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Abstract: The determination of directed control paths in complex networks is important because
control paths indicate the structure of the propagation of control signals through edges. A challenging
problem is to identify them in complex networked systems characterized by different types of
interactions that form multilayer networks. In this study, we describe a graph pattern called the
conserved control path, which allows us to model a common control structure among different types
of relations. We present a practical conserved control path detection method (CoPath), which is based
on a maximum-weighted matching, to determine the paths that play the most consistent roles in
controlling signal transmission in multilayer networks. As a pragmatic application, we demonstrate
that the control paths detected in a multilayered pan-cancer network are statistically more consistent.
Additionally, they lead to the effective identification of drug targets, thereby demonstrating their
power in predicting key pathways that influence multiple cancers.

Keywords: multilayer network; control path; pan-cancer; controllability

1. Introduction

Understanding the control properties of complex systems provides us with insight into
how designers interfere with these systems to achieve desired behaviors and helps us to
understand the dynamic process [1]. In the past few decades, many approaches have been
developed to study the controllability of single-layer networks [2], such as control based
on maximum matching [3], the minimum dominating set [4,5], and the feedback vertex
set [6]. Liu et al. identified the minimum number of driver nodes required to maintain full
control of a network by solving a maximum matching problem, which provides an efficient
method to determine the driver nodes for arbitrary directed networks and provides a type
of classification for edges [3].

Moreover, for more complex systems, they can be better modeled by multilayer net-
work structures than single-layer networks to help us to understand the system more
fully. For instance, in social networks, multilayer networks created according to different
relationships are clearer than single-layer networks [7,8]. There have been increasingly
intense efforts to investigate networks with multiple types of connections. A social network
can be represented by a set of people (nodes) with some patterns of contacts or relations
(links) between them. Multiple layers indicate multiple relationships, including colleague-
ship, friendship, partnership, and membership of the same community [9]. Each layer
has a specific topological pattern that can spread information between the current layer
and other layers if links exist among different layers. In multilayer biological networks,
Zheng et al. [10] confirmed that, in the minimum driver nodes they identified, some nodes
can act as drug targets in biological experiments and other nodes are also involved in
important biological processes. Compared with the minimum set of driver nodes identi-
fied in single-layer networks, more drug targets occurred in a multilayer network [11–13].
Liu et al. [14] demonstrated that remote control can enhance the robustness of multilayer
transportation systems against cascading failure. Simultaneously, the controllability of
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multilayer networks has become increasingly important, and researchers have paid much
attention to it. Wang et al. [15] explored the effects of different interlayer couplings on
the controllability and control energy cost of multilayer networks. Yuan et al. [16] ana-
lyzed the controllability of multilayer networks based on maximum multiplicity theory.
Nacher et al. [17] developed FAST-MDSM to identify the minimum set of driver nodes
required to control multilayer networks.

However, understanding the control properties of a system requires not only knowing
how many drivers are required but also characterizing the propagation pattern of control
signals. Directed control paths, called stems, illustrate the backbone structure of the propa-
gation of control signals through the network. Importing one signal for each control path
guarantees controllability. These paths then transmit signals to control the entire system,
including cycles that are inherently self-regulatory [18]. The control paths characterize
the functional origin of each control and provide insight into the high-level organizations
and function of complex systems. In previous studies, researchers showed the effective
outcome of directed control paths and controllability in directed networks, particularly
biological networks [19,20].

Despite advances in controlling multilayer networks, to date, a deep understanding
of the properties of control paths in multilayer networks has not been conveyed in the
literature. In this paper, we propose a pattern, index, and algorithm to study fundamental
issues pertinent to the control paths of multilayer networks and obtain some interesting
results. We define a novel graph pattern, that is, conserved control paths (CCPs), to model
the common elements of control paths in different layers, which allows us to identify a
consistent control structure among different types of relations. Additionally, we propose
the conservative degree (CV) index as a metric to quantify the consistency of control paths.
We present a practical CCP detection algorithm (CoPath) to detect CCPs from L-layer
networks. CoPath can be implemented in low-order polynomial time O

(
L× n3). We

used the index CV to test the consistency of control paths in synthetic scale-free (SF) and
Erdos–Rényi (ER) networks. The results demonstrated that the consistency of control paths
changed according to the number of layers and network density, but it was robust under
the disturbed weight of edges. Furthermore, we applied CoPath in pan-cancer analysis.
We constructed a 16-layer pan-cancer network and detected its CCPs among 16 types of
typical cancers. This pan-cancer network had more consistent control paths among layers
than its randomized counterparts. The CV reduced by 58.2% when we disturbed each
layer by crossing only 8% of edges. We demonstrated that CCPs among cancers tended
to be conserved, and there were potential common graph structures between different
cancers. In particular, we found that drug targets tended to be located upstream of these
CCPs (p-value = 0.0062), which verified the vital role of the CCP pattern in delivering drug
effects to influence cancers. The CCP pattern, CV index, and CoPath algorithm provide
a reasonable framework to help us understand control properties and are practical in the
functional pathway detection of multilayer networks.

2. Materials and Methods
2.1. Control Path Based on Structural Controllability

A linear time-invariant dynamic system
.
x(t) = Ax(t) + Bu(t) is said to be structurally

controllable if and only if the n × nm controllability matrix C ≡
[
B, AB, A2B, . . . , An−1B

]
has full rank; that is, if rank(C) = n, the system can be driven from any initial state with
appropriate input control signals to any desirable states within a finite time [3,21]. The
state vector x ∈ Rn captures the state of all n nodes at time t. A ∈ Rn ×Rn is the adjacency
matrix of the underlying directed network of this system, B ∈ Rn ×Rm is the input matrix,
u ∈ Rm is the input vector, m is the number of driver nodes, and n is the number of nodes.
External signals u(t) = {u1(t), . . . , um(t)}′ are imposed on the m drivers (receive external
signals, m ≤ n). For example, in Figure 1a panel (ii), u(t) = {u1(t), u2(t)}′ indicates that
control signals u1 and u2 are imposed on node 1 and node 4, respectively.
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For structural controllability, Liu et al. [3] innovatively proposed the maximum match-
ing set (MMSet, denoted by M) to assess and quantify the size of the minimum driver node
set (MDSet) required to fully control an arbitrary network. They indicated that the set
of unmatched nodes in M is exactly MDSet: |MDset| = max{n− |M|, 1}. M is matched
subject to the following: (i) M ⊆ E is an edge set with maximum cardinality, and (ii) no two
edges in M share a starting node or ending node. In Figure 1a, the given network contains
five nodes and the MMSet has three matching edges. A potential MMSet is highlighted in
purple in panel (ii). The two unmatched nodes (max{(5− 3), 1}, node 1 and 4) that are
not pointed to by purple edges are drivers.

