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Abstract: Mutualistic symbiosis and eusociality have developed through gradual evolutionary
processes at different times in specific lineages. Like some species of termites and ants, ambrosia
beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has
been associated with the evolution of complex social behaviors in some members of this group.
We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus–Fusarium
euwallaceae and Xyleborus glabratus–Raffaelea lauricola) to find evolutionary signatures associated with
mutualism and behavior evolution. We identified signatures of positive selection in genes related
to nutrient homeostasis; regulation of gene expression; development and function of the nervous
system, which may be involved in diet specialization; behavioral changes; and social evolution in this
lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with
phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution
of conserved genes in social species, and an evolutionary rate acceleration related to changes in
selective pressures in mutualistic lineages.

Keywords: mutualism; sociality evolution; ambrosia beetle complexes; polyphagous shot hole borer;
redbay ambrosia beetle

1. Introduction

By definition, mutualistic symbiosis increases the fitness of all participant partners, at least in
terms of inclusive fitness [1]. Therefore, mutualistic lineages are interdependent, and natural selection
drives their coevolution [2]. Elucidating how these mutualistic partnerships influence genes and
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genomes is essential to understanding complex ecological interactions in an evolutionary context,
and is thus a fundamental aim of life sciences.

One of the most notable cases of mutualistic symbiosis in nature is the farming of fungi by several
insect groups [2]. Nutritional mutualistic symbiosis with fungi has evolved over tens of millions
of years in Attini ants, Macrotermitinae termites, and Scolytinae or Platypodinae ambrosia beetles,
enabling these organisms to colonize new ecological niches [1,2]. Of these fungus-associated lineages,
ambrosia beetles are probably the least studied, and constitute an interesting model system for studying
the evolutionary transition to an obligate mutualism in insects.

Ambrosia beetles comprise a polyphyletic species assemblage that includes some members of
the Scolytinae and Platypodinae subfamilies, in which fungus farming has evolved independently at
least 12 times as the dominant ecological strategy [3,4]. Tracking physiological and behavioral traits
indicates coadaptation to a mutualistic lifestyle with fungi. For instance, they have evolved specialized
integument structures called mycangia, where fungal spores are transported for their cultivation on
the walls of intricate gallery systems bored into the xylem of host trees [5–7]. Moreover, the presence of
the beetles can trigger physiological responses from the fungus, including the development of fruiting
bodies [8], indicating sophisticated inter-species regulatory processes, which are likely the result of
intensive long-term coevolution.

Caring for the fungal gardens involves cooperative behavior, and could be related to the decrease
of inter- and intra-specific competition for food [5,9,10]. It has been proposed that these factors have
promoted, through gradual evolutionary processes, the development of a facultative eusocial system
in some lineages of ambrosia beetles [11]. While full eusocial behavior in ants and termites includes a
division of individuals into groups called castes, with most individuals being unable to reproduce,
the social structure observed in some scolytine beetles is less specialized [9–11]. This facultative
eusociality is characterized by the overlapping of generations, parental care, division of labor
between adults and larvae (age polyethism), and cooperative brood care, as has been described
in Xyleborus affinis and Xyleborinus saxeneii [12–14].

Although, strictly speaking, this facultative eusociality has only been described in two species of
the Xyleborini tribe [13,15,16], several factors suggest that high levels of sociality are conserved within
this monophyletic group. The species of this tribe are haplodiploid, and typically mate among siblings
within their natal brood chamber [17–19]. Their high genetic relatedness due to inbreeding and the
high costs of dispersal potentially benefits the evolution of cooperative behaviors within the natal
gallery (e.g., by fungus gardening, gallery extension, offspring feeding, and cleaning) [20], and could
favor the evolution of facultative eusociality.

There are two general and not mutually exclusive hypotheses that explain the molecular
mechanisms underlying the evolutionary transition from solitary living to sociality in insects, one based
on changes in gene regulation and another based on protein sequence evolution [21–23]. The former,
known as the ‘genetic toolkit’ hypothesis, proposes that deeply conserved genes and gene networks
with roles in solitary behaviors are co-opted through changes in gene regulation, leading to the
evolution of social traits such as social foraging, reproductive dominance, and age polyethism [21–23].
The second hypothesis postulates that a wide diversity of behaviors and phenotypes arose through the
expansion, neofunctionalization, and selection of lineage-specific gene families involved in functions
such as carbohydrate metabolism, glandular development, and signal transduction [21–23]. Research
supports both general hypotheses, and shows highly conserved genes affecting the expression of
complete networks that are caste-biased and influence social traits [24–27], and a small overlap of
genes associated with social behavior among distant lineages [26,28–30]. Moreover, role division in
animal social groups implies traits which increase the fitness of other members of the group, often at
the expense of the individuals harboring the trait. In alloparental care, for example, individuals care
for their siblings, instead of devoting those efforts to producing their own brood [6]. These altruistic
behaviors can be explained through kin selection and inclusive fitness [31,32], where caring for related
individuals increases the overall fitness of the related genotype, as it is shared between individuals
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in some proportion. Therefore, natural selection through inclusive fitness should play a role in the
evolution of sociality.

In this context, recent comparative genomic research has identified genomic signals associated
with social evolution in ants and termites. Expansion and positive selection of gene families involved in
the production and perception of pheromones, caste determination, molting, and metamorphosis has
been documented for termites [33]. Meanwhile, Attine ant genomes show very high rates of structural
rearrangement [34] and changes in the regulation of gene expression between castes, which could
be associated with the rate of evolution of genes with specific caste profiles, as well as genes coding
transcriptional regulators [35]. Changes in the molecular evolutionary rate have also been found in
organisms with mutualistic lifestyles, such as an accelerated substitution rate in lichen species [36]
and increased rates of genome evolution in the Pseudomyrmex ants that form mutualistic rather than
generalist relationships with plants of the genera Acacia, Triplaris, and Tachigali [37].

