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Selection of reliable cancer biomarkers is crucial for gene expression profile-based precise diagnosis of cancer type and successful
treatment. However, current studies are confronted with overfitting and dimensionality curse in tumor classification and false
positives in the identification of cancer biomarkers. Here, we developed a novel gene-ranking method based on neighborhood
rough set reduction for molecular cancer classification based on gene expression profile. Comparison with other methods such as
PAM, ClaNC, Kruskal-Wallis rank sum test, and Relief-F, our method shows that only few top-ranked genes could achieve higher
tumor classification accuracy. Moreover, although the selected genes are not typical of known oncogenes, they are found to play a
crucial role in the occurrence of tumor through searching the scientific literature and analyzing protein interaction partners, which
may be used as candidate cancer biomarkers.

1. Introduction

DNA microarray technology, a powerful tool in functional
genome studies, has yet to be widely accepted for extract-
ing disease-relevant genes, diagnosis, and classification of
human tumor [1–3]. Generally, genes are ranked according
to their differential expression by analysis of combination of
normal and tumor samples, and genes above a predefined
threshold are considered as candidate genes for the cancer
being studied [4]. However, this method may produce a vast
number of false, positives. In addition to the false-positive
problem, the imbalance between the number of samples and
genes may potentially degrade the classification accuracy and
it can lead to possible overfitting and dimensional curse or
even to be a complete failure in the analysis of microarray
data [2]. An efficient way to solve these problems is gene
selection. In fact, a good gene-selection method that can
identify key tumor-related genes is of vital importance for
tumor classification and identification of diagnostic and

prognostic signatures for predicting therapeutic responses
[5, 6].

Identifying minimum gene subsets means discarding
most noise and redundancy in dataset to the utmost extent,
resulting in not only classification accuracy improvement but
also tumor diagnosis cost decrease in clinical application,
which is still a key challenge in gene expression profile-
(GEP-) based tumor classification. Rough set theory has
been successfully used in feature selection [7, 8]. However,
it is difficult to directly and effectively deal with real-valued
attributes of microarray dataset [9]. Dataset discretization
is usually adopted to tackle the problem, but the pretreat-
ment may lose some useful information. To combat this
problem, Hu et al. [10] first presented the basic concepts
on neighborhood rough set (NRS) model and designed
a novel feature selection method called forward attribute
reduction based on neighborhood model (FARNeM) to
select a minimal reduct, which avoided the preprocess of
data discretization and hence decreased the information lost
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in pretreatment. But the reduct which satisfies criterions of
higher classification performance and fewer gene numbers
is not unique and full of chance. Obviously, it is not
appropriate to use only a gene subset (a reduct) to train
classifier, which necessitates it to select numerous minimal
gene subsets with the highest or near highest dependence on
training set to avoid the selection bias problem. Breadth-First
Search (BFS) [11], a basic graph search algorithm that begins
at the root node and explores all the neighboring nodes, were
adopted to implement our goals for selecting any number of
optimal and minimum gene subsets. However, for n nodes,
there are 2n combinations of gene subsets in total. It is not
practical to search all of the gene subsets in 2n combinations.
The computational complexity is too high. To circumvent
these problems, we proposed a breadth-first heuristic search
algorithm based on neighborhood rough set (HBFSNRS) to
select numerous gene subsets. The dependence function of
NRS was selected as the heuristic information.

To prioritize the numerous selected genes, a parameter
sig was introduced. Previous studies showed that significant
class predictor genes whose expression profile vector show
remarkable discrimination capability among different class
samples of specific cancer maybe play a crucial role in
the development of cancer [4]. We hypothesized that the
occurrence probability of genes in the final selected gene
subsets may reflect the power of tumor classification and
the significance of them to some extent. To probe our
hypothesis, several publicly available microarray datasets
were applied. HBFSNRS method was also compared with
four related methods: PAM, ClaNC, Kruskal-Wallis rank
sum test (KWRST), and Relief-F to demonstrate its good
performance, efficiency, and effectiveness in gene selection,
prioritization and cancer classification.

2. Materials and Methods

2.1. The Framework of Our Analysis Method. Our proposed
method is different from the traditional gene selection
strategies: Filters and Wrappers. The Filter methods are
based mostly on selecting genes using between-class sep-
arability criterion [12], and they do not use feedback
information from predictor performance in the process of
gene selection, such as relative entropy, information gain,
KWRST, and t-test. The wrapper methods select genes by
using a predictor performance as a criterion of gene subset
selection such as GA/SVM [13] and GA/KNN [14]. Our
method is a combination of Filter and Wrapper methods.
A novel HBFSNRS-based cancer classification framework is
illustrated as Figure 1. Four major steps of the designed
method are described as follows.

2.2. Gene Pre-Selection Based on KWRST. All of the mi-
croarray datasets, without respect to training and test
dataset, were normalized per gene by subtracting the
minimum expression measurements and dividing by the
difference between the maximal and minimum values of that
gene. The expression levels for each gene were scaled on
[0, 1].

