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Despite the great success of quantum mechanics, questions regarding its application still exist and the
boundary between quantum and classical mechanics remains unclear. Based on the philosophical
assumptions of macrorealism and noninvasive measurability, Leggett and Garg devised a series of
inequalities (LG inequalities) involving a single system with a set of measurements at different times.
Introduced as the Bell inequalities in time, the violation of LG inequalities excludes the hidden-variable
description based on the above two assumptions. We experimentally investigated the single photon LG
inequalities under decoherence simulated by birefringent media. These generalized LG inequalities test the
evolution trajectory of the photon and are shown to be maximally violated in a coherent evolution process.
The violation of LG inequalities becomes weaker with the increase of interaction time in the environment.
The ability to violate the LG inequalities can be used to set a boundary of the classical realistic description.

T
he theory of quantum mechanics has proven to be very successful. The theory not only provides precise
explanations of many physical phenomena, but also has resulted in the development of many modern
technologies1. However, questions regarding the applicability of quantum mechanics to macroscopic sys-

tems still exist, and the boundary between quantum and classical mechanics remains unclear. The association
between classical mechanics and macroscopic systems was tentatively accepted during the early development of
quantum mechanics theory2. This viewpoint is embodied in a famous paradox proposed by Schrödinger in 19353,
in which he described a ‘‘quite absurd’’ example that a cat state may be alive and dead at the same time. Nowadays,
the difficulty of observing the Schrödinger cat state is explained by decoherence, where the superposition of
distinct states is destroyed by coupling with unwanted degrees of freedom4.

Leggett-Garg inequalities (LG inequalities) have been derived to clarify the validity of generalizing quantum
mechanics to macroscopic systems, based on the macrorealistic theory with macrorealism and noninvasive
measurability assumptions5. These inequalities involve a single system with a set of measurements at different
times and play a role similar to that of the Bell inequalities in testing local hidden-variable theories6. Introduced as
the Bell inequalities in time, the violation of LG inequalities excludes the hidden-variable description based on the
above two assumptions.

The two assumptions of the LG inequalities can be extended to any physical system under the classical realistic
description if the philosophy of macrorealism is divorced from macroscopic objects. In such descriptions, the
state of a system with two or more distinct states will at all times be in one or the other of these states (macro-
realism). A corollary of this is that it is possible to determine the state of a system without any disturbance of its
subsequent dynamics (noninvasive measurability). The original proposal to realise noninvasive measurement, by
coupling the interested system to a probe5, is similar to the Controlled-Not (CNOT) gate where an ancilla is used
as the target qubit and the interested system as the control qubit7.

In this study, we experimentally investigate the single photon LG inequalities in a dephasing environment
simulated by birefringent media. By implementing an optical CNOT gate on a single photon, the LG inequalities
are shown to be maximally violated in a coherent evolution process. This disproves its classical realistic descrip-
tion with the two assumptions of the LG inequalities. With the increase of birefringent media, the violation of LG
inequalities becomes weaker and is shown to be not violated anymore at some time. The ability to violate the LG
inequalities can be used to set the boundary of the classical realistic description.
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Results
Theoretical Schemes. Consider an observable Q(t) of a two-level
physical system, where 0j i and 1j i are the two eigenstates of Q(t)
with the eigenvalues of 11 and 21, respectively. The two-times
correlation function is defined as K(t1,t2)~ Q(t1)Q(t2)h i. For three
different times t1, t2 and t3, (using the same deduction of Huelga
et al.8), we can obtain the following:

K(t1,t3){K(t1,t2){K(t2,t3)§{1: ð1Þ

K(t1,t3)zK(t1,t2)zK(t2,t3)§{1: ð2Þ

These two inequalities are Wigner type LG inequalities9,10 under
the classical realistic description with the two assumptions. To
experimentally verify them, the values of K(t1,t2), K(t2,t3) and
K(t1,t3) should be measured. If we choose t1 as the initial time, i.e.
t150, we can conveniently use projective measurement at t2 or t3 to
get K(t1,t2) or K(t1,t3), because the dynamics after t2 or t3 are not of
interest in these two cases. While measuring K(t2,t3), we implemen-
ted a CNOT operation that has the ability to realize noninvasive
measurement under the classical realistic description at t2 and pro-
jective measurement at t3. Figure 1 shows the logic circuit. The two-
level ancillary state was initially prepared into the ground state 0a.
The system of interest with initial state y (either 0 or 1) evolves in the
environment E with an operation of U between t1 and t2 and U’
between t2 and t3. At time t2, the physical control system was coupled
to the ancilla, which was used as the target system. If the state of y is
0, the ancilla remains in 0a without any change. Otherwise, the state
of the ancilla system will be flipped and changed to the excited state
1a. As a result, by detecting the state of the ancilla, we can know the
state of y at time t2.

Experimental violation of the generalized Leggett-Garg inequal-
ities under decoherence. Photon qubits, which can be easily
manipulated at the single qubit level and isolated from the environ-
ment, play important roles in quantum communication and
quantum computation11,12. The optical CNOT gate has been used
to make a strong coupling to an ancilla, for the purpose of measure-
ment of a signal13–16. By encoding a single photon with several qubits
the CNOT gate can be readily realized with simple optical compo-
nents17. Moreover, by introducing birefringent quartz plates where
the coupling between the photon’s polarization and frequency modes
occurs, we can simulate a fully controllable ‘‘environment’’ to invest-
igate the evolution of the photon state18. Here, we encoded the
observable Q(t) as the polarization of a single photon, where the
45u linear polarization state H

�� �~1=
ffiffiffi
2
p

( Hj iz Vj i) (jHæ and jVæ
represented the horizontal and vertical polarization states, respect-
ively) is used as j0æ with the eigenvalue of 11 and the 245u linear
polarization state V

�� �~1=
ffiffiffi
2
p

( Hj i{ Vj i) as j1æ with the eigenvalue
of 21. As a result, the observable of Q(t) is the Pauli sx operator. In

our experiment, we use a heralded single photon source produced
from the pulsed parametric down-conversion process in a nonlinear
crystal19. In this process, one photon is used as the trigger, while the
other is prepared to be H

�� � and is used as the initial input state (see
Methods for details).

Figure 2 shows the experimental setup for investigating the evolu-
tion of the interested photon. Figure 2a shows the setup to measure
the value of K(t1,t2). The quartz plate q and a tiltable combination of
quartz plates M represent the evolution environment (the total thick-
ness of quartz plates is L). The solid pane M contains two parallel
quartz plates (optic axes are set to be horizontal) with the thickness of
8l0 (l050.78 mm) and a mutual perpendicular quartz plate with the
thickness of 16l0, where black bars represent the direction of their
optic axes. By tilting these two 8l0 quartz plates, we can introduce the
required relative phase between H and V. The measurement basis is
chosen by a polarizer (P). The photon is then coupled by a multi-
mode fibre to the single photon detector D1 equipped with a Long
pass lenses (LP) in front of it, which is used to minimise the back-
ground caused by the pump beam light. Figure 2b represents the
setup to measure K(t1,t3) with two equal sets of quartz plates of q
and M, in which the evolution time is twice of that in Fig. 2a. In our
setting, the evolution from t1 to t2 is the same as that from t2 to t3 (the
time duration is denoted as t), which means U5U’. In order to
measure K(t2,t3), the dashed pane, containing a polarization beam
splitter (PBS) and three half wave plates (HWP), with optic axes set at
22.5u, is implemented at time t2 as shown in Fig. 2c. The dashed pane
transmits the 45u polarization state (path 1) and reflects the 245u
polarization state (path 2). As a result, if the ancilla qubit is encoded
as the path information of the photon, the dashed pane acts as the
CNOT gate with the path of the photon used as the target qubit and
the polarization as the control qubit. Another single photon detector
(D2) is applied to detect the photon in the path 2.

Figure 1 | Logic circuit to measure the value of K(t2,t3) with a CNOT gate.
0a is the initial state of the ancilla. y is the state of the system (can only be in

0 or 1 during the evolution under the classical realistic description). E

represents the environment with the influence U between t1 and t2 and U’

between t2 and t3, respectively.