In order to identify genomic signals associated with the evolution of obligate mutualism and
putative facultative eusociality in ambrosia beetles, we performed an evolutionary analysis based on
the transcriptome sequencing of two ambrosia complexes (beetle and fungi): the polyphagous shot
hole borer (PSHB), Euwallacea sp. near fornicatus–Fusarium euwallaceae S. Freeman, Z. Mendel, T. Aoki
& O’Donnell [38,39] and Redbay ambrosia beetle (RAB) Xyleborus glabratus Eichhoff, 1877–Raffaelea
lauricola T.C. Harr., Fraedrich & Aghayeva 2008 [40]. These two complexes belong to the monophyletic
Xyleborini tribe, and have been recently described as very hazardous pests for forest health, landscape
trees, and the avocado industry, being the causal agents of the diseases commonly known as Fusarium
dieback and laurel wilt, respectively [5,39,41–44].

We jointly sequenced the transcriptome of the beetles and the fungi present in their bodies.
We performed a screening to separate the fungus-like sequences from the beetle sequences, to assess
their functions and their relation to the establishment of their mutualistic interactions.

Finally, we performed a comparative analysis between the transcriptomic data of these two
ambrosia beetles and the genomes of other insects. The species considered in the comparative analysis
exhibit a wide range of social structures, from solitary to eusocial, and represent four independent
origins of sociality (termites, bees, ants, and wasps). Moreover, we included an independent origin
of fungus farming mutualism by adding the genomes of four Attini ant species to the comparative
analysis. Through this approach, we identified genes that have been selected during the evolution of
obligate mutualism and sociality in ambrosia beetles; we further evaluated the relationship between the
molecular evolutionary rate and both sociality and obligate mutualism in insects that have convergently
evolved these traits.

2. Materials and Methods

2.1. Beetle Collection

Xyleborus glabratus beetles were collected from silk bay (Persea humilis Nash) trees from Highlands
County, Florida showing laurel wilt symptoms, including wilted foliage and strings of boring dust from
numerous small holes. Visibly infested branches with diameters larger than 3 cm were placed in an
insect emergence chamber to allow the beetles to emerge from the galleries. Once emerged, the beetles
were sorted, identified, and stored in a commercial RNA-stabilizing buffer (RNAlater; Ambion) until
RNA isolation. Beetle collection and identification were performed as described previously by Johnson
et al. 2018 and Hulcr et al. 2017 [4,5]. Due to the low presence of X. glabratus among the collected
beetles, around 5–7 live adult females were used for total RNA isolation.

2.2. Reared Beetles

Euwallacea sp. near fornicatus beetles were harvested from established colonies maintained
at the University of California Riverside (UCR) Insectary and Quarantine facility. These colonies
were initially established from live adult females, collected from avocado wood showing Fusarium
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dieback disease symptoms. Insects were raised on a semi-artificial diet based on the modified recipe of
Biedermann et al. 2009 [12]. The diet was comprised of 1.5 g Wesson’s salt, 6 g sucrose, 6 g yeast extract,
6 g potato starch, 12 g casein, 35 g agar, 236 g castor bean sawdust and 685 mL water. The ingredients
were mixed together inside a plastic tub before being packed into 15 mL Falcon centrifuge tubes. Tubes
containing the diet were autoclaved at 120 ◦C for 40 min and allowed to rest for two days before use,
to allow the evaporation of excess moisture. A single adult mated female was placed inside each tube,
which was sealed with cotton. Beetles could form galleries within the media at 25 ◦C and ambient
humidity. Every six weeks, female adults were then harvested from colony tubes by removing the
media from the tube and dissecting them. A total of 60 live adult females were used for RNA isolation.

2.3. RNA Isolation, Library Preparation and Sequencing

Total RNA was isolated with TRIzol reagent (Life Technologies, Carlsbad, CA, USA) and purified
with the RNeasy MiniElute kit (QIAGEN, Venlo, The Netherlands) according to the manufacturer’s
instructions. In the case of E. nr. fornicatus, around 50% of the collected beetles were dissected to
independently extract the total RNA from two sections: head-thorax and abdomen. The remaining
insects were used to obtain RNA from the whole body. In the case of X. glabratus, RNA was isolated
from the whole body only, due to the limited number of beetles collected. RNA integrity was
assessed by chip-based capillary gel electrophoresis using an Agilent 2100 Bioanalyzer system (Agilent
Technologies, Santa Clara, CA, USA). The RNA concentration was determined by absorbance at 260 nm
using a NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
A total of 500 ng RNA was used as input material to prepare each of the four RNA-seq libraries used
in this study. We used the RNA-seq method based on poly(A) selection, which enriches for eukaryotic
mRNA and other polyadenylated RNA molecules. This method is the most common protocol used
in whole transcriptome sequencing projects because it provides a broad, detailed, and accurate view
of the transcriptional landscape of the protein-coding genes. The TruSeq RNA Sample Preparation
Kit (Illumina, San Diego, CA, USA) was used for this purpose, adding specific indexes to each of
the sequenced samples. All libraries were sequenced on a NextSeq 550 platform (Illumina) using a
2 × 150 bp paired-end sequencing protocol, whereby 150 bases from each side of the DNA strands
were sequenced.

2.4. Data Processing, Assembly, and Functional Annotation

Prior to the assembly process, low-quality reads were removed from the analysis according
to previously defined criteria (Table S1). Paired-end reads with an average Phred quality score
lower than 30, and in which at least 90% of the bases along the sequence failed to meet a Phred
quality score of 20 or greater, were filtered out. A python-based script was used for this purpose
(https://github.com/Czh3/NGSTools/blob/master/qualityControl.py).