Moreover, edge set M forms a stem-cycle cover of the original network, and starting
from the unmatched drivers, the input signals are transmitted along the directed edges in
M to guide the entire network to any desired final state [18]. Therefore, Wang et al. [22,23]
proposed that the MMSet not only reveals the MDSet but also consists of the backbone of
the key control paths. Edges in M are directed control flows from the driver nodes to all
matched nodes. These directed control flows are called control paths, which are related to
the dynamical process of propagating the perturbation influence from drivers. For example,
in Figure 1a panel (ii), the purple matching edges of the MMSet form two directed control
paths 1→2→3 and 4→5. By injecting control signals into the roots (node 1 and node 4)
of these two paths, the control signal is transmitted to other matched nodes along the
matching edges to fully control this monoplex system. As another example, in Figure 1b,
control paths corresponding to the purple MMSet in the first layer are 1→2→3→6 and
4→5→7.

However, there are diversified MMSets (n! matchings for a complete connected net-
work that has n nodes). Each MMSet illustrates a unique set of control paths through
which control influences are transmitted under the minimum cost condition, and no exact
polynomial algorithm can determine the number of M in an arbitrary network. Counting
the number of M was proven to belong to the #P-complete class of problems [24]. Therefore,
several methods count the maximum matchings approximately for some special network
types [24,25]. Zdeborová et al. [24] found that the number of maximum matchings increases
exponentially as the mean degree grows in ER random graphs. Liu et al. [25] provided two
lower bounds on the number of maximum matchings of bipartite graphs with a positive
surplus. The lower bounds are related to the number of nodes and edges. In such a scenario,
control paths in a directed graph are not unique and the number of maximum matchings for
large-scale networks is not small. Therefore, researchers have attempted to use alternative
solutions to investigate large-scale networks that require information about all maximum
matchings. Jia et al. [26] proposed a random sampling method to explore the controllability
of complex networks instead of enumerating all MMSets for a monoplex network. We
show two different MMSets of the network in Figure 1a panels (ii,iii). Different from panel
ii, the network can also be fully controlled by imposed signals on two additional driver
nodes 1 and 3, and then one directed path 1→2→4→5 is identified as the control route.

Furthermore, based on the role of edges in diversified MMSets, edges E can be classi-
fied into three categories: “critical” edges Ec must appear in all MMSets (i.e., the absence of
“critical” edges increases the size of an MDSet); “redundant” edges Er may never appear in
any MMSets (i.e., the absence of “redundant” edges decreases the size of an MDSet); and
“ordinary” edges Eo have roles in some MMSets (i.e., the absence of “redundant” edges
does not affect the size of an MDSet) [3]. Different MMSets have the same critical edges
but variant ordinary edges to make them different. Additionally, there are always many
“redundant” edges that have no association with any control routes, and the existence of
“critical” edges indicates the changeless part of all control routes. The categories of links
can be determined by the algorithm proposed by Régin [27]. In Figure 1a, purple edges
in panels ii and iii form two MMSets for the network in panel i. By definition, 1→2 and
4→5 are critical edges because they appear in both MMSets; 2→5 is a redundant edge
because it never appears in either MMSet; and 2→3 and 2→4 are ordinary edges because
they occasionally appear in the MMSets.
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Figure 1. Schematic diagram of CCPs. (a) Various control paths of a toy network. (i) A directed network
with five nodes and five edges. (ii,iii) The two different maximum matchings for the network in (i). The
purple edges that form both MMSets and control paths are 1→2→3, 4→5, and 1→2→4→5. Matched nodes
are shown in blue and matching edges are shown in purple. (b) The control conserved paths detected by
CoPath from a three-layer network. The different colors represent nodes in different layers, and the thickness

of the edge in the CCPs represents the weight of the purple edges described by
L
∑

l=1
Ie∈Ml(e). Purple edges are

matching edges, which form a maximum matching on the corresponding layer, and they can form control
paths, which are shown on the right of the figure (b). (c) The schematic diagram of CoPath. Critical edges,
redundant edges, and ordinary edges are represented by a pink solid line, black dashed line, and black solid
line, respectively. The bipartite graph of each layer is transformed from the network in the corresponding
layer of (b). The thickness of ordinary edges reflects the CVs. The more frequently an edge appears in
layers that consist of ordinary edges and critical edges, the thicker the edge. (d) The application of CCPs in
pan-cancer. The far left of (d) shows the biological databases we used to construct the network. The middle
of (d) shows that we constructed a cancer-related activated signaling network with 16 layers. The different
colors represent different networks of cancers. The circles are nodes, and the size of the node reflects gene
activity in the cancer process. The thickness of the edge reflects edge activity, which is the strength of the
regulatory relationship between genes (the definition of edge activity is provided in Supplementary Material
B.3). The far right of (d) shows drug repositioning through CCPs, which are detected by CoPath. The purple
nodes are drug targets located upstream and the corresponding drug name is surrounded by a gray box.
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2.2. Conserved Control Path

To investigate the common control pattern of a system with multiple types of con-
nections, we use a multilayer network Γ that contains L layers and can be described by
Γ = ({G1, G2, . . . , GL}, Φ). Gl = (Vl , El) represents the l-th layer in Γ, and the crossed
layer interconnections between any two layers Gl and Gk are denoted by ∅. We describe a
graph pattern, that is, CCPs, that allows us to model common control structures among
different types of relations of Γ.

Definition 1. For a given maximum matching Ml of a monoplex network Gl , a control path cp
is defined to be the largest connected sequence of nodes cp = {(i1, i2), (i2, i3), . . . , (iK−1, iK)},
ik ∈ Vl , 1 ≤ k ≤ K subject to ∀k, (ik−1, ik) ∈ Ml .