Figure 2 | Experimental setup. (a) The setup to measure K(t1,t2). The

quartz plate (q) with the tiltable combination of quartz plates in the solid

pane M represents the evolution environment (black bars represent the

optic axes of the quartz). The final measurement basis was chosen by the

polarizer (P). The photon was coupled by a multimode fibre to the single

photon detector D1 equipped with a long pass lens (LP) in front of it.

(b) The setup to measure K(t1,t3). Two equal settings of quartz plates of q

and M are used to simulate the environment operators U and U’ in fig. 1.

(c) The setup to measure K(t2,t3). The dashed pane containing a

polarization beam splitter (PBS) and three half wave plates (HWP) with

optic axes set at 22.5uwas inserted at time t2. The single photon detector D2

is used to detect the photon in path 2.
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We first analysed the single photon LG inequalities under the
classical realistic description with the two assumptions, where the
system can only be in one of the two states H22 and V22. If the input
photon state is initially in r0~H, after evolution time t, the state
becomes rt~(1{a)HzaV , where a represents the influence of the
environment (i.e., the probability of the photon flips between H22 and
V22, and it is a function of t with 0 # a # 1). With further identical
interaction time t in the same environment, the final state evolves to
r2t~(a2z(1{a)2)Hz2a(1{a)V . Therefore, K(t1,t2)~PH1,H2{
PH1,V2~1{2a and K(t1,t3)~PH1,H3{PH1,V3~4a2{4az1, where
PGi,Oj (G,O [ H,V

� �
, i,j [ f1,2,3g) represent the probability of

detecting O polarization at time tj when the polarization is G at time
ti. For K(t2,t3), with the CNOT operation at t2, we have the probabil-
ity of 12a to get H22 and the final state is the same as rt after another
evolution time t. We also have a probability of a to get V22 and the
subsequent state becomes r0t~(1{a)VzaH. As a result, we can
get K(t2,t3)~PH2(PH2,H3{PH2,V3)zPV2(PV2,V3{PV2,H3)~1{2a,
where PGi represents the probability of detecting G at time ti. It is
then easy to verify that K(t1,t2){K(t1,t3){K(t2,t3)z1~4a2

§0
and K(t1,t2)zK(t1,t3)zK(t2,t3)z1~4(a{1)2

§0 for any a.
Therefore, inequalities (1) and (2) are trivial results under the clas-
sical realistic description.

Next, we analysed the experiment from the viewpoint of quantum
mechanics. For the case of coherent evolution, the evolution effect
was imposed by tilting the quartz in M. Because U5U’, the induced
relative phase between the ordinary and extraordinary light is d from
evolution time t1 to t2 as well as from t2 to t3 and the induced phase
from t1 to t3 is 2d, without the CNOT operation. If the input state
is H
�� �, after passing the first solid pane M the state becomes

yt2

�� �
~ 1

2 (1zeid) H
�� �z 1

2 (1{eid) V
�� �. As a result, K(t1,t2)5cosd.

With the same analysis, K(t1,t3)5cos2d. When measuring K(t2,t3),
if the state is H

�� � at time t2, its subsequent evolution state is the
same as yt2

�� �
; if the state is V

�� �, the subsequent state becomes

y0t2

�� E
~ 1

2 (1{eid) H
�� �z 1

2 (1zeid) V
�� �. Therefore, K(t2,t3)5cos2d

which is the same as K(t1,t2). The two generalized LG inequalities
can then be calculated as K25cos2d22cosd and K15cos2d12cosd.
It can be seen that K2 reaches its minimum 21.5 with d~ 1

3 p and K1

reaches its minimum 21.5 with d~ 2
3 p, which both maximally viol-

ate inequalities (1) and (2), respectively.
We further considered the decoherent evolution case, which was

achieved by increasing the thickness of quartz plate q. In this case, the
frequency spectrum of the photon was considered a Gaussian ampli-
tude function, f(v), with a central frequency, v0 corresponding to the
central wavelength of 0.78 mm and the frequency spread, s. For a
special frequency v, after a photon passes through the quartz plates
with thickness L the induced relative phase is cv, where c5LDn/c. c
represents the velocity of the photon in a vacuum and Dn is the
difference between the indices of refraction of the ordinary and
extraordinary light. With a trace over all the frequency modes, the
final forms of the generalized LG inequalities can be written as

K{~ cos 2cv0 exp ({
1
4

c2s2){2 cos cv0 exp ({
1

16
c2s2), ð3Þ

Kz~ cos 2cv0 exp ({
1
4

c2s2)z2 cos cv0 exp ({
1

16
c2s2): ð4Þ

Obviously, when thickness L is small, equations (3) and (4) tend
toward coherent evolution.