Considering that in ambrosia beetle complexes, both insects and fungi are eukaryotic organisms,
and fungi spores are contained inside the mycangia of the beetles, sequences from both (fungi and
insect) were expected to be found in the sequenced libraries, although in different proportions.
Therefore, before de novo assembly, screening was performed to identify fungus-like sequences,
using the Hisat2 2.1.0 program [45]. Reference sequences used consisted on whole genome
sequences and/or unique-transcript collections resulting from transcriptomic studies, available in
public databases such as JGI (https://genome.jgi.doe.gov/portal/ [46,47]) and GeneBank (https:
//www.ncbi.nlm.nih.gov/). Only available sequences from fungi associated with ambrosia beetles
were included [48–50] (see Table S2 for more details, [48–53])

The sequences were divided into four datasets based on the process described above: X. glabratus
sequences, fungus-like sequences obtained from X. glabratus, E. nr. fornicatus, and fungus-like
sequences obtained from E. nr. fornicatus. High-quality paired-end reads from each of these four
datasets were independently assembled using Trinity 2.4.0 software [54] (Table S3), producing
expressed sequences, which can be called transcript unigenes [55]. Before the annotation process,

https://github.com/Czh3/NGSTools/blob/master/qualityControl.py
https://genome.jgi.doe.gov/portal/
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unigenes were processed with AlignWise [56], a pipeline which drives several programs such as
BLAST [57], Muscle [58], and GeneWise [59] to identify and correct out-of-frame insertions/deletions
in coding regions through a homology-based method. We created a database containing coding
sequences and their corresponding proteins from 10 beetle genomes and 11 from other insects for
homology-based correction of beetle transcriptomes (Table S4: A1–A3; [33,34,60–73]); the coding
sequence and protein sequences of the fungal reference database (Table S2) were used to perform this
step for fungus-like sequences.

After correcting the frame-shifts, redundant sequences were eliminated with BlastClust (https:
//www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html). A sequence was considered
redundant if it showed an identity of at least 95% over 90% or more of the length of the sequences
being compared. Only sequences longer than 30 amino acids were kept for further analyses.

To further reduce the presence of contaminating sequences in the two beetle-sequence datasets,
we searched for fungus-like sequences that could have been missed in the first screening. This time,
considering that distinct fungal species could be associated with the ambrosia beetles, the search
was conducted among the unigenes obtained after the assembly and sequences-correction processes.
BLASTp similarity searches (e-value ≤ 10−10) were independently performed against two distinct
databases, one containing the proteins codified in the whole genome of 811 fungal species obtained
from the ENSEMBLFungi genome browser (https://fungi.ensembl.org/species.html), and the other
with the proteins codified in the genome of 12 distinct insect species (Table S4: A2). The unigenes with
putative homologs identified in both databases were sorted based on bit-score value (from highest to
lowest), and were treated as fungal sequences if they had a higher bit-score for the fungal database
than for the insects. Other stringency parameters such as the identity and the coverage between the
unigenes and their homologs were also considered (identity had to be at least 90% and coverage at
least 70%).

The annotation process for the four generated transcriptomes included a functional classification
and a search for similar sequences in sets of identified proteins in the genome sequences of some
species, considered as references mainly due to the quality of their genome annotation and/or the
phylogenetic relationships. Functional annotation was carried out by InterproScan5 analysis [74,75]
using the applications Pfam [76,77], TIGRFAM [78], PIRSF [79], and SUPERFAMILY [80]. Functional
categories were inferred from gene ontology (GO) information [70]. Furthermore, BLASTp analyses
of beetle transcriptomes were conducted using Dendroctonus ponderosae, Drosophila melanogaster,
and Apis mellifera as reference species. Moreover, we used Raffaelea lauricola and Fusarium euwallaceae
proteomes in the fungus-like sequence, searching (BLASTp) and Gene Ontology (GO) terms enrichment
analysis. These proteomes were obtained through the gene model prediction in previously sequenced
genomes ([48,49]; Table S2), which are available through the NCBI database. Ab initio and
evidence-direct predictor AUGUSTUS [81,82] was used to generate these first versions of the gene
models, which were corrected and improved by MAKER pipeline [83,84], entering the whole genome
sequences with masked transposable elements, the available transcriptional dataset [49,85], and a
reference protein database containing complete proteomes from some ascomycetes available from the
JGI database.

2.5. Data Availability

Raw transcriptome data of the beetle transcriptomes are available from the NCBI Sequence Read
Archive under the accession number PRJNA495609.

2.6. Ortholog Group Identification

We identified ortholog genes among X. glabratus, E. nr. fornicatus, and other beetle species
(Dendroctonus ponderosae, Leptinotarsa decemlineata, Tribolium castaneum, and Oryctes borbonicus) to gain
insight into the selection acting on molecular traits related to the obligate mutualism, as well as to the
facultative eusocial behavior displayed by these fungus-farming beetle species. The comparison also

https://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
https://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
https://fungi.ensembl.org/species.html
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included the genomes of other insects with a variety of forms of social organization (Apis mellifera,
Polistes dominula, Cerapachys birori, Zootermopsis nevadensis, and Cryptotermes secundus), solitary lifestyles
(Frankliniella occidentalis), and fungus-farming mutualistic behaviors (Atta cephalotes, Acromyrmex
echinatior, Trachymyrmex zeteki, and Cyphomyrmex costatus) (Table S4: A3).

To identify and distinguish homologs and orthologs across compared species, we used the
get_homologues.pl script [86,87]. GET_HOMOLOGUES is a versatile software package which
combines tools such as OrthoMCL [88] and BLAST [57]. OrthoMCL is an analysis pipeline that
uses reciprocal BLAST and the Markov cluster (MCL) algorithm [89] to infer and group orthologs
(and paralogs) across multiple taxa. Gene families from predicted proteins were identified using a
default MCL inflation value of 1.5, as well as a threshold value of 10−10, and a minimum percent of
coverage of 75 in the BLAST step. Only those families with a single-copy gene per species were used
for phylogenetic inference and evolution rate calculation (see below).