Ml forms a stem-cycle cover of Gl , where each stem or cycle is the largest connected
sequence of nodes, which is defined as a control path cp. Additionally, the number of
stems equals the minimum number of driver nodes required to fully control Gl , by injecting
signals into the roots of stems. Then the signals are transmitted to the entire network
through control paths. As an example, in Figure 1b, the control paths shown in purple that
correspond to an MMSet in the third layer are 2→3→ 6 and 4→5→7→8.

Definition 2. For a given set of maximum matchingsM = {M1, M2, . . . , ML} of multilayer
network Γ = ({G1, G2, . . . , GL}, Φ), Ml is a maximum matching of Gl and the CV of the control

paths is defined as CV(χ) = (1/|χ|) ∑
e∈χ

(
(1/L)

L
∑

l=1
Ie∈Ml (e)

)2

, χ = ∪
l

Ml , 1 ≤ l ≤ L.

χ is a union set of maximum matchings of every layer. I() is an indicator function,
where I(e) = 1 when e ∈ Ml ; otherwise, I(e) = 0. CV(χ) quantifies the CV of an edge
set χ. The maximum CV(χ) = 1 when ∀i, j (1 ≤ i < j ≤ L) and Mi = Mj, indicates that
all layers can be controlled by identical control paths. The minimum CV(χ) = (1/L)2

when ∀i, j (1 ≤ i < j ≤ L) and Mi ∩ Mj = ∅, that is, there are no common control
paths between any pair of layers, indicates exceedingly different control patterns between
layers. In Figure 1b, L = 3, and there are two control paths corresponding to the max-
imum matching: 2→3 is one edge that is present in the control paths of all three lay-

ers and
3
∑

l = 1
I(2→3)∈Ml

(2→ 3) = 3. For these two CCPs, 1→2→3→6 and 4→5→7→8,

χ = {(1, 2), (2, 3), (3, 6), (4, 5), (5, 7), (5, 8)}, and the final CV(χ) = 0.67.

Problem 1. Conserved control path detection. Given a multilayer network
Γ = ({G1, G2, . . . , GL}, Φ), determine a corresponding M̂ = {M1, M2, . . . , ML} with the

maximum, C.V.; M̂ = argmax
M

CV
(
∪
l

Ml

)
.

However, how to detect M̂ efficiently is an opening issue. A direct approach is
to solve all MMSets of every layerM in Γ and find the best combination of maximum
matchings in all layers M that has the most conserved edges; however, enumerating
all maximum matchings of a large graph is impractical. Additionally, enumerating all
combinations of maximum matchings for all layers requires a vast amount of calculation.
Suppose we consider a 10-layer network and there are only 10 maximum matchings for
each layer. At most, there are 1010 combinations for the 10-layer network. The combinatorial
explosion of enumerating all MMSets is a challenge for large-scale multilayer networks with
thousands of maximum matchings when we only want to identify a specific combination
of different MMSets in a multilayer network. To circumvent such an approach because of
its high computational complexity, we develop a more effective algorithm to determine an
approximate solution of M̂.
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Because only ordinary edges are optional in different maximum matchings, we can
only detect the conserved ordinary edges in Γ, and then add the necessary critical edges to
restore the control path. Redundant edges are futile in the control path.

Definition 3. For a monoplex network Gl = (Vl , El), its ordinary induced sub-network (OIN) is
Go

l =
(

Vl
o, Eo

l

)
, where Eo

l
is a set of ordinary edges.

As shown in Figure 1c, the ordinary edges in the first layer are 1+→2−, 1+→3−, 2+→3−,
2+→4−, and 4+→5−, and they constitute its OIN. The OIN is presented as a bipartite graph
with add and subtract signs on the node marks (details are in the following section).

Problem 2. Conserved control path detection in OINs. Given an L-layer network
Γ = ({G1, G2, . . . , GL}, Φ), determine M̂o =

{
Mo

1, Mo
2, . . . , Mo

L
}

with the maximum CV

M̂ = argmax
M

CV
(
∪
l

Mo
l ∪ Ec

l

)
in L-layer OINs Γo =

({
Go

1, Go
2, . . . , Go

L
}

, Φ
)
, where Mo

l is

the maximum matching of OIN Go
l and Ec

l is the set of critical edges of Gl .

Based on the category of edges, we can remove redundant edges and determine critical
edges in advance. Then we focus on the ordinary edges, which allows the algorithm to be
sufficiently optimized to further reduce the running time and improve efficiency. The time
complexity of an algorithm for detecting the CCP is O

(
n3), where n is the number of nodes

in the network.
Despite the fact that we can achieve such improvements in advance, it remains difficult

to enumerate all MMSets of every layer in Γo to determine the optimal solution M̂ because
of the combination explosion of MMSets in all layers for a large-scale multilayer network.
Therefore, we provide an efficient approach to obtain an approximate solution of M̂. We
convert the problem of solving a set of CCPs in a multilayer network into solving the
CCPs of each layer Go

l in the network to identify an optimal solution Mo
l in monoplex Go

l
of Γo =

({
Go

1, Go
2, . . . , Go

L
}

, Φ
)
. The optimal solution Mo

l is a set of the most conserved
CCPs with the maximum conservative degree in Go

l . Then we combine Mo
l of each layer

∪
1≤l≤L

Mo
l ∪ Ec

l , which is an approximate solution of M̂.

Definition 4. For a given multilayer network Γ = ({G1, G2, . . . , GL}, Φ), Eo
l and Ec

l are sets
of ordinary and critical edges in Gl , respectively. The conservative weight of an edge e is defined as

ŵ(e) =
L
∑

l=1
Ie∈(Eo

l ∪Ec
l )
(e).

