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Epidemics, flame propagation, and cardiac rhythms are classic
examples of reaction–diffusion waves that describe a switch from
one alternative state to another. Only two types of waves are
known: pulled, driven by the leading edge, and pushed, driven
by the bulk of the wave. Here, we report a distinct class of semi-
pushed waves for which both the bulk and the leading edge con-
tribute to the dynamics. These hybrid waves have the kinetics
of pushed waves, but exhibit giant fluctuations similar to pulled
waves. The transitions between pulled, semipushed, and fully
pushed waves occur at universal ratios of the wave velocity to
the Fisher velocity. We derive these results in the context of a
species invading a new habitat by examining front diffusion, rate
of diversity loss, and fluctuation-induced corrections to the expan-
sion velocity. All three quantities decrease as a power law of the
population density with the same exponent. We analytically cal-
culate this exponent, taking into account the fluctuations in the
shape of the wave front. For fully pushed waves, the exponent
is −1, consistent with the central limit theorem. In semipushed
waves, however, the fluctuations average out much more slowly,
and the exponent approaches 0 toward the transition to pulled
waves. As a result, a rapid loss of genetic diversity and large fluc-
tuations in the position of the front occur, even for populations
with cooperative growth and other forms of an Allee effect. The
evolutionary outcome of spatial spreading in such populations
could therefore be less predictable than previously thought.
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reaction–diffusion

Wave-like phenomena are ubiquitous in nature and have
been extensively studied across many disciplines. In

physics, traveling waves describe chemical reactions, kinetics of
phase transitions, and fluid flow (1–8). In biology, traveling waves
describe invasions, disease outbreaks, and spatial processes in
physiology and development (9–20). Even nonspatial phenom-
ena such as Darwinian evolution and dynamics on networks can
be successfully modeled by waves propagating in more abstract
spaces such as fitness (20–25).

The wide range of applications stimulated substantial effort to
develop a general theory of traveling waves that is now commonly
used to understand, predict, and control spreading phenomena (1,
9, 14, 16, 17, 20, 26, 27). A major achievement of this theory was
the division of traveling waves into two classes with very differ-
ent properties (1, 6, 9, 26, 28–33). The first class contains waves
that are “pulled” forward by the dynamics at the leading edge.
Kinetics of pulled waves are independent from the nonlinearities
behind the front, but extremely sensitive to noise and external per-
turbations (1, 29, 34). In contrast, the waves in the second class are
resilient to fluctuations and are “pushed” forward by the nonlinear
dynamics behind the wave front.

Fluctuations in traveling waves arise due to the randomness
associated with discrete events such chemical reaction or births
and deaths. This microscopic stochasticity manifests in many
macroscopic properties of the wave, including its velocity, the
diffusive wandering of the front position, and the loss of genetic
diversity (33, 35–38). For pulled waves, these quantities have

been intensely studied because they show an apparent violation
of the central limit theorem (1, 25, 29, 30, 33–37, 39, 40). Naively,
one might expect that fluctuations self-average, and their vari-
ance is, therefore, inversely proportional to the population den-
sity. Instead, the strength of fluctuations in pulled waves has only
a logarithmic dependence on the population density. This weak
dependence is now completely understood and is explained by
the extreme sensitivity of pulled waves to the dynamics at the
front (1, 33, 37, 40).

A complete understanding is, however, lacking for fluctuations
in pushed waves (1, 25, 29–31, 34–36). Since pushed waves are
driven by the dynamics at the bulk of the wave front, it is reason-
able to expect that the central limit theorem holds, and fluctua-
tions decrease as one over the population density N . Consistent
with this expectation, the 1/N scaling was theoretically derived
both for the effective diffusion constant of the front (38) and for
the rate of diversity loss (35). Numerical simulations confirmed
the 1/N scaling for the diffusion constant (41), but showed a
much weaker dependence for the rate of diversity loss (35).
Ref. 41, however, considered only propagation into a metastable
state, while ref. 35 analyzed only one particular choice of the non-
linear growth function. As a result, it is not clear whether the
effective diffusion constant and the rate of diversity loss behave
differently, or if there are two distinct types of dynamics within
the class of pushed waves.

The latter possibility was anticipated by the analysis of how the
wave velocity changes if one sets the growth rate to zero below a
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certain population density (31). This study found that the veloc-
ity correction scales as a power law of the growth-rate cutoff
with a continuously varying exponent. If the cutoff was a faith-
ful approximation of fluctuations at the front, this result would
suggest that the central limit theorem does not apply to pushed
waves. Stochastic simulations, however, were not carried out in
ref. 31 to test this prediction.

Together, previous findings highlight the need to charac-
terize the dynamics of pushed waves more thoroughly. Here,
we develop a unified theoretical approach to fluctuations in
reaction–diffusion waves and show how to handle divergences
and cutoffs that typically arise in analytical calculations. Theo-
retical predictions are tested against extensive numerical simu-
lations. In simulations, we vary the model parameters to tune
the propagation dynamics from pulled to pushed and determine
how the front diffusion, diversity loss, and wave velocity depend
on the population density. Our main result is that the simple
pulled vs. pushed classification does not hold. Instead, there are
three distinct classes of traveling waves. Only one of these classes
shows weak fluctuations consistent with the central limit the-
orem. The other two classes exhibit large fluctuations because
they are very sensitive to the dynamics at the leading edge of the
wave front.