2.7. Evolutionary Analysis

We considered all gene families present in 3 or more species for downstream analyses. Multiple
sequence alignments were obtained for each gene family, using amino acid sequences with MAFFT [90].
The amino acid alignments were used to obtain codon-based alignments using PAL2NAL v14 [91].
Unigenes with inconsistencies between peptide and nucleotide sequences were discarded from further
analysis. Nucleotide alignments were used to construct approximate maximum likelihood (ML)
phylogenies with FastTree Version 2.1.9 [92], using the generalized time-reversible evolution model
and the Shimodaira-Hasegawa test for branch support calculation.

Characterization of selective processes based on non-synonymous (dN) versus synonymous (dS)
rates of protein-coding sequences was performed using the HyPhy v2.2 package (https://veg.github.
io/hyphy-site/). FEL-contrast (fixed effect likelihood; [93]) was used to identify individual codons
with significant changes in dN/dS ratio associated with the adaptation to the mutualistic ecological
trait. In order to find lineages which have experienced natural selection pressures, we used aBSREL
(adaptive branch-site random effects likelihood; [94]), a method to test for lineage-specific signals of
positive selection within a gene family phylogeny.

With the concatenate of 98 single-copy ortholog protein sequences, we constructed an ML
phylogeny with PhyML [95] using a JTT+G+I model for substitution, selected by SMS analysis [96]
according to Akaike information criterion, and Bootstrap resampling for estimating branch support.
Species divergence times were estimated using a Bayesian Markov chain Monte Carlo (MCMC)
approach, calculating the approximate likelihood, as implemented in MCMCTree from the PAML
4.9 package [97], using the minimum-divergence ages reported for Hymenoptera, Coleoptera,
Thysanoptera and Isoptera clades [98]. We ran two parallel MCMC chains for 11 million generations,
sampling every 500 generations and specifying an initial burn-in of one million generations.
We confirmed convergence between the two chains using tracer v1.6 [99]. The concatenated single-copy
ortholog alignment, the species tree, and the dated phylogeny are available in TreeBase (submission
ID 23203).

Previous studies found independent events of acceleration in substitution rates associated with
a convergent mutualistic lifestyle in ants of the Pseudomyrmex genus [37]. In order to test for any
difference in the substitution rates between mutualists and generalists within our dataset, we analyzed
the association between nutritional mutualism with fungi as a binary ecological trait, and evolutionary
rates among the species of insects studied. To this end, we used TraitRareProp [100,101], which detects
trait-dependent evolutionary rate shifts in sequence sites. Terminal branches were assigned to a state
of obligate mutualism, 1 or 0. All the attine ants (Cyphomyrmex costatus, Atta cephalotes, Acromyrmex
echinatior, Trachymyrmex zeteki), ambrosia beetles (X. glabratus and E. nr. fornicatus), and Dendroctonus
ponderosae received a mutualist state assignment, based on the knowledge of their mutualistic symbiosis
with fungi. Due to the intermediate nature of the mutualism in D. ponderosae, we ran this same analysis
considering only strict fungus farming species and excluding this species, to analyze the differences

https://veg.github.io/hyphy-site/
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between these two types of mutualism (Figure S5). Additionally, we conducted a TraitRateProp
analysis with sociality as ecological binary trait, considering eusocial (Apis mellifera, Polistes dominula,
Cerapachys birori, Atta cephalotes, Acromyrmex echinatior, Trachymyrmex zeteki, Cyphomyrmex costatus,
Zootermopsis nevadensis, and Cryptotermes secundus) and facultative eusocial species (X. glabratus and
E. nr. fornicatus) as social insects.

Finally, GO term enrichment analysis was performed using topGO R package (https:
//bioconductor.org/packages/release/bioc/html/topGO.html) to evaluate the possibility of
over-represented terms among the genes with signals of positive selection, using all genes present at
the transcriptome of each organism as the gene universe. To assess possible GO terms over-represented
among the genes with decreased or increased evolutionary rates associated with mutualism, all the
single-copy ortholog genes were used as the gene universe. In both cases we focused on the biological
process (BP) category and used Fisher’s exact test for the statistics. A p-value of ≤ 0.01 was considered
the threshold to select significant results.

2.8. Differential Expression Analysis

We analyzed the differential expression patterns of beetle and fungal genes between the three
datasets of E. nr. fornicatus–Fusarium euwallaceae complex: abdomen, head-thorax and whole body.
We used RSEM 1.2.17 [102] to quantify the gene expression and test for significant expression differences
between tissues.

Paired unassembled reads of each sample were aligned to the unigene transcript sequences with
Bowtie 2 [103]. From this mapping, we obtained a matrix of raw read counts and TMM-normalized
FPKMs (i.e., trimmed mean of M values-normalized fragments per kb of transcript per million
reads mapped) expression values per unigene transcript. For the differential expression analysis,
we considered that each sample in our data represented a single biological replicate and used edgeR
package [104] to calculate the negative binomial dispersion across conditions from the read counts of
genes, using a dispersion parameter of 0.1. For the test of significant tissue enrichment, p values from
the differential expression analyses were adjusted for false discovery rate (FDR) with the Benjamini
and Hochberg correction [105]. Only genes with p-adjusted ≤ 0.01 were considered as differentially
expressed genes. According to this and total expression profiles, each gene then received a category of
organ localization: organ-specific, organ-enriched, or whole body.

3. Results

We generated two de novo transcriptome assemblies of 221.3 and 110.6 Mb, for E. nr. fornicatus and
X. glabratus respectively (Table 1). 82% of E. nr. fornicatus and 79% of X. glabratus predicted unigenes
were functionally annotated with either InterProScan5 or BLASTp. The genome with the highest
proportion of homologous genes was D. ponderosae for both ambrosia beetle transcriptomes.

Table 1. Assembly and annotation statistics for the two ambrosia beetle transcriptomes sequenced in
this study.