Gene preselection can improve the classification perfor-
mances since it may reduce the noise, which is also the
common procedure for most classification application [15].
We applied gene preselection on training dataset to reduce
the noise. All of the genes on the arrays of training data were
sorted according to KWRST which is suitable for multiclass
problem. In this study, the p top ranking genes (the initial
informative gene set G∗) were used for finding minimum
gene subsets for constructing ensemble tumor classifier with
HBFSNRS. Generally speaking, more than 1% of genes in the
human genome are involved in oncogenesis [16], so we set
the number of the selected top-ranked gene p = 300.

2.3. Neighborhood Rough Set Reduction. The basic concepts
of neighborhood rough set (NRS) have been introduced by
Hu et al. [10]. In our proposed algorithm, the dependence
function of NRS was introduced to evaluate the goodness
of selected gene subsets. Here, we presented only the basic
notation from NRS approach used in the paper.

Assume there are c subclasses of cancers, let D = {d1,
d2, . . . ,dm} denotes the class labels of m samples, where
di = k indicates the sample i being cancer k, where k =
1, 2, . . . , c. Let S = {s1, s2, . . . sm} be a set of samples and
G∗ = {g1, g2, . . . , gn} be a set of genes, the corresponding
gene expression matrix can be represented as X = (xi j)m×n,
where xi j is the expression level of gene gi in sample s j ,
i = 1, 2, . . . ,n, j = 1, 2, . . . ,m, and usually n� m.

Given an information system for classification learning
NDT = 〈S,G∗ ∪D,V , f 〉, where S is a nonempty sample

set called sample space, G∗ is a nonempty set of genes also
called condition attributes to characterize the samples, D is
a set of output variable called decision attribute (class labels
of tumor samples), Va is a value domain of attribute a ∈
G∗∪D, f is an information function f : S× (G∗∪D) → V ,
V = ∪a∈G∗∪D Va, a reduction is a minimal set of attributes
B ⊆ G∗.

Given for all si ∈ S and B ⊆ G∗, the neighborhood δB(si)
of si in the subspace B is defined as

δB(si) =
{
s j | s j ∈ S,ΔB

(
si, s j

)
≤ δ

}
, (1)

where δ is the threshold and ΔB(si, s j) is the metric function
in subspace B. There are three common metric functions
that are widely used. Let s1 and s2 be two samples in n-
dimensional space G∗ = {g1, g2, . . . , gn}. f (s, gi) denotes the
value xis of gi in the sample s. Then Minkowsky distance is
defined as

Δp(s1, s2) =
⎛
⎝

n∑

i=1

∣∣ f (s1, gi
)− f

(
s2, gi

)∣∣p
⎞
⎠

1/p

, (2)

where (1) if p = 1, it is called Manhattan distance Δ1; (2)
if p = 2, it is called Euclidean distance Δ2; (3) if p = ∞,
it is called Chebychev distance. Here, we use the Manhattan
distance.

Given a neighborhood decision table NDT, X1,X2, . . . ,Xc
are the sample subsets with decisions 1 to c, δB(xi) is the
neighborhood information granules including xi, and is
generated by gene subset B ⊂ G∗, then the lower and upper



Journal of Biomedicine and Biotechnology 3

Training dataset Selected gene list

· · ·

· · ·

δ1 · · · δt

· · ·

Gene pre-selection
by KWRST

Gene subsets re-selection
based on HBFSNRS

Selected gene subsets list Selected gene subsets list

Computing sig Cancer classification (a) Computing sig Cancer classification (a)

Averaging t groups of sig
(c) and gene ranking by sig Cancer classification (b)

Literature search and network
analysis of the top-ranked genes

Cancer classification with
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Figure 1: The framework of our analysis method. (a) An ensemble classifier was constructed on the basis of the selected genes subsets by
HBFSNRS with a specific threshold value δ. (b) Another ensemble classifier was constructed based on classification results of each δ value.
(c) sig denotes the significance of genes, which is defined as (6).

approximations of the decision D with respect to gene subset
B are, respectively, defined as

LowerB(D) =
c⋃

i=1

LowerB(Xi),

UpperB(D) =
c⋃

i=1

UpperB(Xi),

(3)

where LowerB(X) = {xi | δB(xi) ⊆ X , xi ∈ S} is the
lower approximations of the sample subset X with respect
to gene subset B, and is also called positive region denoted
by PosB(D) which is the sample set that can be classified into
one of the classes without uncertainty with the gene subset B.
UpperB(X) = {xi | δB(xi)∩X /=φ, xi ∈ S} denotes the upper
approximations, obviously UpperB(X) = S. The decision
boundary region of D to B is defined as

BNB(D) = UpperB(D)− LowerB(D). (4)