Fig. 3a shows the corresponding values for individual correlations
K(t1,t2), K(t2,t3) and K(t1,t3), which are used to get the values of K2 in
the inset of Fig. 3b. The solid line, dashed line and dotted line corre-
spond to theoretical predictions (the solid line and the dashed line
completely overlap and only the solid line can be seen). We find that
K(t1,t2)5K(t2,t3) and the oscillation period of K(t1,t3) is twice as that
of K(t1,t2) (K(t2,t3)). These findings are consistent with theoretical
predictions. Fig. 3b shows the envelope evolution of K2. When the

thickness of quartz plates is small, the generalized LG inequality is
violated according to the previous analysis. From the inset in Fig. 3b,
which represents the oscillation between the maximum and
minimum in the blue dashed pane, we find that the minimum of
K2 reaches 21.54460.056, which violates the classical limit of 21 by
about 9.7 standard deviations. With the increase in thickness of
quartz plates (L), the violation of the LG inequalities becomes gradu-
ally weaker. K2 does not violate the classical limit 21 when L is
increased to about 33l0. This implies that when L is larger than
33l0, the evolution trajectory can be described by the classical real-
istic description, and when L is smaller than 33l0, the trajectory must
adopt the quantum description. Therefore, we have set a boundary
for the classical realistic description by using the LG inequalities.
Errors are mainly due to the random fluctuation of each measured
coincidence count and the tilt uncertainties of quartz plates (we tilt
quartz plates to introduce the required relative phase between hori-
zontal and vertical polarizations). Solid lines are the theoretical
predictions of K2, employing equation (3) with s fitting to
3.5631013 Hz.

Figure 3 | Violating the LG inequality with K2. (a) The corresponding

values for individual correlations K(t1,t2), K(t2,t3) and K(t1,t3) to get K2 in

the inset of (b). The solid line, dashed line and dotted line are the

corresponding theoretical predictions (the solid line and the dashed line

completely overlap and only the solid line can be seen). The x axis

represents the total thickness of quartz plates between t1 and t2. (b) The

envelope evolution of K2. Red dots represent the experimental results.

Solid lines are the theoretical fittings employing equation (3). The dashed

line represents the classical limit, 21. The x axis represents the total

thickness of quartz plates between t1 and t2. The inset displays the

oscillation between the maximum and minimum in the blue dashed pane

(the x axis represents the total thickness of quartz plates between t1 and t2,

and the y axis represents K2). Error bars correspond to the random

fluctuations of each measured coincidence count and the tilt uncertainties

of quartz plates. l050.78 mm.
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We further show the envelope evolution of K1 in Fig. 4. At the
beginning of the evolution, the minimal value of K1 reaches
21.49560.052, which violates the classical limit of 21 by about 10
standard deviations. When L increases to about 33l0, it does not
violate the classical limit anymore. The inset shows the oscillation
between the maximum and minimum in the blue dashed pane, which
displays the critical boundary. Solid lines are the theoretical predic-
tions employing equation (4).

Discussion
In our experiment, the polarization of a photon was used as the
observable Q(t). This measured quantity could also be considered
as the evolution path of the photon. A photon with different polar-
izations passes through different paths, separated by the polarization
beam splitter. This phenomenon is similar to that of the position of a
single electron in a double quantum dot20. The violation of general-
ized LG inequalities implies that at least one of the two assumptions
in the classical realistic description is untenable and disproves the
definite classical evolution trajectory20. In our experiment, the
information carrier (polarization) and the environment freedom
(frequency) are encoded on the same photon. The experimental
results can be repeated by a corresponding diagonally polarized input
laser pulse, in which each of the photons in the laser pulse undergoes
the same evolution. The polarization of a ‘‘classical’’ light (laser
pulse) can also be viewed as a consequence of the transverse vector
of electromagnetic field that is allowed to be superposed, in which
Q(t) ranges continuously from 21 to 1. This condition is different
from the initial assumption that Q(t) can only be of 1 or 21 at each
measurement in our case. As a result, the violation of LG inequalities
with ‘‘classical’’ light does not contradict that case of single photon.