Euwallacea sp. near fornicatus Xyleborus glabratus

Total high-quality paired reads 61,919,467 68,243,721
Total number of assembled transcripts 248,739 150,163

N50 (bp) 1636 1261
Total assembled bases 221,342,598 110,621,067

Average contig length (bp) 889.86 736.67
Total number of predicted unigenes 68,490 46,814
InterproScan5 annotated unigenes 56,315 34,612

BLASTp annotated unigenes 55,115 37,188

Based on the comparison of unassembled reads and assembled transcripts against the fungal
databases, we identified 16,738 putatively fungal unigenes obtained from X. glabratus and 10,925 from

https://bioconductor.org/packages/release/bioc/html/topGO.html
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E. nr. fornicatus transcriptomes, of which 95.03 and 90.94% showed homology with Raffaelea lauricola
and Fusarium euwallaceae proteomes respectively and were considered as separate datasets for
further analyses.

Enrichment analysis of fungal-related sequences against F. euwallaceae and R. lauricola proteomes
revealed 10 GO categories enriched in both fungus-like gene sets within E. nr. fornicatus and X. glabratus
transcriptomes, involved in constitutive functional categories such as translation, vesicle transport
and exocytosis, splicing, ATP hydrolysis, proteolysis, and protein folding (See Table S5). Particularly,
the X. glabratus fungal sequence set was enriched in the isoprenoid biosynthetic process category
(GO:0008299).

3.1. Gene Family Analysis

A gene family analysis for E. nr. fornicatus and X. glabratus transcriptomes was conducted with
genomes from 14 other insects (TableS4: A3), to evaluate the genomic signals associated with the
evolution of mutualistic lifestyle and social behavior in ambrosia beetles.

A total of 107,701 gene family clusters were retrieved, where 2475 families were shared by most
of the analyzed species (~90%) and 10,565 were moderately conserved among taxa (~60%). The core of
homologous genes conserved in all compared species consisted of 946 gene families.

E. nr. fornicatus and X. glabratus were the datasets with the largest proportion of unique gene
families (23,412 and 24,945 respectively), mostly consisting of a single member that may be attributable
to the presence of gene isoforms in both transcriptome datasets. Furthermore, both ambrosia beetle
species shared 6946 gene families, of which 1714 are potentially unique for this clade and lack
homologues in any other of the compared genomes, while containing mainly unclassified proteins,
as well as genes related to the cellular process (GO:0009987) and cellular component organization or
biogenesis (GO:0071840) functional categories.

Moreover, we observed 2238 clusters shared by ambrosia beetles and eusocial insects. Within this
group the most represented subcategories were signal transduction (GO:0007165) and transcription,
DNA-dependent (GO:0006351). Two of the largest gene families of this eusocial insect and ambrosia
beetle-shared group, consisting of 102 and 163 members, corresponded to nervous system-associated
genes, such as the family of kainate receptor [106] and Down syndrome cell adhesion molecule-like
protein (Dscam; [107]), respectively.

3.2. Genes under Selection in the Xyleborini Ambrosia Beetle Lineage

We evaluated whether selective pressures (dN/dS) vary among the branches of each gene family
phylogeny with aBSREL. We identified 1425 terminal branches with signals of positive selection
(p ≤ 0.05 in Likelihood ratio tests for episodic positive selection, Holm-Bonferroni corrected) in gene
family phylogenies across 16 insect species (Figure S1). From these, we found 176 and 166 coding
genes under positive selection in X. glabratus and E. nr. fornicatus respectively (Tables S6 and S7,
Figures S2–S4).

Among all the genes under selection, there were 80 Interpro accessions shared by positively
selected genes of both species. These genes were mainly involved in sugar transport (facilitated
trehalose transporter Tret1; [108]), abiotic stress response (Heat shock protein 70 family; [109]),
transcriptional regulation (protein drumstick, E3 ubiquitin-protein ligase Parkin and ZZ-type
zinc finger-containing protein 3; [110–112]), G-protein receptors (GPCRs), signal transduction
(Rab3 GTPase-activating protein, Synembrin-A, tyrosine kinase receptor Cad96Ca, tuberin and
G-protein coupled receptor 143; [113–117]), development and muscular morphogenesis (Afadin,
Ecdysteroid kinase, ankyrin repeat domain-containing protein 16-like, unconventional myosin-XVIIIa,
Hemicentin-1; [118–121]), and several genes involved in the development and function of the nervous
system (Nesprin-1, SLIT-NTRK protein 1, neuroligin-2, neuronal PAS-domain-containing protein 4,
Amphysin; [122–125]).
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Among the genes under selection in the E. nr. fornicatus transcriptome, 100 were expressed in
the whole body, 45 were enriched or specific for abdomen and 19 for head-thorax (see Table S6
for more details). Signals of selection were found on the sex peptide receptor [126,127] and
galactosylgalactosylxylosyl protein 3-beta-glucuronosyltransferase P (GlcAT-P; [128]) genes, which are
exclusively transcribed on the head-thorax. Particularly, genes under selection are significantly
enriched (p ≤ 0.01 in Fisher’s exact test) in the GO functional categories of fructose metabolism
(GO:0006000) in E. nr. fornicatus and apoptotic DNA fragmentation and protein processing (GO:0016485,
GO:0006309) in X. glabratus transcriptomes, respectively.