The neighborhood model divides the samples into two
groups: positive region and boundary region. The decision
boundary is the sample set with neighborhoods from more
than one class. Through these neighborhood information,
we cannot completely be sure that these samples can be
classified into the class. The samples in different gene
subset subspaces will have different boundary regions and
positive regions. The size of the boundary region reflects
the discriminability of the classification problem in the
corresponding subspaces. It also reflects the recognition

power or characterizing power of the condition attributes.
The greater the positive region is, the smaller the boundary
region will be, and the stronger the characterizing power of
the condition attributes will be. So we use the dependency
degree ofD to B to characterize the power of the selected gene
subsets, which is defined as the ratio of consistent objects

γB(D) = Card(PosB(D))
Card(S)

, (5)

where Card(S) and Card(PosB(D)) denotes the cardinal
number of sample set S and PosB(D), respectively. If γB(D) =
1 we say thatD depends totally on B, and if γB(D) < 1, we say
that D depends partially. Here we define γ∅(D) = 0, and our
goal is to find the gene subset B which γB(D) is equal to the
set value.

2.4. Gene Reduction Based on HBFSNRS. Informative gene
selection involves evaluating the quality of the selected gene
subsets and searching for good gene subsets quickly. Here,
the dependence function of NRS is used to measure the
goodness of the selected gene subset. Here, the computa-
tional cost problem is addressed as below.

Initially, let RED = {{g1}, {g2}, . . . , {gp}} be a set of
gene subsets where each subset only has an informative
gene. Then, for ∀ redi ∈ RED, redi = {gi} is
expanded to (p − 1) subsets by adding a different genes
{gl | gl ∈ G∗, gl /∈ redi} into each redi, where we set
temporyi = {{gig1}, . . . , {gigi−1}, {gigi+1}, . . . , {gigp}}, we
will get p∗(p − 1) subsets in total. Among these subsets,
we select the ω top-ranked gene subsets by the dependence
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function that need to be expanded in the next iteration to
reconstruct the set RED, and now each element of RED has 2
genes. Similarly, in the next search layer, for ∀ redx ∈ RED,
redx = {gig j} is extended to (p − 2) subsets excluding
the genes have listed in the redx, where we set temporyx =
{{gig jg1}, . . . , {gig jgi−1}, {gig jgi+1}, . . . , {gig jg j−1}, {gig jg j+1},
. . . , {gig j gp}}, i < j, and we will get w∗(p − 2) subsets.
Among these subsets, ω top-ranked gene subsets were
selected to be expanded in next layer as the above method.
Now, the element of RED has 3 genes. The search process
continues following the above method until meeting the
stop criteria. In each layer, we expend to w∗(p − card(red))
subsets and only ω top-ranked gene subsets were selected to
reconstruct the set RED from the total subsets, so that the
search time will not increase exponentially with the increase
of search depth. Here, card(red) denotes the cardinal gene
number of the gene subset. In the virtue of the minimum
construction idea, one of the techniques for the best feature
selection could be based on choosing minimal gene subsets
that fully describe classes of tumor classification in a given
data set. Therefore, when the maximal dependence of
the elements of RED (e.g., r Max = 0.9999) is obtained,
the increment between the maximal dependence of two
adjacent search levels is less than θ (e.g., θ = 0.0001) or
the number of iterative steps is equal to the set value Depth
(e.g., Depth = 20), the searching process ends at that
level. Otherwise, we continue to search genes in this way
until meeting the stopping criterions. The pseudocode of
HBFSNRS is shown in Algorithm 1.

The dependence function of NRS is chosen as the
objective function for evaluating the goodness of the selected
gene subset mainly because it is computationally fast in
that it does not use the feedback information of test data
in the training process. To optimize the parameter δ in
NRS that control the size of the neighborhood, different
values for δ from 0 to 1 with step 0.01 were tested by
running forward attribute reduction based on neighborhood
model (FARNeM). δ values were sorted according to the
classification accuracy by 3-KNN classifier using the cor-
responding gene subset selected by FARNeM. The 5 top-
ranked δ values were used in the next step. But for ALL (a
multiclass dataset), the gene number of the selected minimal
and optimal reduct set reach 20 or even more for some of
the top five δ values. Considering that a large gene subset
with an excessive number of genes may contain much noise
and redundancy, which may bias and negatively influence
the tumor classification and gene prioritization, we discarded
such top-ranked δ values and reselected five top-ranked δ
values that produced reduct set with less than 20 genes.

2.5. Evaluation Criterion for the Selected Gene Subsets. We
adopted 3-KNN classifier to evaluate the classification per-
formance of the selected gene subsets. To improve prediction
accuracy and stability, an ensemble classifier was constructed
on the basis of the selected gene subset. For each δ, a
simple majority voting strategy was applied to integrate thew
individual classifier that is constructed from the selected gene
subsets obtained by HBFSNRS only on training set. Then,

another ensemble classifier was built based on the above
classification results with each δ value in the similar way.