The index conservative weight is described as the number of layers in which an
edge appears in a multilayer network composed of ordinary edges and critical edges. It
represents the conservative probability of edge e in Γo. Then, with a given weighted Γo,
we can convert the problem of enumerating all MMSets to obtaining the most conserved
(maximum weight) control path set of Go

l . In Figure 1c, Γo =
({

Go
1, Go

2, Go
3
}

, Φ
)
, and

the conservative weights of some ordinary edges in Go
1 are ŵ(1+→2−) = 2, ŵ(2+→3−) = 3

and ŵ(4+→5−) = 3. The thickness of the line is directly proportional to the conservative
weight of the edges. The conserved M̂o =

{
Mo

1, Mo
2, Mo

3
}

with the maximum CV can be
identified as the maximum-cardinality matching with maximum weight as described in
the following section. For Go

1, the most conserved (maximum weight) control paths Mo
1 are

{(1, 2), (2, 3), (4, 5)}.

2.3. Conserved Control Path Detection Method

To solve the above problems, we propose a novel process called CoPath (see Algorithm 1)
to detect M̂ efficiently. For a given multilayer network, conservative degree of an edge
is taken as the respective weight. Through detecting the maximum-cardinality matching
with maximum weight among all maximum-cardinality matchings to obtain conserved
control paths. Maximum-cardinality matching ensures matching edges for the corresponding
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control path are obtained and the maximum weight is for maximum conservatism between
layers. Simultaneously, referring to the classification of edges in controllability, we remove
redundant edges in our process for their irrelevant role in the control process, just to further
improve efficiency of CoPath. First, referring to the classification of edges by Liu et al. [3],
we classify edges for each layer in a multilayer network into critical edges, ordinary edges,
and redundant edges, respectively. Second, for each Go

l ∈ Γo, we construct a new weight ŵ(e)
for every edge in Go

l and refer to Γo with ŵ(e) as weighted Γo. According to the definition
of edge classification, we do not consider redundant edges in the process of detecting M̂
with the maximum CV. Because redundant edges do not play a vital role in the control
process, removing the many redundant edges improves efficiency. Third, we identify the most
common edge set M̂o =

{
Mo

1, Mo
2, . . . , Mo

L
}

with the maximum CV using the Python tool
networkx.algorithms.matching.max_weight_matching [28]. Finally, we add critical edges to
restore the control path.

Algorithm 1. CoPath

(1) Input: A directed multilayer network Γ = ({G1, G2, . . . , GL}, Φ).
(2) Loop: For each layer l ∀Gl ∈ Γ;

1: Classify El into (Ec
l , Er

l , Eo
l );

2: Assign weight ŵ(e) in Go
l =

(
Vl

o, Eo
l

)
;

3: Construct a bipartite network BGo
l
(
V+, V−, E±

)
;

4: Mo
l = maximum-cardinality matching with maximum weight (BGo

l );
5: Ml← add Ec

l to Mo
l .

(3) Output:
M̂ = {M1, M2, . . . , ML}

The schematic diagram of CCPs detected by CoPath for a three-layer network (layer
l = 1, 2, 3) is shown in Figure 1c. First, we determine the critical edges Ec

l shown in pink in
advance and remove redundant edges Er

l shown as black dashed lines for each layer. Because
critical edges must occur in all MMSets for a network and redundant edges must never occur in
any MMSets, we do not need to consider different combinations of critical edges and redundant
edges when detecting CCPs, but only consider the ordinary edges Eo

l shown as black solid
lines. Second, we construct ordinary induced sub-networks for the three-layer network, and
the thickness of solid lines reflects the conservative weight ŵ(e) of ordinary edges. Third, we
convert the ordinary induced sub-networks to bipartite graphs BGo

l . For example, edge 2→3
in the original network in Figure 1b corresponds to edge 2+→3− in Figure 1c. Fourth, we
detect the maximum-cardinality matching M̂o =

{
Mo

1, Mo
2, Mo

3
}

with maximum weight for
a bipartite graph of each layer. For the three-layer network, the result is {(1, 2), (2, 3), (4, 5)}
for the first layer, {(1, 2), (2, 3), (4, 5)} for the second layer, and {(3, 6), (5, 7)} for the third layer.
We detect edges with larger weights for each layer. Finally, we add the essential critical pink
edges to restore the control path in each layer M̂ = {M1, M2, M3}. CCPs CCP1 and CCP2
are shown on the right of Figure 1b.

CoPath has the following advantages: (a) we only consider ordinary edges when
calculating maximum-cardinality matching with maximum weight, which shortens the
running time, and the complexity of our proposed algorithm is O

(
n3); (b) each layer can

be an unweighted or weighted network; and (c) we do not require the same nodes in
every layer.

3. Results
3.1. Conserved Control Path Pattern in Synthetic Networks

To evaluate which factors influence the CCP pattern in a complex system and how
changes to the parameterization of multilayer networks affect the, C.V.; we conducted
experiments on SF network [29] and ER network [30]. As both types of networks achieve
similar results, we only discussed the results of the SF network (Figure 2). The generation
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of the SF network refers to the study by Jia et al. [26]. Moreover, we extended their method
to construct a multilayer network (see Supplementary Material, A.1–2).
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Figure 2. Dependency between the CV and network features. In diagrams (a–c), the colors and types
of lines or points indicate the proportion of common edges between different layers. “Random” in the
legend means that the multilayer network is randomly generated without controlling the proportion
of common edges. (a) Plot of the CV versus the number of layers for random multilayer networks
and multilayer networks with different common mechanisms. (b,c) The same network used in panel
(a). We consider a random multilayer network or a multilayer network with a given proportion of
common edges as a dataset and test it by adding four types of Gaussian noise (µ = 0, σ= 1, 3, 5, 25)
for each network in a dataset. (b) Plot of the CV versus the number of layers after adding noise to
the edge weight for each edge in the network. The plot is a superposition of the results of four types
of noise. (c) The ratio of overlapping edges of CCPs before and after adding noise. For a multilayer
network with a given number of layers, L; we compute the overlapped ratio for the corresponding
monoplex network before and after adding noise. There are L overlapped ratios, and their median
is shown in the plot. Because there are six datasets for a multilayer network with given number
of layers L and we add four types of noise, there are 24 overlapped ratios for a multilayer with
given number of layers L. (d,e) The colors of the lines represent the number of layers of a multilayer
network. (d) Plot of the CV versus the ratio of difference nodes between two layers. (e) Plot of the CV
versus the density of the network. The CV reaches the biggest value approximately when the density
is around 2e. (f) Plot of the CV/CV0 ratio of a perturbed multilayer network to a real multilayer
network as a function of the number of perturbed edges of the real network. CV0 is the CV of the real
multilayer network. When the number of crossed edges is zero, which represents the real multilayer
network, CV/CV0 is 1.