Model
Traveling waves occur when a transport mechanism couples
dynamics at different spatial locations. The nature of these wave-
generating processes could be very different and ranges from
reactions and diffusion in chemistry to growth and dispersal in
ecology. The simplest and most widely used model of a reaction–
diffusion wave

∗
is the generalized Fisher–Kolmogorov equation:

∂n

∂t
=D

∂2n

∂x2
+ r(n)n +

√
γn(n)n η(t , x ), [1]

which, in the context of ecology, describes how a species col-
onizes a new habitat (1, 9, 42–44). Here, n(t , x ) is the pop-
ulation density of the species, D is the dispersal rate, and
r(n) is the density-dependent per capita growth rate. The last
term accounts for demographic fluctuations: η(t , x ) is a Gaus-
sian white noise, and γn(n) quantifies the strength of demo-
graphic fluctuations. In simple birth–death models, γn is a con-
stant, but we allow for an arbitrary dependence on n provided
that γn(0)> 0. The origin of the noise term and its effects
on the wave dynamics are further discussed in SI Appendix,
section IV.

Pulled waves occur when r(n) is maximal at small n; for exam-
ple, when the growth is logistic: r(n) = r0(1−n/N ) (1, 9). Here,
r0 is the growth rate at low densities, and N is the carrying capac-
ity that sets the population density behind the front. For pulled
waves, the expansion dynamics are controlled by the very tip of
the front, where the organisms not only grow at the fastest rate,
but also have an unhindered access to the uncolonized territo-
ries. As a result, the expansion velocity is independent of the
functional form of r(n) and is given by the celebrated result due
to Fisher, Kolmogorov et al., and Skellam (42–44):

vF = 2
√

Dr(0). [2]

Eq. 2, to which we refer as the Fisher velocity, can be defined for
any model with r(0)> 0 even when the expansion is not pulled.

∗
Throughout the paper, we use the term reaction–diffusion wave to describe propa-
gating fronts that connect two states with different population densities. Reaction–
diffusion models, especially with several components, also describe more intricate phe-
nomena such as periodic waves, spatiotemporal chaos, and pulse propagation. While
some of our results could be useful in these more general settings, our theory and
numerical simulations are limited to regular fronts only.

We show below that vF provides a useful baseline for comparing
different types of waves.

Pushed waves occur when a species grows best at intermedi-
ate population densities (1, 9). Such nonmonotonic behavior of
r(n) arises through a diverse set of mechanisms and is known as
an Allee effect in ecology (45, 46). Most common causes of an
Allee effect are cooperative feeding, collective defense against
predators, and the difficulty in finding mates at low population
densities (47–50). The velocity of pushed waves is always greater
than Fisher’s prediction (v > vF) and depends on all aspects of
the functional form of r(n) (1, 9).

Allee effects are typically described by adding a cooperative
term to the logistic equation:

r(n) = r0

(
1− n

N

)(
1 +B

n

N

)
, [3]

where B is the strength of cooperativity. For this model, the exact
solutions are known for the expansion velocity and the popula-
tion density profile; SI Appendix, section II and refs. 9, 51, and
52. For B ≤ 2, expansions are pulled, and the expansion veloc-
ity equals vF, which is independent of B . That is, cooperativity
does not always increase the expansion velocity, even though it
always increases the growth rates at high densities. For B > 2,
expansions are pushed, and v increases with B . Fig. 1A illustrates
this transition from pulled to pushed waves as cooperativity is
increased. In Materials and Methods and SI Appendix, section II,
we also present several alternative models of an Allee effect and
show that our conclusions do not depend on a particular choice
of r(n).

Increasing the value of cooperativity beyond B = 2 not only
makes the expansion faster, but also shifts the region of high
growth from the tip to the interior of the expansion front (Fig. 1
B and C). This shift is the most fundamental difference between
pulled and pushed waves because it indicates the transition from
a wave being pulled by its leading edge to a wave being pushed
by its bulk growth.

The edge-dominated dynamics make pulled waves extremely
sensitive to the vagaries of reproduction, death, and dispersal (1,
29, 33, 34). Indeed, the number of organisms at the leading edge
is always small, so strong number fluctuations are expected, even
in populations with a large carrying capacity, N . These fluctua-
tion affect both physical properties, such as the shape and posi-
tion of the wave front, and evolutionary properties, such as the
genetic diversity of the expanding population.† Consistent with
these expectations, experiments with pulled waves reported an
unusual roughness of the expansion front (6) and a rapid loss of
genetic diversity (53, 54).

The transition from pulled to pushed dynamics is also evi-
dent in the number of organisms that trace their ancestry to the
leading edge vs. the bulk of the front. The expected number of
descendants has been determined for any spatial position along
the front for both pulled and pushed waves (35, 36, 55, 56). For
pulled waves, only the very tip of the expansion contributes to
future generations. On the contrary, the organisms at the lead-
ing edge leave few progeny in pushed waves, and the popula-
tion descends primarily from the organisms in the region of high
growth. This shift in the spatial patterns of ancestry has a pro-
found effect on species evolution. In pulled waves, only muta-
tions near the very edge of the expansion have an appreciable
fixation probability, but the entire expansion front contributes to
evolution in pushed waves (Fig. 2).

†We refer to genetic drift and genetic diversity as an evolutionary property because they
occur only in systems where agents can be assigned heritable labels. In contrast, front
wandering occurs in any physical system and can be quantified even when all agents
are indistinguishable as is the case in chemical processes.
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Fig. 1. Waves transition from pulled to pushed as growth becomes more cooperative. (A) The expansion velocity as a function of cooperativity for the
growth rate specified by Eq. 3. For low cooperativity, expansions are pulled, and their velocity equals the Fisher velocity. Beyond the critical value of B = 2,
expansions become pushed, and their velocity exceeds vF . (B and C) Note that the region of high growth is at the leading edge of the front in pulled waves
(B), but in the interior of the front in pushed waves (C). This difference is due to the dependence of the growth rate on the population density. For low
cooperativity, the growth rate is maximal at low population densities, but, for high cooperativity, the growth rate is maximal at intermediate population
densities. In all images, the exact solution of Eq. 1 is plotted; D = 0.625 for B and C; r0 = 0.01 and B = 1 in B, and r0 = 0.0032 and B = 12.5 in C.