Here, we hypothesized that genes with higher occurrence
frequency are more likely to be important and cancer-related
genes. Therefore, we count the occurrence frequency of
each gene in all the selected gene subsets to measure its
significance. But for a specific cancer, different δ value may
select different sizes of the minimum gene subset. In this case,
only counting the occurrence frequency is not appropriate
for measuring the significance of genes. To avoid the selection
bias, the significance of genes is measured by occurrence of
probability, which is defined as

sig j =
1
t

t∑

i=1

fi j
ni ∗ ω

, (6)

where fi j is the occurrence frequency of gene j in all the gene
subsets which are selected by HBFSNRS with δi; t is the total
number of neighborhood values (we set t = 5 ); ni is the
number of genes in a selected gene subset with δi; ω is the
number of the final selected gene subsets by HBFSNRS (we
set ω = 500).

In order to further investigate the significance of the
selected gene, two main methods were used: (1) the selected
genes were regarded as predictor set or classification model;
(2) literature search and protein-protein interaction (PPI)
network analysis.

2.6. Dataset. To evaluate the performance of the proposed
method, seven gene expression datasets were used in this
study: Acute Lymphoblastic Leukemia (ALL) [17], Breast
cancer 30 (GSE5764) [18], Breast cancer 22(GSE8977) [18],
Colon cancer [19], Prostate cancer 102 [20], and Prostate
cancer 34 [21]. The two pairs of cross-platform datasets
were used to evaluate the generalization performance for
our cross-platform classification model. Datasets of Breast
cancer, Colon cancer, and Prostate cancer are two-class
classification systems that contain normal and tumor sam-
ples. ALL dataset is a multiple-class classification system.
The dataset contains six subtypes of ALL: BCR-ABL, E2A-
PBX1, Hyperdip >50, MLL, T-ALL, TEL-AML1. For Breast-
cancer datasets, there are too many (54675) affymetrix probe
identifiers, therefore the raw data were processed following
these steps: affymetrix probe identifier was converted to
entrez identifier. When multiple probes corresponded to the
same entrez ID, we averaged over these probe intensities. The
division of training set and test set is shown in Table 1.

3. Results

3.1. Redundant and Irrelevant Genes Potentially Degrade the
Classification Accuracy. To avoid overfitting problem and
improve classification accuracy and stability, an ensemble
classifier was constructed on the basis of the selected
gene subsets. We observed that the final integrated results
(Table 2) were not satisfactory and no higher classification
accuracy obtained compared to some individual classifiers.
The main reason may be that our methods used all the
selected gene subsets as classification model, which contain



Journal of Biomedicine and Biotechnology 5

Input 〈S,G,D〉, δ, θ, p, ω, r Max, and Depth//δ is the threshold to control the size of the neighborhood, θ is the
threshold of increment, p is the number of the preselected genes, ω is the search breadth, r Max is a given maximal
dependency function value and Depth is the upper bound of searching depth.
Output RED is the pool to contain the selected gene subsets red.
Step 1: For each gi ∈ G//Compute p-value by KWRST

Pi = KWRST(gi);
End

Step 2: gg = sort(P, “ascend”); //Rank genes by P in ascending order
Step 3: G∗ = Select(G, gg, p); //Select he p top-ranked genes as the initial gene set G∗ by P
Step 4: For each gi ∈ G∗//Let RED = {{g1}, {g2}, ...{gp}} be a set of gene subsets where each

gi → redi; //gene subset only has an informative gene.
redi → RED;

End
Step 5: iter = 1; //The times of iteration.
Step 6: For each red j ∈ RED

For each gk ∈ G∗ − red j

red j ∪ gk → RED; //Adding genes not listed in red j to red j and save it as elements of RED
γred j∪gk (D) = Card(Posred j∪gk

(D))/Card(S); //Compute dependence degree of D to red j ∪ gk .

End
End

Step 7: rr = sort(r, “descending”); //Rank gene subsets byrin descending order
RED = Select(RED, rr,w); //Select ω top-ranked gene subsets to reconstruct RED.

Step 8: If (maxiter(γ) >= r Max) or abs(maxiter(r)−maxiter−1(r)) < θ or (iter = Depth)
Break; //here, we define max0(r) = 0

Else
iter = iter + 1;
Go to step 6;

End

Algorithm 1: A heuristic breadth-first search algorithm based on neighborhood rough set (HBFSNRS).

Table 1: The division of training set and test set in our experiments.

No. Dataset Training set Test set No. of gene No. of class

1 ALL 148 100 12625 6

2 Breast cancer Breast30 Breast22 19802 2

3 Colon 42 20 2000 2

4 Prostate cancer Prostate102 Prostate34 12600 2

many redundant and tumor-unrelated genes and may poten-
tially degrade the classification performance. Figure 2 shows
the classification accuracy with different numbers of the top-
ranked genes sorted according to the significance of genes
defined as (6), from which we found that only a few top-
ranked genes were enough to obtain higher classification
accuracy. Meanwhile, when more genes were used as pre-
dictor set, there was only a little increase or even decrease
in the classification performance. Therefore, we inferred that
too many selected genes involve much more redundancy and
irrelevancy, which degrades the classification accuracy.