To test the effects of the number of layers and the proportion of common edges (see
Supplementary Material A.3) in different layers on the, C.V.; we detected the CCPs and
quantified the consistency of the CCPs across all layers by the index CV. We found that the
CV decreased as the layers increased and common edges decreased among different layers
(Figure 2a). For example, when the proportion of common edges was 0.9 between any two
layers, the CV decreased from approximately 0.5 to 0.14 as the number of layers increased
in a 10-layer network. However, comparatively, the CV of a completely random network
was approximately 0.01, which explained that the CCPs occurred if public mechanisms
existed in different layers of the multilayer network. To test the robustness of the CCPs, we
added four types of Gaussian noise (µ = 0, σ= 1, 3, 5, 25) to the weight of the edge (see
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Supplementary Material) in each network (the same network that we used in Figure 2a)
and compared the CVs before and after adding noise. We noticed that there was no
obvious difference in the CVs before and after (dashed line) adding the four types of noise
(Figure 2b). Furthermore, we measured the ratio of overlapping edges in the CCPs before
and after adding noise, which demonstrated that noise had only a small influence on the
CCPs when there was a specified proportion of common edges among different layers
(Figure 2c).

In the same manner, we found that the CV decreased gently as the different nodes
between adjacent layers increased (Figure 2d), see Supplementary Material A.4), which
indicated that CoPath mainly detected the overlap of edges in different layers, and it was
slightly affected by the differences in a small number of nodes. Moreover, we observed
that the network density had a big influence on the CV (Figure 2e). We believed that
this phenomenon can be explained by the proportion of ordinary edges varying with the
average degree 〈k〉 of the network. Referring to the results of Liu et al. [3], the number
of ordinary edges increased when 〈k〉 of the ER network ranged from 0 to 2 and it varied
little from 2 to 2e (e is a natural constant, approximately 2.71828). When 〈k〉 was 2e, the
number of redundant edges was the highest, and the number of ordinary edges increased
again as 〈k〉 increased. From Figure 2e, there was also an interesting phase change. The CV
decreased when the number of ordinary edges increased, which corresponded to a network
density ranged from 0.0025 to 0.005, and the CV demonstrated a rising tendency, which
corresponded to a network density range from 0.005 to 0.015. The obvious phase change
was that the CV decreased when the network density was larger than 0.015. We believed
that the phase change occurred because the proportion of common edges was set to be
constant in our synthetic networks. We preserved 50% of the common edges from the layer
with the fewest nodes across different layers regardless of the network density. Therefore,
when the network density increased from 0.005 to 0.015, increasingly common ordinary
edges between layers existed. However, after 0.015, when we achieved 50% of the common
edges, there was only an opportunity to import specific ordinary edges into each layer, and
this led to a decreasing CV at the phase change.

Considering these results together, we found that the CV was indeed affected by
some factors, such as the number of layers and proportion of common edges in different
layers. However, it was minimally affected by the original weight of the edges, which
demonstrated that CoPath focused prominently on the network structure.

3.2. Application in Pan-Cancer

Different cancers are treated separately, and substantial differences are presumed
to exist among most cancers. Despite this variability, some cancers demonstrate some
similarities, for example, COAD and READ have similar patterns of genomic alteration [31],
which prompts us to study common structures among different cancers. Additionally, a
pathway is considered to be the smallest functional unit of a network that can perform a
single task. The development of cancer is related to the dysregulation of related biological
pathways [32]. From the view of control theory, driver nodes exist that play a vital role in
cancers receiving disease-promoting signals, and thus influence other nodes in the network.
Hence, we applied CoPath, which was based on control theory, to a pan-cancer network.
We expected to determine some CCP patterns for different cancers and provide a new
direction for further research. The framework of pan-cancer application, including: (1) Col-
lect the human signaling network as the background network from pathway commons
database. (2) Quantify activity of edge which is perturbed by a cancer based on The Cancer
Genome Atlas (TCGA) datasets and construct a cancer-specific activated signaling network.
(3) Detect CCPs in 16-layer cancer-related activated signaling networks. (4) Investigate
biological functions of CCPs based on enrichment analyses in functional gene sets and
pathways. (5) Validate the key roles of CCPs in drug target prediction (F1-measure) and
disease treatment mechanism identification. We make efforts as follows to solve these
issues in turn.
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We first collected 16 common cancer-related data and constructed a 16-layer cancer-
related activated signaling network (see Supplementary Material B.3, Supplementary data 1).
The details of the scale and other information of the 16-layer network based on edge classi-
fication are listed in Table 1.

Table 1. Scale of the cancer multilayer network classified by edges.

Cancer Type # Nodes # Critical Edges # Redundant Edges # Ordinary Edges/Nodes

BLCA 5001 333 12,190 32,467/4704
BRCA 5700 255 19,731 53,541/5481
COAD 5528 264 17,337 46,915/5307
ESCA 4295 437 7480 16,603/3830
HNSC 5431 262 16,115 43,560/5209
KICH 5368 326 14,996 39,849/5091
KIRC 5724 254 17,571 54,308/5520
KIRP 5440 287 16,017 43,072/5190
LIHC 5354 250 14,702 41,302/5153
LUAD 5710 262 18,377 49,641/5488
LUSC 5744 263 18,964 51,889/5521
PRAD 5559 273 16,038 50,544/5330
READ 4982 363 11,952 30,957/4632
STAD 5407 335 13,585 39,380/5095
THCA 5561 280 17,389 46,640/5327
UCEC 5538 257 17,202 46,959/5323

# The number of elements in a collection.

Hereafter, we associated the CCPs for the 16-layer network of cancers with CoPath
(Supplementary data 2). To test whether the real cancer networks had higher consistency
than their randomized counterparts, we compared the CV of the CCPs in the real network
with that of the CCPs in the perturbed network generated by randomly selecting two edges
from the real network and crossing them, which did not change the number of edges and
network density of the original network. We found that the CV decreased sharply as more
edges were crossed (Figure 2f), and the CV of the 16-layer cancer network (0.165) was much
higher than the values of its randomized counterpart networks (0.069 with 8% perturbed
edges). This indicated that the CCPs among cancers were inclined to be conserved and
there were potential common graph structures for cancers; that is, cancer was conservative
in its mechanism of action, which further prompted us to analyze the CCPs of a multilayer
cancer-related activated signaling network.