Fixation probabilities and, more generally, the dynamics of
heritable markers provide an important window into the internal
dynamics of a reaction–diffusion wave (55). When the markers
are neutral, i.e., they do not affect the growth and dispersal of
the agents, the relative abundance of the markers changes only
stochastically. In population genetics, such random changes in
the genotype frequencies are known as genetic drift. To describe
genetic drift mathematically, we introduce the relative fraction of
one of the genotypes in the population f (t , x ). The dynamics of
f (t , x ) follow from Eq. 1 and are derived in SI Appendix, section
III (see also refs. 55, 57, and 58). The result reads

∂f

∂t
=D

∂2f

∂x2
+ 2

∂ lnn

∂x

∂f

∂x
+

√
γf (n)

n
f (1− f ) ηf (t), [4]

where γf (n)> 0 is the strength of genetic drift.
Eq. 4 preserves the expectation value of f , but the variance of

f increases with time until one of the absorbing states is reached.
The two absorbing states are f = 0 and f = 1, which correspond
to the extinction and fixation of a particular genotype, respec-

tively. The fluctuations of f and front position are shown in Fig. 3.
Both quantities show an order of magnitude differences between
pulled and pushed waves, even though the corresponding change
in cooperativity is quite small.

Although the difference between pulled and pushed waves
seems well-established, little is known about the transition
between the two types of behavior. In particular, it is not clear
how increasing the nonlinearity of r(n) transforms the patterns
of fluctuations and other properties of a traveling wave. To
answer this question, we solved Eqs. 1 and 4 numerically. Specifi-
cally, our simulations described the dynamics of both the popula-
tion density and the relative abundance of two neutral genotypes.
The former was used to estimate the fluctuations in the position
of the front, and the latter was used to quantify the decay rate
of genetic diversity. In simulations, the species expanded in a
one-dimensional array of habitable patches connected by disper-
sal between the nearest neighbors. Each time step consisted of a
deterministic dispersal and growth followed by random sampling
to simulate demographic fluctuations and genetic drift (Materials
and Methods and SI Appendix, section XIII). By increasing the

Fig. 2. Ancestral lineages occupy distinct locations in pulled and pushed waves. A illustrates the fixation of a particular genotype. Initially, a unique and
heritable color was assigned to every organism to visualize its ancestral lineage. There are no fitness differences in the population, so fixations are caused
by genetic drift. B and C show the probability that the fixed genotype was initially present at a specific position in the reference frame comoving with the
expansion. The transition from pulled to pushed waves is marked by a shift in the fixation probability from the tip to the interior of the expansion front.
This shift indicates that most ancestral lineages are focused at the leading edge in pulled waves, but near the middle of the front in pushed waves. The
fixation probabilities were computed analytically, following refs. 35 and 36, as described in SI Appendix, section III. We used D = 0.625 for both B and C;
r0 = 0.01 and B = 1 in B, and r0 = 0.0032 and B = 12.5 in C.
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Fig. 3. Fluctuations are much stronger in pulled than in pushed waves. A
and B compare front wandering between pulled (A) and pushed (B) expan-
sions. Each line shows the position of the front Xf(t) in a single simulation
relative to the mean overall simulations in the plot. C and D compares the
strength of genetic drift between pulled (C) and pushed (D) expansions.
We started the simulations with two neutral genotypes equally distributed
throughout the front and then tracked how the fraction of one of the geno-
types changes with time. This fraction was computed from 300 patches cen-
tered on Xf to exclude the fluctuations well behind the expansion front.

cooperativity of the growth rate, we observed a clear transition
from pulled (v = vF) to pushed (v > vF) waves accompanied by a
dramatic reduction in fluctuations; Fig. 3.

Results
Fluctuations provide an easy readout of the internal dynamics in
a traveling wave, so we decided to determine how they change
as a function of cooperativity. Because the magnitude of the
fluctuations also depends on the population density, we looked

for a qualitative change in this dependence while varying B . In
particular, we aimed to determine whether population dynam-
ics change gradually or discontinuously at the transition between
pulled and pushed waves.

Spatial Wandering of the Front. We first examined the fluctua-
tions of the front position in the comoving reference frame.
The position of the front Xf was defined as the total population
size in the colonized space normalized by the carrying capacity
Xf = 1

N

∫ +∞
0

n(t , x )dx . As expected (1, 33, 34, 38), Xf performed
a random walk due to demographic fluctuations in addition to
the average motion with a constant velocity (Fig. 3 A and B). For
both pulled and pushed waves, the variance of Xf grew linearly in
time (Fig. 4A), i.e., the front wandering was diffusive and could
be quantified by an effective diffusion constant Df .

The magnitude of the front wandering is expected to depend
strongly on the type of the expansion (1, 33, 34, 38). For pulled
waves, ref. 33 found that Df ∼ ln−3 N , but a very different scal-
ing Df ∼N−1 was predicted for certain pushed waves (38); Fig.
4B. Given that pulled and pushed waves belong to distinct uni-
versality classes, it is easy to assume that the transition between
the two scaling regimens should be discontinuous (1, 33–36, 38).
Thisassumption,however,hasnotbeencarefully investigated,and
we hypothesized that there could be an intermediate regime with
Df ∼NαD . From simulations, we computed how αD changes with
B and indeed found that pushed waves have intermediate values
of αD between 0 and−1 when B ∈ (2, 4) (SI Appendix, Fig. S3).