3.2. Comparison with Other Related Methods. In order to
elaborate the effectiveness of HBFSNRS, we compared the
accuracy of our approach with other common filter methods
including t-test, information gain, KWRST, and Relief-
F. The experimental results indicate that our method is
significantly superior to t-test and information gain, and

slightly outperforms KWRST and Relief-F in the aspect of
tumor classification. For simplicity, we only present KWRST
and Relief-F results here (Figure 2). We found that only a
few top-ranked genes could achieve higher accuracy in the
classification of tumor samples of different classes by our
proposed search algorithm. For ALL dataset, the prediction
accuracy by HBFSNRS is superior to other methods regard-
less of the much fewer genes used in cancer classification.
For breast-cancer dataset, using one active gene could test
outcome with the accuracy of 22.73% by Relief-F, 63.64%
by KWRST, whereas 100% test accuracy was obtained using
one gene by the proposed HBFSNRS method. For colon-
cancer dataset, using one, six active genes could get the
prediction accuracy of 80% and 85% by our method, 65%,
70% by Relief-F, and 65%, 75% by KWRST, respectively. For
prostate-cancer dataset, when using more than ten genes for
tumor classification, KWRST significantly outperformed our
method and Relief-F, but our method performs as well as the
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Figure 2: Comparison of classification accuracy with different numbers of top-ranked genes on the four test datasets by HBFSNRS, Relif-F,
and KWRST.

KWRST when only using the few top-ranked genes (both of
our method and KWRST could get 97.06% accuracy using
one gene). What is more, we compared our method with
other statistical methods PAM and ClaNC. PAM, a statistical
technique for class prediction from gene expression data
that uses nearest shrunken centroids, was used to identify

class predictor genes [22]. ClaNC ranks genes by standard
t-statistics, which does not shrink centroids and uses a
class-specific gene selection procedure [23]. In our context,
ClaNC slightly outperformed PAM, so we only present the
comparison with ClaNC here (Table 3). In comparison
with ClaNC, our method could obtain higher classification
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accuracy when using a few top-ranked genes. The one-gene
model by our method provides the classification accuracy
of 100%, 80%, and 97.06% for Breast-cancer, Colon-cancer,
and Prostate-cancer dataset, respectively, whereas ClaNC
requires more genes to get the same accuracy. In ALL dataset,
the test accuracies on independent test dataset are 87% with
six genes, 94% with 12 genes, and 97% with 18 genes by our
method. Using the same six, 12, 18 active genes could test
outcome with the accuracy of 86%, 95%, and 97% by ClaNC,
respectively, which indicates our method was comparable
for ALL dataset. As a comparison, the minimum genes with
the highest accuracy can be obtained in the classification
process by HBFSNRS. In addition, results show that our
method is obviously better than ClaNC in colon-cancer and
breast-cancer cross-platform datasets. It is likely that ClaNC
is not suitable for cross-platform datasets. We proposed
that these few genes whose expression profile vector showed
remarkable discrimination capability may closely correlated
to cancer and could be seen as possible disease signatures.

3.3. Analysis of the Top-Ranked Genes (Case Studies). Mining
genes that give rise to ontogenesis is one of key challenges
in the area of cancer research. Biologically the experimental
results proved that the selected genes with high classification
accuracy are functionally related to carcinogenesis or tumor
histogenesis, so we could infer that the few top-ranked genes
may be very important for tumor diagnosis. The 10 top-
ranked genes according to the sig score for each tumor
that were regarded as the candidate cancer genes listed in
Table 4. To demonstrate our method’s ability in uncovering
known cancer genes and predicting novel cancer biomarkers,
the breast-cancer dataset was employed to this study as the
method of [24].

First, we checked whether our method can uncover
known famous cancer genes. We downloaded a list of 25
breast cancer biomarkers that have been annotated in the
OMIM database [25]. Unfortunately, our used dataset (the
300 top-ranked genes selected by KWRST) does not include
the 25 known breast cancer genes. Therefore our method
cannot be evaluated with it in terms of uncovering known
cancer genes. From another point of view, it is verified that
higher differential expression of a gene does not necessarily
reflect a greater likelihood of the gene being related to cancer.
In other words, important genes might not be necessarily
differentially expressed. But it is undeniable that higher
differential expressions of genes are inevitably important in
the cancer diagnosis and development.

Next, literature search method was used to check whether
our method can predict novel cancer biomarkers. In the top
10 genes ranked by (6) for breast cancer, we found that
these genes play an important role in the occurrence of
breast cancer. The collagen triple helix repeat containing 1
(CTHRC1), ranked the first, whose aberrant expression is
widely presented in human solid cancers including breast
cancer and seems to be associated with cancer tissue invasion
and metastasis [26]. The PDZ and LIM domain protein 4
(PDLIM4), ranked the second, was frequently methylated
in breast cancers but not in normal breast tissues [27]. The
keratin, type I cytoskeletal 17 (KRT17), ranked the third,