3.3. Changes in Evolutionary Rates Related to Fungus-Farming Mutualism and Sociality

The species tree obtained from the phylogenetic analysis maintains all insect order clades as
monophyletic groups, with bootstrap support values from 0.95 to 1 in all branches. The estimated
age of divergence between Xyleborini species is approximately 25.11 ± 13.31 million years ago
(mya), and 88.56 ± 30.36 mya since divergence from D. ponderosae (Figure 1A). In the context of the
species phylogeny, we evaluated the potential association of mutualism and sociality with variation
in molecular substitution rates between species. The TraitRateProp analysis was performed in three
groups of single-copy orthologs: considering all species (α, 98 orthologs), excluding species from
the Isoptera order (β, 164 orthologs), and only considering the Coleoptera order (γ, 468 orthologs).
The analysis of the latter subset of orthologs constitutes the direct comparison between the two
ambrosia species (as mutualists and facultative eusocial species) and other beetles.
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The greatest proportion of single-copy orthologs in all the groups revealed a significantly negative
association (p ≤ 0.05 in chi-squared likelihood ratio test) between the rate of sequence evolution and
the mutualistic lifestyle, as well as the social category (Tables S8 and S9). Although this association
was predominantly negative (genes with a slower molecular rate of evolution in mutualistic and
social species), genes with a positive association were also found, showing an accelerated molecular
evolutionary rate in mutualistic and social lineages (Figure 1B,C). No particular GO functional category
was observed to be significantly enriched in single-copy orthologs with either an increased or decreased
rate associated with the two traits.

All genes representing a negative association between mutualism and evolutionary rate likewise
exhibited a negative association with sociality. Furthermore, there was a larger number of gene
families positively related to mutualism than to sociality. As trait-dependent accelerations in the
rate of molecular evolution can reflect events of either positive or relaxed selection, we analyzed the
evidence of natural selection in proteins with a positive association between a trait and substitution
rate. We thus identified several genes with evidence of positive selection and convergent evolutionary
rate acceleration associated with sociality, mutualism, and both traits (Table 2).

Table 2. Genes with trait-dependent accelerations in the rate of molecular evolution, and with evidence
of positive selection.

Cluster ID Association with BLASTp Annotation Ortholog Group

199572_KRT80184 Mutualism methylosome subunit pICln α

199849_KRT80461 Mutualism Rab-protein 6 (Rab6) α

200376_KRT80988 Mutualism ribosomal RNA small subunit methyltransferase NEP1 α

203911_KRT84523 Mutualism phosphatidylethanolamine-binding protein homolog F40A3.3 α

198969_KRT79581 Both ribosome biogenesis regulatory protein homolog α

201287_KRT81899 Sociality ubiquitin carboxyl-terminal hydrolase 30 α

203022_KRT83634 Sociality phosphoacetylglucosamine mutase-like α

180851_KRT82102 Both NADH dehydrogenase (ubiquinone) 1-alpha subcomplex 9, 39kDa
(Ndufa9) β

181368_KRT82619 Both Bax inhibitor 1 (BaxI1) β

182416_KRT83667 Both vesicle transport through interaction with t-SNAREs homolog 1A β

182600_KRT83851 Both UDP-N-acetylglucosamine-dolichyl-phosphate
N-acetylglucosaminephosphotransferase β

183558_KRT84809 Sociality ribosome-recycling factor, mitochondrial β

185607_KRT86858 Sociality malate dehydrogenase, mitochondrial β

176873_KRT78124 Mutualism poly (ADP-ribose) glycohydrolase ARH3 β

177777_KRT79028 Mutualism DNA replication complex GINS protein SLD5 β

181622_KRT82873 Mutualism ubiquitin domain-containing protein 1/2 β

185046_KRT86297 Mutualism MFS-type transporter C6orf192 homolog β

100143_KRT79886 Both cysteine-rich with EGF-like domain protein 2 γ

101937_KRT81680 Both Cornichon protein γ

103130_KRT82873 Both ubiquitin domain-containing protein 1 γ

99990_KRT79733 Both suppressor of hairless protein γ

100907_KRT80650 Both transmembrane protein 127 γ

99195_KRT78938 Both voltage-dependent anion-selective channel protein 2 γ

4. Discussion

Mutualistic symbiotic interactions represent a source of evolutionary novelty, and consequently
modify the genomes of the species involved [129–131]. Our study provides novel insights on the
molecular and genomic processes involved in the evolution of sociality and obligate fungus farming in
ambrosia beetles of the Xyleborini tribe. Based on natural selection and substitution rate analyses of
ortholog gene families, several genes and pathways potentially associated with these evolutionary
transitions were identified.

4.1. Evolutionary Changes Possibly Associated with Nutritional Symbiosis with Fungi

The evolution of fungus farming in ambrosia beetles is associated with a dietary specialization
related to the low content of relevant nutrients in the phloem-based diet of their bark beetle ancestors.
Such specialization implies the increase of dietary nitrogen [9,132] and the acquisition of other
important molecules such as sterols, required for metamorphosis and reproduction ([9,10,133]).
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Among the genes with signals of positive selection in the transcriptomes of E. nr. fornicatus and
X. glabratus, fructose metabolism and proteolysis functional categories were found to be enriched.
Nitrogen can be acquired from a protein-rich diet through proteolysis, therefore selection in genes
encoding proteolytic enzymes, such as trypsins, could constitute an evolutionary adjustment to
the changed nitrogen availability in a fungus-based diet. Some adjustments related to nutrient
acquisition have been observed in fungus-farming ant genomes. For instance, the gene losses in
arginine biosynthetic pathways or the reduction in the serine protease gene family have been observed
in ants, and are thought to be associated with variations in dietary nitrogen following fungus farming
evolution [68,71].

On the other hand, signals of positive selection were observed in genes related
to carbohydrate metabolism and transport in both ambrosia beetle species. First,
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) is an enzyme that catalyzes
the synthesis and degradation of fructose 2,6-bisphosphate, which functions as a signal molecule for
glycolysis and gluconeogenesis modulation [134]. Secondly, trehalose transporter Tret1, which was
also found to be under positive selection, regulates levels of trehalose (as the main storage sugar) in
insect hemolymph, as well as its release from the body fat and incorporation of trehalose as a carbon
source into other tissues such as muscle and testis [108]. Trehalose also appears to have a role for
buffering sugar fluctuation in response to food composition and quantity [135], both of which could
potentially change in a transition from a phloem-based diet to a fungal-based diet.