Recently, the violation of generalized LG inequalities has been
demonstrated by employing weak measurements on a single
photon21 and a superconducting quantum circuit22. The generalized
LG inequalities used in these studies are similar to the Wigner ver-
sion used here, which are derived from the classical realistic descrip-
tion with the two assumptions. The weak measurement provides the
ability to control the back action on the system in the sense of

quantum mechanics. In our experiment, we directly test the LG
inequalities by using a CNOT gate which implements non-invasive
measurement under the classical realistic description. This kind of
classical non-invasive measurement is also implemented by Knee
et. al.23. Our method is directly related to the problem of decoherence.
By changing the thickness of quartz plates, we can control the evolu-
tion time of a single photon between sets of measurements. The
ability to violate generalized LG inequality sets the boundary of the
classical realistic description.

In our experiment, the coherence length of the initial photon state
(l0) is about 53 mm (calculated by 2pc/s). As a result, at the crossover
point where the LG inequalities are not violated, the thickness of
quartz plate of 33l0 corresponds to about 0.486 l0 (calculated by
(33l0/53)l0 and l050.78 mm). The theoretical form of the output
photon state at t2 becomes r~0:78 H

�� � H
� ��z0:22 V

�� � V
� �� with a

visibility of 0.56 (the corresponding experimental value is

0.55860.004). The visibility is calculated by p Hj i{p Vj i
���

���, where pi

represents the corresponding detecting probability (i[ H
�� �, V

�� �� �
).

The visibility characterizes the purity of the final state for the mea-
sure base is H

�� �= V
�� �. When the visibility of the photon state at t2 is

reduced to less than 0.56, the LG inequalities would not be violated
anymore. The state at the transition point where the LG inequalities
are not violated still has coherence between the two orthogonal
states. It is similar to the case that not all entangled states violate a
Bell inequality24. Therefore, the ability to violate LG inequalities,
which sets the boundary of the classical realistic description, may
connect to the ability to perform some quantum information task
with quantum advantages as that of Bell inequalities.

In summary, we experimentally violated two generalized LG
inequalities in an all-optical system using a CNOT gate. The violation
of generalized LG inequalities disproves the definite classical evolu-
tion trajectory of the single qubit20 and implies that at least one of the
two assumptions in the classical realistic description is untenable.
The ability to violate LG inequalities can be used to set the boundary
of the classical realistic description.

Methods
In our experiment, the photon of interest was prepared from a heralded single photon
source, which was produced from a pulsed parametric down-conversion process. A
mode-locked Ti:sapphire laser with a centre wavelength mode locked to 0.78 mm
(130 fs pulse width and 76 MHz repetition rate) was used to pump a 2 mm type-I b-
barium borate (BBO) crystal which generated the second harmonic ultraviolet pulses
(0.39 mm). These ultraviolet pulses were then focused into a 2 mm type-II BBO
crystal which was cut for beamlike phase matching25,26 to produced bright down-
conversion photon pairs. The evolution of one of the photons was investigated by
preparation into H

�� � and passing it through the experimental setup in Fig. 2. The
other photon was used as the trigger. We obtained about 18000 coincidence events
per second and the integration time was 10 s for each measurement.
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10. Kofler, J. & Brukner, Č. Conditions for quantum violation of macroscopic realism.
Phys. Rev. Lett. 101, 090403 (2008).

11. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev.
Mod. Phys. 74, 145–195 (2002).

Figure 4 | Violating the LG inequality with K1. Red dots represent the

experimental results. Solid lines are the theoretical fittings employing

equation (4). The dashed line represents the classical limit, 21. The x axis

represents the total thickness of quartz plates between t1 and t2. The inset

represents the oscillation between the maximum and minimum in the blue

dashed pane (the x axis represents the total thickness of quartz plates

between t1 and t2, and the y axis represents K1). Error bars correspond to

the random fluctuation of each measured coincidence count and the tilt

uncertainties of quartz plates.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 1 : 101 | DOI: 10.1038/srep00101 4

http://arxiv.org/abs/quant-ph/0306072v1


12. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod.
Phys. 79, 135–174 (2007).