We assessed the CV of edges in the CCPs (Figure 3a), which demonstrated that the
path we detected was indeed conserved, with only one exception of ESCA. We considered
that the obvious difference in the number of nodes and edges between ESCA and other
cancers may be the main reason for this disparate result. Although there was a very weak
correlation between the conservative weight and the activity of edges in the cancer-related
activated signaling network (Pearson correlation coefficients for 16 cancers were in the
range of −0.04 to 0.25), generally, the activity of ordinary edges in the CCPs was higher
than those not in the CCPs, except for ESCA.

To investigate whether the genes in the CCPs had significant biological importance, we
performed two enrichment analyses to access them using the hypergeometric distribution.
We considered nine functional gene sets (Supplementary data 3) and listed the number and
sources in Table 2.

We present all the results of the enrichment analyses for the nine functional gene sets
in Supplementary data 4. In this section, we present the details of the enrichment analysis
for drug target genes. First, we assessed whether the genes in the CCPs or elsewhere were
enriched for the functional gene sets. We considered genes in the network as nodes and
divided them into isolated (nodes not in the CCPs), path (nodes in the path of the CCPs),
and cycle (nodes in circular CCPs) nodes according to their positions in the networks. We
found that genes in the paths of the 16 cancers we studied were significantly enriched



Entropy 2022, 24, 979 11 of 17

for the nine functional gene sets, except genome-wide association study (GWAS) disease
genes in ESCA and READ (Figure 3b). Second, we divided the nodes in the paths of
the CCPs into source, middle and sink based on their positions. We observed that drug
target genes were significantly enriched in the middle position of the CCPs (Figure 3c).
Additionally, similar results existed for other functional gene sets, except virus host genes,
for which the source nodes were enriched. Based on the results shown in Figure 3c, we
considered whether functional genes were located upstream or downstream of the CCPs.
This information would allow us to measure the number of downstream genes in the CCPs
for functional genes and non-functional genes. We observed that drug target genes had
more downstream genes than non-drug target genes in the CCPs, which indicated that
drug target genes may occupy locations upstream of the CCPs (Figure 3d). To verify this,
we performed a further analysis, which was a further verification for Figure 3d; that is, the
weight of the downstream path of one node in the CCPs, which we calculated by summing

the conservative values (
L
∑

l=1
Ie∈Ml (e)) of edges composed of the node and its downstream

genes. Once again, this implied that the conservative weight of the downstream path of
drug target genes was larger than that of non-drug target genes (Figure 3e). Moreover,
we accessed the statistical significance of drug target genes located upstream of the CCPs.
We emphasized the significant differences (87.5% cases with p-values < 0.05 in (d) and
75% cases with p-values < 0.05 in (e)) using the rank-sum test between drug target genes
and non-drug target genes. We found that the difference between two cancers (ESCA
and READ) was not significant in the analysis of Figure 3d. Additionally, the difference
among four cancers (ESCA, KICH, LIHC, and READ) was not significant in the analysis of
Figure 3e. These results explained the importance of cancer-related CCPs and indicated
that CCPs were helpful for identifying drug targets.

Table 2. Enrichment analysis of nine functional gene sets.

Functional Gene Set # Genes Source

CGC cancer 572 https://cancer.sanger.ac.uk/cosmic/ (accessed on 16 July 2018)
GWAS disease 19,110 http://www.ebi.ac.uk/gwas/ (accessed on 2 January 2018)
OMIM disease 9915 https://omim.org/ (accessed on 8 February 2018)
Virus host 947 http://interactome.dfci.harvard.edu/V_hostome (accessed on 1 January 2018)
Promoter 6222 Kim, T. H. et al. 2005 [33]
Essential 8253 http://tubic.tju.edu.cn/deg/ (accessed on 6 December 2017)
Kinase 516 http://kinase.com/human/kinome (accessed on 31 December 2017)
Drug target 2994 http://www.dgidb.org/ (accessed on 8 January 2018)
Oncogene 119 https://www.oncokb.org/ (accessed on 8 July 2019)

# The number of elements in a collection.

To investigate the function of CCPs, we analyzed pathway-based enrichment for BLCA
and BRCA as examples. There were 1165 CCPs (containing 3371 genes) and 1246 CCPs
(contained 3743 genes) for BLCA and BRCA, respectively. For each cancer, we considered
every cp in the CCPs and took the genes of the cp as the input list to analyze functional
pathways for which cp could be enriched (see Supplementary Material). We obtained
520 functional pathways for BLCA and 621 functional pathways for BRCA. There were
390 common pathways for BLCA and BRCA, which demonstrated that pathways enriched
by the CCPs were consistent in these two cancers. Additionally, we manually checked
whether pathways, which were enriched by the CCPs, were related to cancer. Because a cp
containing fewer than six genes was enriched for fewer functional pathways, we examined
a long cp containing at least six genes. We found that at least 87.34% (69/79) of the CCPs in
BLCA (85.85%, 85/99 of the CCPs in BRCA) were enriched for cancer-related pathways. In
Table 3, we listed ten pathways that occurred frequently in both cancers (i.e., many different
CCPs were enriched for these 10 pathways). The pathway-based enrichment of BLCA
and BRCA demonstrated that the two cancers had some common mechanisms, which
explained the conservatism of the CCPs detected by CoPath. By contrast, some enriched