Molecular evolution associated with changes in diet as a consequence of farming and
domestication has been widely studied in humans (e.g., [136–139]). In humans, these mechanisms
involve the evolution of genes related to metabolism, nutrient homeostasis, digestion, sensory
perception, appetite control, and morphological development of the digestive system [139]. In addition,
many changes related to nutrient acquisition in the genomes of fungus-farming ants [34,68,71],
as well as changes in mass-specific metabolic rates through fungus-farming evolution stages in Attini
ants, have also been documented [21]. Therefore, selection on genes that participate in energy and
nutrient homeostasis may be associated with dietary specialization after fungi farming evolved in the
Xyleborini tribe.

4.2. Evolutionary Changes Possibly Related to the Evolution of Behavior and Sociality.

Many behavioral adaptations can be recognized in X. glabratus and E. nr. fornicatus since the
divergence and radiation of the Xyleborini tribe. These beetles bore deep into the wood instead of
bark [8], inbreed [4], and farm fungi [3,4], involving activities such as pathogen monitoring and control
and selective use of substrate for fungi farming [10,22]. There is also evidence that suggests that
these ambrosia beetles could display a facultative eusocial system [11], characterized by overlapping
generations, cooperative care of the offspring, and age polyethism [12–14].

As previously mentioned, the general hypotheses about evolution of sociality suggest that the
co-option of conserved gene networks, as well as selection, and fast protein evolution are involved in
the emergence of social behaviors and phenotypes [21–23], while natural selection through inclusive
fitness should play a critical role in the evolution of sociality [31,32]. We found signals of positive
selection in several genes involved in transcriptional regulation, reproduction, signal transduction
development, and nervous system functioning, which could be associated with the transition to
sociality in ambrosia beetles, as well as with other major changes in behavior since the divergence of
this lineage.

The first group of genes under selective pressure found to be associated with social behavior
were related to the transcriptional regulation of gene expression. Previous studies in eusocial
organisms such as bees suggest that evolutionary changes in gene regulation are critical for the
appearance of specialized phenotypes [140,141] and the production of social traits such as social
foraging, reproductive dominance, and alloparental care [24,32,142], the latter having been observed in
ambrosia beetles [8]. Genes involved in transcriptional regulation and with signals of positive selection
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in X. glabratus and E. nr. fornicatus identified in this work are related to digestive tract development
(protein drumstick), mitochondrial integrity and oxidative stress response (E3 ubiquitin-protein
ligase parkin), chromatin organization (ZZ-type zinc finger-containing protein 3), and development
of olfactory and sensory organs (basic helix-loop-helix amos transcription factor and suppressor of
hairless protein). Suppressor of hairless gene also shows an accelerated evolution in both ambrosia
beetles compared to other species of the Coleoptera order, suggesting that this gene has an important
role in the adaptation of these species. Since olfactory and sensory systems regulate many insect
behaviors [143,144], such as the communication and recognition between individuals in social
organisms [31], adaptive signals observed in these genes could be involved in the evolution of behavior
and sociality within this group. Moreover, transcriptional regulation can be related to the evolution
of other apomorphic traits in these species, therefore the transcriptional profiles need to be analyzed
across different members of an ambrosia beetle colony to test these hypotheses.

The second group relates to genes involved in reproductive behavior. Sex peptide receptor was
observed to be under positive selection in E. nr. fornicatus. This gene plays a role in female post-mating
behavior shifts [126,127] and the release of stored sperm for fertilization [145] in D. melanogaster. Gene
networks regulating reproduction, and particularly those regulating the changes between reproductive
and non-reproductive behavioral stages, are predicted to have pleiotropic effects on reproductive traits
and social behaviors such as age polyethism and parental care [23,146]. The changes in this gene could
be related to delayed reproduction and dispersal, promoting altruistic behaviors as observed in the
facultative eusocial beetle Xyleborinus saxesenii [13].

The third group comprises genes implicated in GPCRs signal transduction. Ligands of GPCRs
include hormones, peptide and non-peptide neurotransmitters, odorant molecules, growth factors,
and light, and signaling through these proteins is important for controlling processes such as
development, reproduction, behavior, and feeding [147]. Chemical communication is widely
recognized to have a critical role in social behavior in hymenopterans [148] and termites [33].
Concerning ambrosia beetles, recent findings document the production of and response to two
volatiles compounds (2-heneicosanone and 2-tricosanone) by three cryptic species of E. near fornicatus
[polyphagous shot hole borer (PSHB), Kuroshio shot hole borer (KSHB), and tea shot hole borer
(TSHB)], [149]. These compounds are produced in unique ratios and work like pheromones, showing
species-specific attraction and repellency. Previous works have also detected these two volatile
compounds in the mandibular gland secretions of the stingless bee Scaptotrigona postica [150], and in
the subterranean termite Reticulitermes flavipes [151], two insect species which display high levels of
sociality. Therefore, molecular adaptations associated with communication between members of a
population could be playing an important role in the coordination of several behaviors, and in the
emergence of sociality in ambrosia beetles [31].

The fourth group includes development-associated genes, such as the cornichon protein. It has
been proposed that the evolution of developmental pathways is important for increasing termite
eusociality, which is characterized by differentiated castes represented by distinct developmental
stages [33]. Even though ambrosia beetles do not display caste differentiation, they present a division
of labor between larvae and adults, which in turn could be related to selective pressures towards
future cast differentiation. Alternatively, developmental adaptation could play an important role in the
formation of specialized structures, such as mycangia, as well as other morphological changes present
in these species, like the increase of sexual dimorphism and the decrease in size, since diverging from
its common ancestor with D. ponderosae.