The dependence of the scaling exponent on the value of coop-
erativity is shown in Fig. 4C. For large B , we found that αD

is constant and equal to −1, which is consistent with previous
work (38). Below a critical value of cooperativity, however, the
exponent αD continually changes with B toward 0. The critical
cooperativity is much larger than the transition point between
pulled and pushed waves, so the change in the scaling occurs
within the class of pushed waves. This transition divides pushed
waves into two subclasses, which we termed fully pushed and
semipushed waves. For pulled waves, we found that αD is inde-
pendent of B , but our estimate of αD deviated slightly from the
expected value due to the finite range of N in the simulations
(compare NαD and ln−3 N fits in Fig. 4B).

Loss of Genetic Diversity. Our analysis of the front wandering
showed that pushed waves consist of two classes with a very

Fig. 4. Front wandering identifies two classes of pushed waves. (A) Fluctuations in the front position can be described by simple diffusion for both pulled
and pushed waves. (B) The front diffusion is caused by the number fluctuations, so the effective diffusion constant, Df, decreases with the carrying capacity,
N. For pulled waves, Df∼ ln−3 N (33), while, for pushed waves, Df can decrease much faster as N−1 (38). We quantify the scaling of Df with N by the
exponent αD equal to the slope on the log–log plot shown. The overlap of the two red lines highlights the fact that, even though αD should equal 0 for
pulled waves, the limited range of N results in a different value of αD ≈−0.33. (C) The dependence of the scaling exponent on cooperativity identifies two
distinct classes of pushed waves.
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different response to demographic fluctuations. To determine
whether this difference extends to other properties of expansions,
we turned to genetic drift, a different process that describes fluctu-
ations in the genetic composition of the front. Genetic drift occurs
even in the absence of front wandering (SI Appendix, section III
and ref. 59), so these two properties are largely independent from
each other and capture complementary aspects related to physical
and evolutionary dynamics in traveling waves.‡

We quantified genetic fluctuations by the rate at which genetic
diversity is lost during an expansion. The simulations were
started in a diverse state with each habitable patch containing an
equal number of two neutral genotypes. As the expansion pro-
ceeded, the relative fractions of the genotypes fluctuated, and
eventually one of them was lost from the expansion front (Fig.
3C). To capture the loss of diversity, we computed the average
heterozygosity H , defined as the probability to sample two differ-
ent genotypes at the front. Mathematically, H equals the average
of 2f (1− f ), where f is the fraction of one of the genotypes in
an array of patches comoving with the front, and the averaging
is done over independent realizations. Consistent with previous
work (33, 35), we found that the heterozygosity decays exponen-
tially at long times: H ∼ e−Λt for both pulled and pushed waves
(Fig. 5A). Therefore, the rate Λ was used to measure the strength
of genetic drift across all values of cooperativity.

By analogy with the front wandering, we reasoned that Λ would
scales as NαH for large N , and αH would serve as an effective
“order parameter” that distinguishes different classes of traveling
waves. Indeed, ref. 33 showed that Λ∼ ln−3 N for pulled waves,
i.e., the expected αH is zero. Although no conclusive results have
been reported for pushed waves, the work on adaptation waves in
fitness space suggests αH =−1 for fully pushed waves (25). Our
simulations confirmed both of these predictions (Fig. 5B) and
showed Λ∼NαH scaling for all values of cooperativity.

The dependence of αH on B shows that genetic fluctuations
follow exactly the same pattern as the front wandering (Fig. 5C).
In particular, both exponents undergo a simultaneous transition
from αH =αD =−1 to a continual dependence on B as cooper-
ativity is decreased. Thus, genetic fluctuations also become large
as waves switch from fully pushed to semipushed. In the region of
pulled waves, αD and αH are independent of B , but their values
deviate from the theoretical expectation due to the finite range of
N explored in the simulations. Overall, the consistent behavior
of the fluctuations in the position and composition of the front
strongly suggest the existence of two classes of pushed waves,
each with a distinct set of properties.

The Origin of Semipushed Waves. We next sought an analytical
argument that can explain the origin of the giant fluctuations
in semipushed waves. In SI Appendix, sections VI and VIII, we
explain and extend the approaches from refs. 35 and 38 to com-
pute Df and Λ using a perturbation expansion in 1/N . The main
results are

Df =
1

N

∫ +∞
−∞ γn(ρ)[ρ′(ζ)]

2
ρ(ζ)e

2vζ
D dζ

2
(∫ +∞
−∞ [ρ′(ζ)]2e

vζ
D dζ

)2 ,

Λ =
1

N

∫ +∞
−∞ γf (ρ)ρ3(ζ)e

2vζ
D dζ(∫ +∞

−∞ ρ2(ζ)e
vζ
D dζ

)2 .

[5]

‡Front wandering and genetic drift are in general coupled because both arise due to the
randomness of birth and death. The two processes are, however, not identical because
the fluctuations in the total population density could differ from the fluctuations in the
relative frequency of the genotypes. For example, in the standard Wright–Fisher model,
only genetic drift is present since the total population size is fixed; see SI Appendix,
section III for further details.

Here, primes denote derivatives; ζ = x − vt is the coordinate
in the reference frame comoving with the expansion; ρ(ζ) =
n(ζ)/N is the normalized population density profile in the steady
state; v is the expansion velocity; D is the dispersal rate as in
Eq. 1; and γn and γf are the strength of demographic fluctua-
tions and genetic drift, which in general could be different (SI
Appendix, section III).