was specifically overexpressed in basal-like subtypes of breast
cancer [28]. The secreted frizzled-related protein 1 (SFRP1),
ranked the fourth, was recently found to be associated with
progression and poor prognosis in early stage of breast
cancer [29]. The collagen alpha-1 (III) chain (COL3A1),
ranked the fifth, was up-regulated in both invasive ductal
and lobular carcinomas cells when compared with normal
ductal and lobular cells [30]. The peptidase inhibitor 15
(PI15), ranked the sixth, was also differentially expressed but
it was down regulated in lobular and ductal invasive breast
carcinomas [30]. The actin gamma-enteric smooth muscle
(ACTG2), ranked the seventh, is involved in the architecture
and remodeling of cytoskeleton in basal medullary breast
cancer [31]. The tissue factor pathway inhibitor 2 (TFPI2),
ranked the eighth, whose aberrant hypermethylation with
gene promoter was associated with metastasis in breast
cancer [32]. The serpin B5 (SERPINB5), ranked the ninth, an
epithelial-specific serine protease inhibitor, was a biomarker
in disseminated breast-cancer cells [33].The fibronectin 1
(FN1), ranked the tenth, was recently suggested to be
associated with the prognosis of patients with breast cancers
[34].

Finally, we examined gene pathway that involved by the
10 top-ranked genes. The study is carried out using the
software which can help the researchers to better under-
stand the biological phenomenon understudied by pointing
out significant cellular functions of the selected genes
from the webpage “http://vortex.cs.wayne.edu/projects.htm”
[35]. Results indicate that the pathways that the 10 top-
ranked genes are involved in are ECM-receptor inter-
action (COL3A1, FN1), focal adhesion (COL3A1, FN1),
vibrio cholerae infection (ACTG2), p53 signaling pathway
(SERPINB5), Small cell lung cancer (FN1), wnt signaling
pathway (SFRP1), regulation of actin cytoskeleton (FN1),
pathways in cancer (FN1), which agree well with current
knowledge on breast cancer [36]. Thus it can be seen that
the selected genes that closely related to adhesion, motility,
and metastasis may provide new insights in the underlying
molecular mechanisms related to disease development, in
designing therapy and in prognostication for patients with
breast carcinoma. Thus, the analysis of existing biological
experiment results of breast-cancer dataset well illustrates
that our method has great power of identifying tumor-
related genes.

Furthermore, another case study for prostate-cancer
dataset was presented here. In the 10 top-ranked genes, six
of them (HPN, MAF, GSTP1, WWC1, JUNB, and RND3)
have been reported to be associated with prostate cancer. The
hepsin (HPN), ranked the first, a cell surface serine protease
that is markedly up-regulated in human prostate cancer,
which is overexpression in prostate epithelium in vivo causes
disorganization of the basement membrane and promotes
primary prostate cancer progression and metastasis to liver,
lung, and bone [37]. The transcription factor (MAF), ranked
the second, was down-regulated in the tumors relative to
normal prostate tissue and may be regarded as the candidate
tumor suppressor gene [38]. The glutathione s-transferase P
(GSTP1), ranked the fourth, whose CpG island hyperme-
thylation is the most common somatic genome alteration

http://vortex.cs.wayne.edu/projects.htm


8 Journal of Biomedicine and Biotechnology

Table 2: Classification accuracy, sensitivity and specificity on all the test datasets by the ensemble classifier.

Dataset δ value (the number of genes in the selected gene subset)

ALL 0.32(8) 0.35(9) 0.44(13) 0.47(14) 0.66(20) integration

Accuracy 89.00 92.00 93.00 94.00 93.00 95.00

Breast 0.04(2) 0.21(2) 0.29(2) 0.30(2) 0.69(3) integration

Accuracy 86.36 90.91 90.91 90.91 95.45 90.91

Sensitivity 100.00 100.00 100.00 100.00 93.33 100.00

Specificity 57.14 71.43 71.43 71.43 100.00 71.43

Colon 0.03(2) 0.04(2) 0.82(6) 0.92(3) 0.13(2) integration

Accuracy 70.00 75.00 75.00 80.00 75.00 75.00

Sensitivity 75.00 75.00 75.00 83.33 75.00 75.00

Specificity 62.50 75.00 75.00 75.00 75.00 75.00

Prostate 0.13(4) 0.20(5) 0.26(5) 0.57(5) 0.62(5) integration

Accuracy 94.12 91.18 88.24 88.24 97.06 91.18

Sensitivity 100.00 100.00 100.00 100.00 100.00 100.00

Specificity 92.00 88.00 84.00 84.00 96.00 88.00

Table 3: The comparison with the ClaNC method in classification accuracy.