13. Huang, Y. F. et al. Optical realization of universal quantum cloning. Phys. Rev. A
6401, 012315 (2001).

14. Barbieri, M., Vallone, G., Mataloni, P. & De Martini, F. Complete and
deterministic discrimination of polarization Bell states assisted by momentum
entanglement. Phys. Rev. A 75, 042317 (2007).

15. Sciarrino, F., Ricci, M., De Martini, F., Filip, R. & Mista, L. Realization of a minimal
disturbance quantum measurement. Phys. Rev. Lett. 96, 020408 (2006).

16. Pryde, G. J., O’Brien, J. L., White, A. G., Bartlett, S. D. & Ralph, T. C. Measuring a
photonic qubit without destroying it. Phys. Rev. Lett. 92, 190402 (2004).

17. Cerf, N. J., Adami, C. & Kwiat, P. G. Optical simulation of quantum logic. Phys.
Rev. A 57, R1477–R1480 (1998).

18. Berglund, A. J. Quantum coherence and control in one- and two-photon optical
systems. Preprint at ,http://arxiv.org/abs/quant-ph/0010001. (2000)

19. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Heralding single photons from pulsed
parametric down-conversion. Opt. Commun. 246, 545–550 (2005).

20. Jordan, A. N., Korotkov, A. N. & Buttiker, M. Leggett-Garg inequality with a
kicked quantum pump. Phys. Rev. Lett. 97, 026805 (2006).

21. Goggin, M. E. et al. Violation of the Leggett-Garg inequality with weak
measurements of photons. Proc. Natl. Acad. Sci. U.S.A. 108, 1256–1261
(2011).

22. Palacios-Laloy, A. et al. Experimental violation of a Bell’s inequality in time with
weak measurement. Nature Phys. 6, 442–447 (2010).

23. Knee, G. C. et al. Violation of a Leggett-Garg inequality with ideal non-invasive
measurements. Preprint at ,http://arxiv.org/abs/1104.0238. (2011)

24. Werner, R. F. Quantum sates with Einstein-Podolsky-Rosen crrelations amitting a
hdden-vriable mdel. Phys. Rev. A 40, 4277–4281 (1989).

25. Kurtsiefer, C., Oberparleiter, M. & Weinfurter, H. Generation of correlated
photon pairs in type-II parametric down conversion-revisited. J. Mod. Opt. 48,
1997–2007 (2001).

26. Takeuchi, S. Beamlike twin-photon generation by use of type II parametric
downconversion. Opt. Lett. 26, 843–845 (2001).

Acknowledgements
We thank Dr. M.-H. Yung for helpful discussion. This work was supported by the National
Basic Research Program of China (Grants No. 2011CB9212000), National Natural Science
Foundation of China (Grant Nos. 60921091, 10874162, 11004185), China Postdoctoral
Science Foundation (Grant No. 20100470836) and the Fundamental Research Funds for
the Central Universities (Grant No. WK 2030020019).

Author contributions
C.F.L designed the experiment. J.S.X performed the experiment. J.S.X analysed the
theoretical prediction and experimental data. X.B.Z and G.C.G contributed to the
theoretical analysis. J.S.X and C.F.L wrote the paper.

Additional information
Competing financial interests The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Xu, J.-S., Li, C.-F., Zou, X.-B. & Guo, G.-C. Experimental violation
of the Leggett-Garg inequality under decoherence. Sci. Rep. 1, 101; DOI:10.1038/srep00101
(2011).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 1 : 101 | DOI: 10.1038/srep00101 5

http://arxiv.org/abs/quant-ph/0010001
http://arxiv.org/abs/1104.0238
http://creativecommons.org/licenses/by-nc-sa/3.0

	Title
	Figure 1 Logic circuit to measure the value of K(t2,t3) with a CNOT gate.
	Figure 2 Experimental setup.
	Figure 3 Violating the LG inequality with K-.
	References
	Figure 4 Violating the LG inequality with K+.