The N−1 scaling that we observed for fully pushed waves is
readily apparent from Eq. 5. The prefactors of 1/N account
for the dependence of microscopic fluctuations on the carrying
capacity, and the ratios of the integrals describe the relative con-
tribution of the different locations within the wave front.

For fully pushed waves, the integrands in Eq. 5 vanish both in
the bulk and at the leading edge, so Λ and Df are controlled by
the number of organisms within the wave front. Hence, the N−1

scaling can be viewed as a manifestation of the central limit theo-
rem, which predicts that the variance in the position and genetic
diversity of the front should be inversely proportional to the
effective population size of the front. To test this theory, we cal-
culated the integrals in Eq. 5 analytically for the model specified
by Eq. 3; SI Appendix, sections VI and VIII. These exact results
show excellent agreement with our simulations (SI Appendix, Fig.
S4) and thus confirm the validity of the perturbation approach
for fully pushed waves.

Why does the N−1 scaling break down in semipushed waves?
We found that the integrals in the numerators in Eq. 5 become
more and more dominated by large ζ as cooperativity decreases,
and, at a critical value of B , they diverge. To pinpoint this transi-
tion, we determined the behavior of ρ(ζ) for large ζ by linearizing
Eq. 1 for small population densities:

D
d2ρ

dζ2
+ v

dρ

dζ
+ r(0)ρ= 0, [6]

where we replaced n by ρ and shifted into the reference frame
comoving with the front. Eq. 6 is linear, so the population den-
sity decreases exponentially at the front as ρ∼ e−kζ . The value
of k is obtained by substituting this exponential form into Eq. 6

and is given by k = v
2D

(
1 +

√
1− v2

F /v2
)

with vF as in Eq. 2 (SI

Appendix, sections II and IX). From the asymptotic behavior of
ρ, it is clear that the integrands in the numerators in Eq. 5 scale
as e(2v/D−3k)ζ , and the integrals diverge when v/D = 3k/2. The
integrals in the denominators converge for all pushed waves.

The divergence condition can be stated more clearly by
expressing k in terms of v and then solving for the critical velocity
vcritical. From this calculation, we found that the transition from
fully pushed to semipushed waves occurs at a universal ratio of
the expansion velocity v to the linear spreading velocity vF:

vcritical =
3

2
√

2
vF. [7]

This result does not rely on Eq. 3 and holds for any model of
cooperative growth.

The ratio v/vF increases with cooperativity and serves as a
model-independent metric of the extent to which a wave is
pushed. Eq. 7 and the results below further show that this metric
is universal, i.e., different models with the same v/vF have the
same patterns of fluctuations. We can then classify all reaction–
diffusion waves using this metric. Pulled waves correspond to the
special point of v/vF = 1. When 1< v/vF <

3

2
√

2
, waves are semi-

pushed, and fully pushed waves occur when v/vF ≥ 3

2
√

2
. Fully

pushed waves also occur when r(0)< 0; SI Appendix, section X.
Such situations are called propagation into metastable state in
physics (1) and strong Allee effect in ecology (47). Because the
growth rate at the front is negative, vF does not exist, and the
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Fig. 5. Genetic diversity is lost at different rates in pulled, semipushed, and fully pushed waves. (A) The average heterozygosity, H, is a measure of diversity
equal to the probability to sample two distinct genotypes in the population. For both pulled and pushed expansions, the decay of genetic diversity is
exponential in time: H∼ e−Λt , so we used Λ to measure the strength of genetic drift. (B) Genetic drift decreases with N. For pulled waves, Λ∼ ln−3 N
(33), while, for fully pushed waves, we predict that Λ∼N−1; see Eq. 5. To quantify the dependence of Λ on N, we fit Λ∼NαH . The dashed red line shows
that even though αH should equal 0 for pulled waves, the limited range of N results in a different value of αH ≈−0.33. (C) The dependence of the scaling
exponent on cooperativity identifies the same three classes of waves as in Fig. 4C; the transitions between the classes occur at the same values of B.

expansion proceeds only due to the growth in the bulk, where
the fluctuations are small.

Properties of Semipushed Waves. Although the perturbation the-
ory breaks down for v < vcritical, we can nevertheless estimate
the scaling exponents αD and αH by imposing an appropriate cut-
off in the integrals in Eq. 5. One reasonable choice of the cutoff is
ρc ∼ 1/N , which ensures that there is no growth in patches that
have fewer than one organism. In SI Appendix, section IX, we
show that this cutoff is appropriate for deterministic fronts with
γn = 0, but a different cutoff is needed for fluctuating fronts with
γn > 0.

The need for a different cutoff had been recognized for a long
time both from simulations (31) and theoretical considerations
(33). However, a method to compute the cutoff has been devel-
oped only recently. For pulled waves, the correct value of the
cutoff was obtained in ref. 37 by using a nonstandard moment-
closure approximation for Eq. 1. We extended this method to
pushed waves and found that the integrals should be cut off when
ρ falls below ρc ∼ (1/N )

1
v/Dk−1 ; SI Appendix, section IX. Note

that the value of the cutoff depends not only on the absolute
number of organisms, but also on the shape and velocity of the
front. This dependence arises because population dynamics are
much more sensitive to the rare excursions of the front ahead of
its deterministic position than to the local fluctuations of the pop-
ulation density; SI Appendix, section IX and ref. 33. Since front
excursions occur into typically unoccupied regions, we find that
ρc < 1/N and, therefore, genetic drift and front wandering are
stronger than one would expect from ρc = 1/N .