Method Number of genes selected per subclass: n (all: n× c)
1 2 3 4 5 6 7 8 9 10

ClaNC

ALL(×6) 86.00 95.00 97.00 99.00 98.00 99.00 99.00 99.00 99.00 98.00

Breast(×2) 50.00 40.91 45.45 45.45 40.91 40.91 40.91 40.91 40.91 40.91

Colon(×2) 65.00 65.00 65.00 70.00 70.00 75.00 75.00 75.00 75.00 75.00

Prostate(×2) 73.53 85.29 79.41 76.47 76.47 79.41 79.41 76.47 76.47 79.41

Method
Number of all genes selected

1 2 3 4 6 8 12 18 24 30

HBFSNRS

ALL 41.00 71.00 73.00 82.00 87.00 94.00 94.00 96.00 96.00 97.00

Breast 100.00 95.45 86.36 86.36 86.36 90.91 86.36 77.27 86.36 86.36

Colon 80.00 70.00 80.00 70.00 85.00 80.00 75.00 75.00 75.00 75.00

Prostate 97.06 91.18 82.35 82.35 79.41 82.35 88.24 85.29 85.29 88.24

described for human prostate cancer [39]. The gene WWC1,
ranked the sixth, was found to interact with histone H3
via its glutamic acid-rich region and that such interaction
might play a mechanistic role in conferring an optimal
ER transactivation function as well as the proliferation of
ligand-stimulated breast-cancer cells [40]. The transcription
factor jun-B (JUNB), ranked the seventh, is an essential
upstream regulator of p16 and contributes to maintain cell
senescence that blocks malignant transformation of TAC.
JUNB thus apparently plays an important role in controlling
prostate carcinogenesis and may be a new target for cancer
prevention and therapy [41]. The Rho-related GTP-binding
protein RhoE (RND3), ranked the ninth, a recently described
novel member of the Rho GTPases family, was regarded as
a possible antagonist of the RhoA protein that stimulates
cell cycle progression and is overexpressed in prostate cancer
[42]. The remaining genes were not identified to correlate to
prostate cancer previously. These genes need further analysis.

Genes related to a specific or similar disease phenotype
tend to be located in a specific neighborhood in the protein-
protein interaction network, and a protein is likely to be

coexpressed with its interaction partners and those proteins
that have similar function. Here, we applied a protein-
network-based method to analyze the effect of neighborhood
partners on the selected genes using all interactions in the
Human Protein Reference Database [43]. Figure 3 indicates
the protein-interaction network for each top-ranked gene of
prostate cancer (KIAA0430 has no interaction partners in
HPRD). The red-ellipse nodes represent the 10 top-ranked
genes that were ranked by the sig score in (6), among which,
those with an asteroid sign means known cancer genes. The
diamond nodes indicate the direct interaction partners of the
selected genes that were not cancer genes, and blue-octagon
nodes show those partners that are identified as known
cancer genes which were collected by querying the Memorial
Sloan Kettering computational biology website, “Oncogene”,
“tumor suppressor”, and “stability” are shown as [4, 44].
Among the 10 top-ranked genes for prostate-cancer dataset
(Figure 3), 6 genes (ABL1, JUNB, MAP, P4HB, GSTP1, and
RND3) that listed with an asteroid sign have been identified
to be known cancer genes. Here, we mainly illustrate the
three genes P4HB, PEX3, and ABL1 that we did not find
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Table 4: The 10 top-ranked genes selected for the four datasets.