https://cancer.sanger.ac.uk/cosmic/
http://www.ebi.ac.uk/gwas/
https://omim.org/
http://interactome.dfci.harvard.edu/V_hostome
http://tubic.tju.edu.cn/deg/
http://kinase.com/human/kinome
http://www.dgidb.org/
https://www.oncokb.org/
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pathways of the CCPs were related to cancers that were demonstrated in previous studies.
For example, the most enriched pathway was the metabolism pathway contributing to
oncogenic mutations [34]. Generally, cancer cells exhibited increased lipogenesis, which has
been proposed as a target for cancer treatment, and suggested the role of the metabolism
of the lipid pathway in cancers [35]. It further indicated that the CCPs of a cancer-related
activated signaling network were valid and of biological importance.
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Figure 3. Significant biological importance of genes in the CCPs. In diagrams (a–e), all plots have a
consistent x-coordinate which, from left to right, corresponds to the cancer sequence. (a) The CV of
edges in the CCPs. (b) Enrichment analysis of drug target genes based on three positions of genes in
the network. The horizontal cyan line represents the value log10(0.05). The p-value is derived using the
hypergeometric distribution. “Isolated,” “path,” and “cycle” in the figure represent genes that do not
occur in the CCPs, genes that occur in the paths of the CCPs, and genes that occur in circular CCPs,
respectively. (c) Enrichment analysis of drug target genes based on three positions of genes in the CCPs.
“Source,” “middle,” and “sink” represent genes that occur at the beginning, middle, and end of the
paths of CCPs, respectively. (d) Boxplot of the number of downstream genes in CCPs for drug target
and non-drug target genes. We do not consider sink nodes in the CCPs because the number of genes

downstream of them is zero. (e) Boxplot of the conservative value (
L
∑

l=1
Ie∈Ml (e)) of the downstream path

from drug target and non-drug target genes. We calculate statistical significance using the rank-sum
test for (d,e), which is shown in the middle of (d,e). The magenta cross represents the p-value for (d)
and 87.5% of cancers have p-values < 0.05. The cyan inverted triangle represents the p-value for (e) and
75% of cancers have p-values < 0.05. The corresponding horizontal line represents p-value = 0.05.

Table 3. Most frequently enriched pathways of CCPs.

BLCA BRCA

Names of Enriched Pathway # CCPs Names of Enriched Pathway # CCPs

Metabolism 23 Metabolism 33
Metabolism of lipids 14 Metabolism of lipids 19

Phosphatidylinositol signaling system 11 Phosphatidylinositol signaling system 9
Inositol phosphate metabolism 9 T cell receptor signaling pathway 10

Phospholipid metabolism 9 Inositol phosphate metabolism 9
Human T-cell leukemia virus 1 infection 9 Human T-cell leukemia virus 1 infection 9

Glycerophospholipid metabolism 8 Ras signaling pathway 9
T cell receptor signaling pathway 8 PI3K-Akt signaling pathway 9

PI3K-Akt signaling pathway 7 VEGFA-VEGFR2 signaling pathway 9

# The number of elements in a collection.

Then, to further illustrate the reliability of the CCPs of the 16-layer cancer network,
we measured the similarities between cancers based on the Jaccard index of the CCPs. We
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questioned whether the similarities between cancers calculated using CCPs (termed CCP-
based similarity) were correlated with the similarities in previous studies. We compared
CCP-based similarity with a type of well-studied disease similarity [36] based on Medical
Subject Headings (MeSH). We studied 11 out of 16 cancers and obtained the similarities be-
tween them. Then, we fitted a straight line for CCP-based similarity and MeSH similarity
in Figure 4a, which showed that two similarity measures between cancers have a certain
positive correlation. As an example, we found a cancer pair BRCA and COAD that had
higher CCP-based similarity than the MeSH-based similarity (Figure 4a), which further re-
flected the conservative characteristics of the CCPs. Furthermore, we found that approximately
90.06% (3371 of 3743) genes of BRCA and 92.28% (3371 of 3653) genes of COAD in the CCPs
overlapped. Approximately 63.14% (1598 of 2531) edges of BRCA and 64.78% (1598 of 2467)
edges of COAD in the CCPs overlapped. Almost 42.13% (525 of 1246) paths of BRCA and
43.03% (525 of 1220) paths of COAD enriched by the CCPs overlapped. Additionally, from
the research of Li. et al. [37], we obtained some pathways related to BRCA and COAD,
which helped us to understand the similarity between BRCA and COAD. For example, CCP
“NUPL2→HDAC4→RUNX3→LEF1→CCND1→E2F2→EZH2→CDKN2A→CDK6→TFDP2
→CDT1” in BRCA and CCP “NEK9→NUP205→HDAC4→RUNX3→LEF1→CCND1→E2F2
→EZH2→H2AFV” in COAD. Both paths had common parts and specific parts, and they were
enriched for breast cancer pathways and colorectal cancer pathways related to BRCA and
COAD, respectively, which was reported previously [37]. They were also enriched for pathways
in cancer, which was a common core pathway related to the carcinogenesis of various cancers.
Additionally, some pathways existed that were related to both BRCA and COAD, such as DNA
replication, cell cycle, and p53 signaling pathway. Both TIMELESS→CHEK1→WEE1→CCNE2
→CDKN1B→MCM4→POLE→XRCC3 in BRCA and TIPIN→CHEK1→WEE1→CCNE2 in
COAD were enriched for the cell cycle pathway and p53 signaling pathway. These indicated
that the CCPs we detected had some consistency with those in previous studies. The similarity
and high overlapping of the CCPs between BRCA and COAD further demonstrated that
control paths detected by CoPath were conserved; likewise, the CCPs in both cancers were
enriched for common pathways and specific pathways related to cancers, which indicated that
CCPs are effective for reflecting the common and specific features of cancers.