Upon applying the correct cutoff to Eq. 5, we find that the fluc-
tuations in semipushed waves have a power-law dependence on
N with a nontrivial exponent between 0 and−1. The exponent is
the same for both Λ and Df and depends only on v/vF. Overall,
our theoretical results can be summarized as follows

αD =αH =



0, v/vF = 1,

− 2

√
1− v2

F /v2

1−
√

1− v2
F /v2

, v/vF ∈
(

1,
3

2
√

2

)
,

− 1, v/vF ≥
3

2
√

2
.

[8]

In the case of pulled waves, our cutoff-based calculation not only
predicts the correct values of αD =αH = 0, but also reproduces
the expected ln−3 N scaling (SI Appendix, section X).

To test the validity of the cutoff approach, we compared its
predictions to the simulations of Eq. 3 and two other models
of cooperative growth; Fig. 6, Materials and Methods, and SI
Appendix, Fig. S5. The simulations confirm that the values of αD

and αH are equal to each other and depend only on v/vF. More-
over, there is a reasonable quantitative agreement between the
theory and the data, given the errors in αD and αH due to the
finite range of N in our simulations.

The success of the cutoff-based calculation leads to the fol-
lowing conclusion about the dynamics in semipushed waves: The
fluctuations are controlled only by the very tip of the front, while
the growth and ancestry are controlled by the front bulk (Figs.
1C and 2C). Thus, the counterintuitive behavior of semipushed
waves originates from the spatial segregation of different pro-
cesses within a wave front. This segregation is not present in
either pulled or fully pushed waves and signifies a new state of
the internal dynamics in a traveling wave.

Corrections to the Expansion Velocity due to Demographic Fluctua-
tions. Finally, we examined how the expansion velocity depends
on the strength of demographic fluctuations. To quantify this
dependence, we computed ∆v , the difference between the actual
wave velocity v and the deterministic wave velocity vd obtained
by setting γn = 0 in Eq. 1. The perturbation theory in 1/N shows
that ∆v ∼NαV with αV equal to αD =αH (SI Appendix, sec-
tion VII). Thus, we predict 1/N scaling for fully pushed waves
and a weaker power-law dependence for semipushed waves
with the exponent given by Eq. 8§ . Our simulations agreed
with these results (SI Appendix, Fig. S6) and, therefore, pro-
vided further support for the existence of two distinct classes of
pushed waves.

Historically, corrections to wave velocity have been used to test
the theories of fluctuating fronts (1, 31, 34). For pulled waves, the
scaling ∆v ∼ ln−2 N was first obtained by using the 1/N growth-
rate cutoff (39). This calculation yielded the right answer because

§Note that, for pulled waves, v− vd ∼ ln−2 N, which is different from the ln−3 N scal-
ing of Df and Λ (33, 37). All three quantities, however, scale identically with N for
semipushed and fully pushed waves.
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Fig. 6. The universal transition from semipushed to fully pushed waves.
For three different models on an Allee effect, the scaling exponents for the
heterozygosity and front diffusion collapse on the same curve when plotted
as a function of v/vF . Thus, v/vF serves as a universal metric that quantifies
the effects of cooperativity and separates semipushed from fully pushed
waves. We used squares and plus signs for the model specified by Eq. 3,
triangles and crosses for the model specified by Eq. 9, inverted triangles and
stars for the model specified by Eq. 10, and the red line for the theoretical
prediction from Eq. 5.

the correct value of the cutoff ρc ∼ (1/N )
1

v/Dk−1 reduces to 1/N
in the limit of pulled waves.¶ It is then natural to expect that the
approach based on the 1/N cutoff must fail for pushed waves.
Indeed, Kessler et al. (31) extended the cutoff-based approach
to pushed wave and obtained results quite different from what
we report here. They analyzed deterministic fronts and imposed
a fixed growth-rate cutoff. Upon setting the value of this cut-
off to 1/N , one obtains that αV changes continuously from 0
to −2 as cooperativity increases. Thus, for some values of coop-
erativity, the decrease with N is faster than would be expected
from the central limit theorem. This clearly indicates that fluc-
tuations rather than the modification of the growth rates play
the dominant role. In SI Appendix, section X, we show that the
approach of ref. 31 supplemented with the correct value of the
cutoff ρc ∼ (1/N )

1
v/Dk−1 captures the dependence of ∆v on N

for semipushed waves. We also explain why this approach does
not apply to fully pushed waves, in which ∆v is not sensitive to
the growth dynamics at the expansion edge, but is instead con-
trolled by the fluctuations throughout the wave front. There, we
also provides a detailed comparison of the rate of diversity loss
in fluctuating vs. deterministic fronts (SI Appendix, section X and
Figs. S7, S8, and S9).

Discussion
Spatially extended systems often change through a wave-like pro-
cess. In reaction–diffusion systems, two types of waves have been
known for a long time: pulled and pushed. Pulled waves are
driven by the dynamics at the leading edge, and all their prop-
erties can be obtained by linearizing the equations of motion. In
contrast, the kinetics of pushed waves are determined by non-
linear reaction processes. The distinction between pulled and
pushed waves has been further supported by recent work on

¶For pulled waves, ∆v depends on ln ρc , so any power-law dependence of ρc on N leads
to the same scaling with N. The coefficient of proportionality between ∆v and ln−2 N
is, however, also universal, and the correct value is obtained only for ρc ∼ 1/N.

the evolutionary dynamics during range expansions (35, 36). In
pulled waves, mutations spread only if they occur at the expan-
sion edge, but the entire front contributes to adaptation in
pushed waves.

A natural conclusion from the previous work is that all aspects
of the wave behavior are determined by whether the wave is
pulled or pushed. Here, we challenged this view by reporting how
fluctuation patterns change as the growth of a species becomes
more nonlinear. Our main finding is that both front wandering
(a physical property) and genetic drift (an evolutionary prop-
erty) show identical behavior with increasing nonlinearity and
undergo two phase transitions. The first phase transition is the
classic transition between pulled and pushed waves. The second
phase transition separates pushed waves into two distinct sub-
classes, which we termed fully pushed and semipushed waves.