Four datasets

ALL Breast cancer Colon cancer Prostate cancer

gene symbol sig gene symbol sig gene symbol sig gene symbol sig

LRMP 0.0801 CTHRC1 0.1212 DES 0.0895 HPN 0.174

TCFL5 0.0569 PDLIM4 0.0476 MYH9 0.0834 MAF 0.1248

CD99 0.0526 KRT17 0.0321 C3 0.062 ABL1 0.0457

MPP1 0.0483 SFRP1 0.0292 FUCA1 0.0538 GSTP1 0.0225

CD72 0.0399 COL3A1 0.0261 CSRP1 0.0427 KIAA0430 0.0216

NONO 0.0377 PI15 0.0258 MT2A 0.0421 WWC1 0.0192

DNTT 0.0345 ACTG2 0.0241 TSPAN7 0.0346 JUNB 0.0164

PLXNB2 0.0329 TFPI2 0.0217 2-Sep 0.0294 PEX3 0.0153

ECM1 0.0325 SERPINB5 0.0203 FXN 0.0236 RND3 0.0151

SMARCA4 0.0296 FN1 0.0186 PMP22 0.0214 P4HB 0.0146
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Figure 3: The protein-interaction network associated with the ten top-ranked genes for prostate cancer.
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reports on their association with prostate cancer. In the three
genes, P4HB and ABL1 have been known as cancer genes.
PEX3 is also a famous disease gene which was the cause
of peroxisome biogenesis disorder, complementation group
12, and zellweger syndrome. It can be seen that mutation in
these genes can lead to many diseases and may have a close
relationship with prostate cancer. In this sense, our method is
effective on cancer-related gene selection. Recently, Aragues
et al. [4] suggest that cancer linker degree (CLD) of a protein
which was defined as the number of cancer genes to which
a gene is connected is a good indicator of the probability of
being a cancer gene. We analyzed the cancer linker degree
(CLD) of 10 top-ranked genes on each of the four datasets.
For prostate cancer, as is shown in Figure 4, most of the top-
ranked genes have a direct interaction with known cancer
genes excluding the gene PEX3, and the CLD of ABL1, JUNB,
WWC1, MAF, P4HB, GSTP1, HPN, and RND3 is 46, 13, 2, 6,
7, 1, 1, and 1, respectively. In the 10 top-ranked genes of ALL
(TCFL5 and LRMP have no interaction partners in HPRD),
SMARCA4, DNTT, and NONO are known cancer genes,
and the CLD of SMARCA4, DNTT, NONO, CD72, MPP1,
and CD99 is 19, 3, 6, 1, 2, and 2, respectively. For breast
cancer, CTHRC1, PI15, and SERPINB5 have no interaction
partners in HPRD. In the remaining 7 genes of 10 top-
ranked genes, SFRP1 and TFPI2 are known cancer genes,
and SFRP1, TFPI2, FN1, COL3A1, and KRT17 have a direct
interaction with known cancer genes, the CLD of which is
2, 1, 17, 2, and 1 respectively. For colon cancer, FUCA1 has
no interaction partners in HPRD. In the remaining 9 genes,
MYH9 is a known cancer gene, the CLD of DES, MYH9, C3,
and 2-Sep is 4, 3, 1, and 1, respectively. These results show
that besides a few selected genes that typically correspond
to known specific cancer mutations, a considerable portion
of the top-ranked genes have many direct interactions with
cancer genes, which suggests that these genes should be very
likely to be involved in cancer and may play a central role in
the protein network by interconnecting many known cancer
genes, and thus the top ranked genes can be regarded as
reliable disease biomarkers.

4. Discussions and Conclusions

4.1. Better Performance on Tumor Classification and Gene
Selection and Prioritization. An ongoing challenge is to
identify new prognostic markers that are directly related to
disease and that can more accurately predict the likelihood
of gaining cancer in unknown samples. Results indicate
that our proposed method of gene selection by HBFSNRS
has the following advantages in trying to tack this chal-
lenge. (1) Our method could obtain the highest or near
highest prediction accuracy of tumor classification with
the minimum gene subset. (2) Lists of ranked potential
candidate cancer biomarkers with a specific cancer are
presented by our approach. (3) Our proposed method can
obtain many optimal gene subsets in a short period of
time, which is essential to the whole search process. (4)
Compared to other gene ranking methods KWRST and
Relief-F, our method is relatively stable and contains little

chance factors. The success of our methods, gene selection
by HBFSNRS, can be attributed to a combination of several
aspects. First, we adopted the dependence function of NRS
to evaluate the goodness of selected gene subsets. There are
two main advantages for this point: time saving and tumor
classification without the feedback and leaked information of
the test dataset. Second and more importantly, the designed
process of gene search by our method can select any number
of optimal gene subsets in a comparatively short time, which
is an optimization of best-first search. Finally, considering
the selection of δ value in the evaluation of gene subsets
has the problem that the genes with different δ value will
have different ranked positions or relevance to cancer. To
avoid this problem of selection bias, we defined a sig score to
describe the significance of genes by combining five groups of
results that obtained by each δ value. We presented two case
studies on breast cancer and prostate cancer to illustrate the
power of our method to identify tumor-related genes. Our
method illustrates well its high power of tumor classification
and gene prioritization.

4.2. Limitation and Extension. One limitation of our
approach is in data quality: current high-throughput tech-
nologies remain error prone and may be far from complete.
In a recent paper, Zhang et al. [45] held that the integration
of microarray data gives us more analytical power and
reduces the false discovery rate. Given a specific cancer,
efficient ways to integrate multiple independent microarray
data may be a good way to solve the issue of data quality.
The other limitation is the optimization of the threshold
value of neighborhood rough set. On one hand, we tried the
neighborhood rough set reduction method to evaluate the
goodness of the selected gene subsets to save time in tumor
classification without using the feedback information of the
test dataset. On the other hand, the threshold selection is
obtained through the feedback information of the test set. In
addition, different δ values may select different gene subsets,
hence the genes with different δ value will have different
positions in gene prioritization, so the selection of δ has
become more critical for gene prioritization. Fortunately, the
choice of δ is not so important for gene ranking because the
change of gene position in different δ values is not significant.
In our study, Spearman’s rank correlation coefficient was
used to determine whether there is a consistency between the
results of gene prioritization with different δ values. Results
indicate that there is high consistency among these results.

4.3. Future Work. Our proposed HBFSNRS method has
improved the performance of tumor classification based on
microarray and identified and prioritized lists of poten-
tial tumor-related genes from GEP, our future work will
benefit further from integrating other sources. Recent
high-throughput technologies have produced vast amounts
of protein-protein interactions, which represent valuable
resources for candidate-gene prioritization and give us new
insights into the mechanism of disease. A great number of
studies have shown that integration of multiple sources of
data is more reliable for predicting cancer genes than the use
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of a single criterion [4, 46–48]. Thus, it is an efficient method
to integrate GEP and protein interaction network for gene
prioritization. Although gene expression data and protein
interaction data have been integrated for gene prioritization
[49, 50], the results are not satisfactory. Therefore, it is still a
challenging problem in the area of cancer research.
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