or distribution of stained
structures of each animal were independently analysed by
two examiners blind with respect to the treatment of the
animals.

Cathepsin activity

Data obtained from the CATX activity assays were ana-
lyzed by means of one-way ANOVA to determine statisti-
cal significance. All pairwise multiple comparison
procedures were performed by Tukey's post hoc test.

Abbreviations
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Additional material

Additional file 1

Upregulation of cathepsin protein levels after L5T. Western blot analyses
of CATX and CATS proform expression in the spinal cords of sham (n =
5) and L5T (n = 5) operated rats at 8 d after injury. Cervical, thoracic
and lumbar segments were analyzed. Each band represents a single ani-
mal. C, cervical; T, thoracic; L, lumbar.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-9-80-S1.pdf]

Additional file 2

Quantification of Western blot analyses. Quantification of Western blot
analyses of CATX and CATS proform expression in the spinal cord of L5T
(n = 4) and sham operated animals (n = 4) (repetition of the experiment
#1 — shown in the paper). Expression levels were normalized relative to
the corresponding a-tubulin band. Similar to experiment #1 — the histo-
gramms show an upregulation of both cathepsins in all SC segments. C,
cervical; T, thoracic; L, lumbar.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-9-80-S2.pdf]
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