The differences between the three wave classes can be under-
stood from the spatial distribution of population dynamics. The
transition from pulled to semipushed waves is marked by a shift
of growth and ancestry from the edge to the bulk of the front
(SI Appendix, Fig. S2). In pulled waves, the expansion velocity
is determined only by the growth rate at the expansion edge,
while the velocity of semipushed waves depends on the growth
rates throughout the front. Similarly, all organisms descend from
the individuals right at the edge of the front in pulled, but not
in semipushed waves, where any organism at the front has a
nonzero probability to become the sole ancestor of the future
generations. The transition from semipushed to fully pushed
waves is marked by an additional change in the spatial pattern
of fluctuations. In fully pushed waves, the wandering of the front
arises due to the fluctuations in the shape of the entire wave
front. Similarly, genetic drift at all regions of the wave front con-
tributes to the overall fluctuations in genotype frequencies. The
dynamics of semipushed waves are different: Both the bulk pro-
cesses and rare excursions of the leading edge control the rate
of diversity loss and front wandering. As a result, semipushed
waves possess characteristics of both pulled and pushed expan-
sions and require analysis that relies on neither linearization of
the reaction–diffusion equation nor an effective averaging within
the wave front.

The shift of the fluctuations from the front to the bulk of the
wave front explains the different scalings of fluctuations with the
population density, N . In fully pushed waves, fluctuations obey
the central limit theorem and decrease with the carrying capac-
ity as N−1. This simple behavior arises because all processes are
localized in a region behind the front. The number of organisms
in this region grows linearly with N , so the variance of the fluc-
tuations scales as N−1. The central limit theorem seems not to
apply to semipushed waves, for which we observed a nontriv-
ial power-law scaling with variable exponents. The new scaling
reflects the balance between the large fluctuations at the leading
edge and the localization of the growth and ancestry processes
behind the front. The departure from the N−1 scaling is the
strongest in pulled waves, where all processes localize at the tip
of the front. Since the number of organisms at the leading edge
is always close to 1, the fluctuations are very large and decrease
only logarithmically with the population size.

The different scalings of fluctuations with population den-
sity may reflect the different structure of genealogies in pulled,
semipushed, and fully pushed waves. Although little is known
about the structure of genealogies in the context of range
expansions, we can nevertheless propose a conjecture based
on an analogy with evolutionary waves in fitness space. Simi-
lar to range expansions, evolutionary waves are described by a
one-dimensional reaction–diffusion equation, where the role of
dispersal is assumed by mutations, which take populations to
neighboring regions of the fitness space. The growth rate in evo-
lutionary waves, however, depends not only on the local popula-
tion density, but also on the location itself because the location of
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an organism is its fitness. Despite this important difference, evo-
lutionary waves and range expansions have striking similarities.
Some evolutionary waves driven by frequent adaptive mutations
are similar to pulled waves because their velocity is controlled
by the dynamics at the wave edge, and their rate of diversity
loss scales as ln−3 N (21, 22, 24, 25, 33, 60, 61). Approximately
neutral evolution is in turn similar to pushed waves because its
dynamics is controlled by the entire population, and the rate of
diversity loss scales as N−1 (25, 62). The transition between these
two regimes is not fully understood (25, 62), and range expan-
sions might provide a simpler context in which to approach this
problem.

Based on the above similarity and the known structure of
genealogies in evolutionary waves, it has been conjectured that
genealogies in pulled waves are described by the Bolthausen–
Sznitman coalescent with multiple mergers (24, 25, 60–66). For
fully pushed waves, we conjecture that their genealogies are
described by the standard Kingman coalescent with pairwise
merges. The Kingman coalescent was rigorously derived for well-
mixed populations with arbitrary complex demographic struc-
ture (64), so it is natural to expect that it should apply to fully
pushed waves, where all of the dynamics occur in a well-defined
region within the wave front. The structure of genealogies in
semipushed waves is likely to be intermediate and could be sim-
ilar to that of a Λ−coalescent with multiple mergers (25, 66).
Although these conjectures are in line with the results for evolu-
tionary waves (25, 62, 62, 63), their applicability to range expan-
sions requires further study. Given that genealogies can be read-
ily inferred from population sequencing, they could provide a
convenient method to identify the class of a wave and charac-
terize the pattern of fluctuations.

Our analysis of diversity loss and front wandering also revealed
surprising universality in pushed waves. Because pushed waves
are nonlinear, their velocity and front shape depend on all
aspects of the growth rate, and it is natural to assume that
there are as many types of pushed waves as there are nonlin-
ear growth functions. Contrary to this expectation, we showed
that many consequences of nonlinearities can be captured by a
single dimensionless parameter v/vF. This ratio was first used to
distinguish pulled and pushed waves, but we found that v/vF also
determines the transition from semipushed to fully pushed waves
and the magnitude of the fluctuations. We therefore suggest that
v/vF could be a useful and possibly universal metric of the extent
to which an expansion is pushed. Such a metric is needed to com-
pare dynamics in different ecosystems and could play an impor-
tant role in connecting the theory to empirical studies that can
measure v/vF sufficiently accurately.