Furthermore, we considered whether drug repositioning with CCPs could provide some
insights into a new therapeutic relationship between drugs that already exist and the cancers
that we study. We selected five cancers (BRCA, COAD, LIHC, LUAD, and STAD, denoted
by BCLLS) with high incidences and mortalities [38], which we prepared to use for drug
repositioning. Interestingly, BCLLS also manifested high CCP-based similarity. We believed
that signals from drug targets located upstream of CCPs will have an influence downstream
of CCPs to achieve a therapeutic effect. We considered three conditions for drug repositioning
with CCPs based on drug targets (see Supplementary Material D.1). Consequently, we
acquired 99 drug-cancer pairs consisting of 25 drugs using drug repositioning, of which
there were 33 drug-cancer pairs that were FDA-approved and 25 drug-cancer pairs that were
implied in previous studies (Supplementary data 5). Then, we used disease genes (from
GWAS and OMIM data), C3 module [39], and DIAMOnD module [40] generated from disease
genes to perform drug repositioning for BCLLS. Furthermore, we compared the results of drug
repositioning obtained for different cases. The condition of drug repositioning using disease
genes and the C3 module was more relaxed than CCPs (see Supplementary Material D.2). The
F1-measure of drug repositioning based on CCPs was larger than the results obtained based
on disease genes and disease modules for BCLLS (Figure 4b), which indicated that CCPs
were more efficient in drug repositioning. We chose drug repositioning with the CCP-based
drug target TYMS and DHFR as an example (Figure 4c). We listed six drugs: capecitabine,
fluorouracil, trifluridine, and floxuridine (specifically targets protein TYMS); methotrexate
(specifically targets protein DHFR); and pemetrexed (specifically targets both proteins TYMS
and DHFR). All the targets of these six drugs were located upstream of the CCP shown in
Figure 4c. We predicted that their drug effect was transmitted along this path, and they had
the ability to intervene in the process of other cancers, such as BCLLS. We also noticed that
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there was a drug similar to Gemcitabine (an approved drug for BRCA and LUAD), which also
targeted TYMS. However, Gemcitabine broadly targeted three proteins. It was not meant to
control this path. Therefore, Gemcitabine will not be at the top of the candidate list for BCLLS.
For such a scenario, we prioritized drugs whose targets were included in the example CCP in
Figure 4c, which showed common drug targets in one CCP of BCLLS, and we predicted a
new therapy relationship between cancers and drugs from the CCP, which showed the role of
CCPs in drug repositioning.
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between MeSH-based similarity and CCP-based similarity. The points represent the similarity
between cancers measured using different methods. The line represents the fitting of points, and the
shadow area represents the 95% confidence interval. The magenta inverted triangle represents the
similarity between BRCA and COAD. (b) F1-score of drug repositioning by CCPs, disease genes, and
disease modules. (c) An example of drug repositioning with CCP-based targets TYMS and DHFR.
The CCPs containing targets TYMS and DHFR in BCLLS are shown on the left, and the different
colors of edges indicate the edges in the CCPs of different cancers. Circles in different colors shown
on the right (green, orange, and gray) represent FDA-approved, literature-implied, and an unclear
relationship between the drug and cancer, respectively. We list the PUBMED ID for the three orange
circles. The PUBMED IDs from left to right correspond to the three orange circles from top to bottom,
in sequence. Areas enclosed with purple, mauve, and blue rectangles represent drug repositioning
based on target TYMS, DHFR, and TYMS and DHFR, respectively (e.g., pemetrexed contains targets
TYMS and DHFR). (d) ROC curves and AUC for BCLLS for different parameters, BRCA (former 30%
of genes in the CCP of BRCA and drugs with a z-score < 0), COAD (10%, z-score < 0), LIHC (50%,
unlimited z-score), LUAD (10%, z-score < 0), and STAD (50%, z-score < 0). Combined ROC of all
10 ROC curves of BCLLS for an unlimited z-score and z-score < 0, and former 10% of genes in the
CCPs of each cancer in BCLLS.

Additionally, we compared drug repositioning with the proximity method for the C3
module obtained from genes in CCPs and disease genes (see Supplementary Material D.4).
In particular, drug repositioning based on the C3 modules from genes in CCPs was much
better than from disease genes for COAD, LIHC, and STAD. When we combined the ROC
under different parameters, the results were similar (Figure 4d). We believed that the
results were affected by the parameters (the number of drugs we used and upstream genes
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in the CCPs we defined) because the CCPs also contained specific mechanisms for each
cancer but not completely conservative mechanisms among all cancers.

4. Discussion

The control paths in complex networks that are related to the dynamic process play a
vital role in detecting functional pathways, but little is known about how we can capture
common control patterns from a multilayer network. In this paper, first, we developed
an approach called CoPath to detect CCPs in a directed multilayer network without cross
layers to explain the conserved and specific structure associated with the controllability of
complex networks. Second, we proposed an index CV to measure the consistency of control
paths in multilayer networks. The CV demonstrated its effectiveness in detecting CCPs
on synthetic networks. Third, we applied the CCP pattern to a multilayer cancer network.
Our results demonstrated that genes in CCPs had significant biological importance and
highlighted the role of CCPs in drug repositioning. There are diversified MMSets and each
MMSet illustrates a unique set of control paths. However, enumeration of all MMSets in
an arbitrary network is in the class of #P problem. To our knowledge, the novel random
sampling method need to obtain n ln(n) different MMSets to explore the controllability
instead of enumerating all MMSets. Therefore, the time complexity to obtain CCPs is
O
(

n ln n× L× n1/2 × |E|
)

, L is the number of layers, and O
(

n1/2 × |E|
)

is the time com-
plexity to compute one maximum matching. This is computationally prohibitive for large
networks. Our CoPath can be implemented in low-order polynomial time O

(
L× n3).

5. Conclusions

To conclude, our approach provides a new insight for relevant research into multi-
layer networks. The results demonstrated that CoPath can detect CCPs in a multilayer
network efficiently. Furthermore, the approach presented in this paper has many potential
applications in numerous areas. For example, CCPs in a multilayer network that consists
of different social relationships may reflect a stable social relationship flow. CCPs in a
multilayer network that consists of routers in different layers may be core routing links. Our
proposed method also has some limitations. For instance, we did not consider a multilayer
network with crossing layers. Moreover, CoPath cannot be applied to an undirected graph.
Despite this, if there is no need to take controllability into account, CoPath can be extended
to an undirected graph easily. We detected CCPs to study the common structure among
different cancers and lead to the effective identification of drug targets. We compared our
CCP-based method with other disease genes, C3 module, and DIAMOnD module-based
method. Prediction accuracy index F1-measure based on CCPs was larger than other meth-
ods. The most important thing is that our CCP-based method can provide the pathways
through which drugs act. Superior to other methods, it can be used to identify disease
treatment mechanisms in biological network.
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