The last group of genes associated with sociality and under selective pressure was involved
in the nervous system and sensory functions. The signals of positive selection on genes involved
in the development and function of the nervous system in both E. nr. fornicatus and X. glabratus
suggest an adaptive evolution in the ambrosia beetles towards changes in behavior. Among these
genes, we found several proteins conserved in mammals and insects required for synaptogenesis
(amphysin, liprin, neuroligin-2, neurexin-4, SLIT-NTRK protein 1, GlcAT-P; [128,152–154], nervous
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system development (neuronal PAS-domain-containing protein 4, Neural/ectodermal development
factor, IMP-L2; [155,156], neurotransmitter transport, (sodium neurotransmitter symporter; [157] and,
as previously mentioned, development of sensory organs (basic helix-loop-helix amos transcription
factor and suppressor of hairless protein [158–160]. Neuroligin-2 has been directly associated with
social behavior in D. melanogaster [161] and GlcAT-P shows caste-specific transcriptional patterns
during brain development in Apis mellifera [128]. We found that GlcAT-P is expressed in the head-thorax
of E. nr. fornicatus, which points to an adaptation related to social behavior in ambrosia beetles.

Furthermore, two of the largest gene families shared by ambrosia beetles and eusocial insects are
involved in the function of the nervous system (a receptor that controls synaptic transduction: kainate
receptor [106], and the neuronal guidance factor Down syndrome cell adhesion molecule-like protein
(Dscam; [107]) observed to have effects on locomotor behavior and fecundity respectively, further
suggesting the importance of genes associated with behavior evolution in ambrosia beetles.

4.3. Possible Causes of Accelerated or Decreased Evolutionary Rates

We found significant differences in the substitution rates between mutualistic and non- mutualistic,
as well as social and nonsocial, insects. Most of the single-copy orthologs showed a slower evolutionary
rate in social and mutualist phylogenetically independent lineages. More genes showed slower
evolutionary rates in social and strict fungus-farming lineages than in general mutualistic ones
(Figures 1 and S5). Because all strict fungus farming considered display social behaviors, the genes
that show this trait decrease in their evolutionary rates are more likely to be associated to the evolution
of sociality than with mutualism.

Slowly evolving proteins could be under strong purifying selection during the evolution of social
lineages, reflecting a constrained protein evolution in these species. Low evolutionary rates associated
with highly specialized sociality have been previously observed in bees with different levels of social
organization [140], and in honey bees compared to other insects such as fruit flies [56]. This is in
general agreement with the ‘genetic toolkit’ hypothesis, suggesting a set of highly conserved genes but
an increased gene regulation during social evolution.

On the other hand, we observed several single-copy orthologs with accelerated rates related to
mutualism and strict fungus framing. Accelerated rates could be a result of a positive or relaxed
selection, but also a consequence of nonadaptive evolution, such as mechanisms related to demography
due to genetic drift. However, the changes observed in global dN/dS ratios between mutualistic and
non-mutualistic lineages (Figure S6) strongly suggest that the evolutionary rate acceleration related
to mutualism is mainly due to changes in selective pressures acting on these genes. Some of these
single-copy ortholog genes provide evidence of positive selection (Table 2), pointing to a convergent
adaptive evolution towards this lifestyle, as well as the evolution of social organization.

4.4. Transcriptional Fungal Profiles

Different fungal species establish symbiotic interactions with bark and ambrosia beetles,
having several levels of promiscuity and specificity [162,163]. In natural conditions, beetles are
exposed to several microbial species and present multipartite interactions with different fungi. It has
been proposed that specificity in these interactions largely depends on environmental factors such
as temperature [164,165], as well as on differences in dietary benefits for beetles [9,162] in different
life-cycle and gallery formation stages [166]. Therefore, exploring the functional capabilities of the
different symbionts is needed for evaluation of these hypotheses.

Functional profiles of fungus-like genes transcribed in the body of E. nr. fornicatus and X. glabratus
share most of the enriched functional categories. These categories can be related to fungus growth,
but also to their interaction with the beetles. Particularly, the Isoprenoid biosynthesis GO category
was present in fungus-like transcriptome from both types of ambrosia beetles, but enriched only in
the body of X. glabratus. This biosynthetic process is needed for the synthesis of sterol, as well as
other terpenoids. Besides, many of the scolytid aggregation pheromones are isoprenoids [167,168],
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including ipsdienol, ipsenol, and frontalin [169]. In particular, (1S,4R)- p-menth-2-en-1-ol (also known
as quercivorol) is documented to function as an attractant kairomone for members of the E. nr.
fornicatus species complex, and this compound is likely produced by the symbiotic fungi [149].
This aggregation compound has been identified in other ambrosia beetle species like Ewuallacea spp.
and Platypus quercivorus (Coleoptera: Platypodidae) [170]. Therefore, the enrichment of this category
reflects that these molecules could have an important role in establishing fungus–beetle interaction.

5. Concluding Remarks

Evolutionary transition to mutualism and social organization in ambrosia beetles appears to
involve protein changes driven by natural selection that could constitute diet-related and social
behavior adaptations to the new selective pressures of fungus-farming lifestyles. Selection appears to
target different components with similar pathways to those that have been reported in different insect
lineages for the transition to mutualism/sociality.

Moreover, across-lineage comparison allowed us to identify the convergent changes in protein
evolution related to sociality and mutualism transitions. We observed conserved genes with a
decreased molecular evolution, mainly associated with a sociality trait, and an accelerated evolution
related to selective pressures across the mutualistic lineages studied.

Comparative analyses of transcriptomic and genomic data prevented us from performing a more
detailed search of evolutionary signals, such as expansion and contraction of gene families or synteny.
Future genomic analysis within the Scolytinae subfamily and Xyleborini tribe is needed to describe
the evolution of mutualism, and to test the social evolution hypotheses, considering the differences
between independent origins of these traits. Additionally, studies on the transcriptomics of beetles
with comparable replicates between species, development stages, and sexes are fundamental to assess
the detailed role of transcriptional gene regulation in the mechanisms underlying these complex traits.
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