In most ecological studies, however, the measurements of both
the observed and the Fisher velocities have substantial uncer-
tainty. Our results caution against the common practice of using
the approximate equality of v and vF to conclude that the inva-
sion is pulled. The transition to fully pushed waves occurs at
v/vF = 3/(2

√
2)≈ 1.06, which is very close to the regime of

pulled waves v/vF = 1. Therefore, expansions with velocities that
are only a few percent greater than vF could behave very differ-
ently from pulled waves, e.g., have orders-of-magnitude lower
rates of diversity loss. Given that Allee effects arise via a large
number of mechanisms and are usually difficult to detect (47,
48, 67), it is possible that many expansions thought to be pulled
based on v ≈ vF are actually semipushed or even fully pushed.
The utility of v/vF for distinguishing pulled from semipushed
waves could, therefore, be limited to systems where accurate
measurements are possible such as waves in physical systems
or in well-controlled experimental populations. Identifying fully
pushed waves based on the velocity ratio is, however, more
straightforward because v substantially greater than vF unam-
biguously signals that the wave is fully pushed and that the fluc-
tuations are weak.

The somewhat narrow range of velocity ratios for semipushed
waves, 1< v/vF . 1.06, does not imply that semipushed waves
are rare. Indeed, the entire class of pulled waves is mapped to a
single point v/vF = 1 even though a large number of growth func-
tions lead to pulled expansions. For the growth function in Eq.
3, pulled and semipushed waves occupy equally sized regions in
the parameter space: B ∈ [0, 2] for pulled and B ∈ (2, 4) for semi-
pushed waves. We examined several other models of cooperative
growth in SI Appendix, section XII and Fig. S1), including the
one that describes the observed transition from pulled to pushed
waves in an experimental yeast population (32). For all models,
we found that pulled, semipushed, and fully pushed waves occupy
regions in the parameter space that have comparable size. Thus,
all three classes of waves should be readily observable in cooper-
atively growing populations.

Conclusions
Despite the critical role that evolution plays in biological inva-
sions (10, 18, 27, 68–74), only a handful of studies have exam-
ined the link between genetic diversity and species ecology in
this context (35, 36, 56, 59). The main result of the previous
work is that Allee effects reduce genetic drift and preserve diver-
sity. This conclusion, however, was reached without systemati-
cally varying the strength on the Allee effect in simulations and
was often motivated by the behavior of the fixation probabilities
rather than the diversity itself. Our findings not only provide firm
analytical and numerical support for the previous results, but also
demonstrate that the simple picture of reduced fluctuations in
pushed waves does not accurately reflect the entire complexity
of the eco-evolutionary feedback in traveling waves. In particu-
lar, we showed that the strength of genetic drift varies greatly
between semipushed and fully pushed waves. As a result, even
a large Allee effect that makes the expansion pushed could be
insufficient to substantially slow down the rate of diversity loss.

Beyond specific applications in the evolution and ecology of
expanding populations, our work provides an important concep-
tual advance in the theory of fluctuations in reaction–diffusion
waves. We showed that there are three distinct classes of trav-
eling waves and developed a unified approach to describe their
fluctuations. In fully pushed waves, fluctuations throughout the
entire wave front contribute to the population dynamics. In con-
trast, the behavior of pulled and semipushed waves is largely con-
trolled by rare front excursions, which can be captured by an
effective cutoff at low population densities. Both the contribu-
tion of the dynamics at the leading edge and the value of the
cutoff depend on the ratio of the wave velocity to the Fisher
velocity. This dependence explains the transition from giant,
ln−3 N , fluctuations in pulled waves to regular 1/N fluctuations
in fully pushed waves. Extensions of our analytical approach
could potentially be useful in other settings, where one needs to
describe stochastic dynamics of nonlinear waves.

Materials and Methods
The simulations in Figs. 3–5 were carried out for the growth model defined
by Eq. 3. In Fig. 6, we also used two other growth models to demonstrate
that our results do not depend on the choice of r(n). These growth models
are specified by the following equations:

r(n) = g0

(
1−

n

N

)(
n

N
−

n∗

N

)
, [9]

and

r(n) = g0

[
1−

(
n

N

)3
][(

n

N

)3

−
(

n∗

N

)3
]

, [10]

where N> 0 is the carrying capacity, g0 > 0 sets the time scale of growth,
and c∗ is the Allee threshold, which could assume both positive and negative
values; SI Appendix, section II.
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We simulated range expansions of two neutral genotypes in a one-
dimensional habitat modeled by an array of patches separated by distance
a; the time was discretized in steps of duration τ . Thus, the abundance of
each genotype was represented as ni(t, x), where i∈{1, 2} is the index of
the genotype, and t and x are integer multiples of τ and a. Each time step,
we updated the abundance of both genotypes simultaneously by drawing
from a multinomial distribution with N trials and probability pi to sample
genotype i. The values of pi reflected the expected abundances of the geno-
types following dispersal and growth:

pi =
m
2 ni(t, x− a) + (1−m)ni(t, x) + m

2 ni(t, x + a)

N(1− r(ñ)τ )
, [11]

where ñ = m
2 n1(t, x− a) + (1−m)n1(t, x) + m

2 n1(t, x + a) + m
2 n2(t, x− a) +

(1−m)n2(t, x) + m
2 n2(t, x + a) is the total population density after disper-

sal. Note that p1 + p2 < 1 in patches, where the population density is less
than the carrying capacity.

In the continuum limit, when r(n)τ� 1 and ka� 1, our model becomes
equivalent to Eq. 1 for the population density and to Eq. 4 for the rela-
tive fraction of the two genotypes with D = ma2/2, γn = (1− n/N)/τ , and
γf = 1/(aτ ). For simplicity, we set both a and τ to 1 in all of our simulations.
We used r0 = g0 = 0.01 and m = 0.25 for all simulations, unless noted oth-
erwise. These values were chosen to minimize the effects of discreteness of
space and time while preserving computational efficiency.
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