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To date, a large number of mutations in SCN5A, the gene encoding the pore-forming

α-subunit of the primary cardiac Na+ channel (NaV1.5), have been found in patients

presenting with a wide range of ECG abnormalities and cardiac syndromes. Although

these mutations all affect the same NaV1.5 channel, the associated cardiac syndromes

each display distinct phenotypical and biophysical characteristics. Variable disease

expressivity has also been reported, where one particular mutation in SCN5A may lead

to either one particular symptom, a range of various clinical signs, or no symptoms at

all, even within one single family. Additionally, disease severity may vary considerably

between patients carrying the same mutation. The exact reasons are unknown, but

evidence is increasing that various cardiac and non-cardiac conditions can influence

the expressivity and severity of inherited SCN5A channelopathies. In this review, we

provide a summary of identified disease entities caused by SCN5A mutations, and give

an overview of co-morbidities and other (non)-genetic factors which may modify SCN5A

channelopathies. A comprehensive knowledge of these modulatory factors is not only

essential for a complete understanding of the diverse clinical phenotypes associated

with SCN5Amutations, but also for successful development of effective risk stratification

and (alternative) treatment paradigms.
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INTRODUCTION

To date, an increasing number of mutations in SCN5A, the gene encoding the pore-forming
α-subunit of the primary cardiac Na+ channel (NaV1.5), is found in patients with a wide range
of electrocardiogram (ECG) abnormalities and cardiac syndromes (1–3). Although they are all due
to mutations in the same ion channel, these syndromes show a myriad of phenotypes (4). While
this may be partly explained by mutation-specific biophysical changes in the current generated by
NaV1.5 channels (here named Na+ current, INa), it has now become clear that a single mutation
in SCN5Amay also result in a large number of disease phenotypes within one and the same family
[for review, see (2)]. Also, disease severity often varies significantly among affected individuals, with
some SCN5A mutation-positive patients suffering from life-threatening arrhythmias at young age
while others do not display any clinical signs (i.e., reduced and incomplete penetrance).

At this moment, clinical management of SCN5A mutation-positive patients is hindered by
this reduced penetrance as well as by the considerable variation in disease severity and risk of
sudden cardiac death (SCD) observed in affected individuals. Cardiac and non-cardiac modulatory
factors and co-morbidities are supposed to modify disease severity and expressivity, however, till
now they are largely unexplored. A major reason for the lack of detailed information on such
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disease modifiers in SCN5A-mutation related disorders is the
large genetic heterogeneity between individual patients. In
addition, different mutations result in different biophysical
alterations and thus give rise to further variability between
individuals. In this review, we provide an updated summary
of presently identified cardiac disease entities secondary to
SCN5A mutations, and give an overview of a broad spectrum of
concomitant disorders and conditions which may modify disease
severity and expressivity of SCN5A channelopathies.

CARDIAC DISORDERS ASSOCIATED WITH
SCN5A MUTATIONS

NaV1.5 channels are widely distributed in the mammalian heart,
but the number of channels (5–7) and their electrophysiological
function (6, 8–10) may differ between various parts of the heart.
Consequently, SCN5A mutations can lead to multiple cardiac
disease phenotypes, and even considerable overlap may exist,
named “overlap syndrome,” between these cardiac clinical entities
(2). Aside from the heart, NaV1.5 channels are also expressed
in other tissues throughout the body, and SCN5A mutations
therefore are also associated with extracardiac phenotypes,
including gastrointestinal dysfunction (11) and epilepsy (12).
Below, we first provide a brief overview of the NaV1.5 channel
and INa properties and subsequently introduce briefly the various
SCN5A-related cardiac disorders in relation to the associated
biophysical NaV1.5 channel defects.

NaV1.5 Structure and Function
As reviewed in detail elsewhere (13), the NaV1.5 protein is
formed by four homologous domains (D1–DIV) each composed
of six transmembrane spanning helices (S1–S6) (Figure 1).
NaV1.5-based channels are voltage dependent and open upon
depolarization, resulting in a rapid activation of INa. In working
myocytes, this INa is large and generates the fast action
potential (AP) depolarization (6, 14). Typically, NaV1.5 channels
also close rapidly due to inactivation. This fast inactivation,
together with the reduction in driving force of Na+ ions
occurring during the AP upstroke, results in a rapid decrease
of INa (Figure 1B). Although most NaV1.5 channels show
fast inactivation, some channels may inactivate slower and/or
incompletely. Consequently, a small persistent or late INa current
is generated (Figure 1C), which may affect AP repolarization
(15). Moreover, a small overlap exists between the voltage
dependence of activation and inactivation. Therefore, NaV1.5
channels can activate but are not inactivated completely, resulting
in a small INa at this range of membrane potentials, named
the “window current” (Figure 1D). Such a window current
also contributes to the AP repolarization phase. In addition,
late and/or window INa may also affect pacemaker activity of
sinoatrial nodal (SAN) cells (8, 10) and excitability (16). Upon
return to hyperpolarized potentials, i.e., during or following
the AP repolarization, NaV1.5 channels can quickly recover
from inactivation (14). The speed of recovery from inactivation
regulates NaV1.5 channel availability for subsequent APs, and is
therefore responsible for the refractory period (17).

SCN5A-Related Disorders
Brugada syndrome (BrS) is characterized on the ECG by ST-
segment elevation in the right-precordial leads V1 to V3. BrS
is associated with ventricular arrhythmias and SCD, which
occur particularly during rest and sleep in apparently healthy
and young (age <40 years) individuals (18). The characteristic
ST-segment elevation of the ECG is often variably present,
and can be unmasked by INa blockade or exercise [see (18)].
SCN5A mutations linked to BrS are so called “loss-of-function”
mutations, which typically result in a decreased INa (1). This
reduction in INa may be due to decreased trafficking and
membrane channel expression and/or altered gating properties
of the channel resulting in disruption of voltage dependency
of (in)activation, accelerated speed of inactivation, or slowed
recovery from inactivation.

Long QT syndrome (LQTS) is characterized by a QT-interval
prolongation on the ECG accompanied by an enhanced risk
for SCD as a result of ventricular tachyarrhythmias. LQTS
type 3 (LQT3), the subtype caused by SCN5A mutations,
is associated with bradycardia and arrhythmias and/or SCD
occurring mostly at slow heart rates such as during rest or sleep
(19). SCN5A mutations underlying LQT3 are typically “gain-
of-function” mutations inducing various biophysical alterations
(such as slower INa inactivation, larger late INa, larger window
INa, and/or increased INa density (1), all leading to an enhanced
INa function during the AP repolarization phase and consequent
AP prolongation.

Atrial fibrillation (AF), a rapid and irregular beating of
the atria, is mostly found in elderly patients with structural
alterations in the heart. Evidence is increasing that AF in
young patients with structurally normal hearts may also be
hereditary. In familial forms of AF, both SCN5A loss-of-function
and gain-of-function mutations have been identified (20). The
gain-of-function can be due to various gating changes including
negative shifts in voltage dependence of activation, positive
shifts in voltage dependence of inactivation, slower current
inactivation, and faster recovery from inactivation [see (16), and
primary references cited therein]. Loss-of-function can be the
consequence of reduced INa density (21) or of a negative shift in
voltage dependence of inactivation (22).

Sick sinus syndrome (SSS) is described as the “intrinsic
inadequacy of the SAN to perform its pacemaking function
due to a disorder of automaticity and/or inability to transmit
its impulse to the rest of the atrium” [see (23)]. A number
of SCN5A mutations have been associated with inherited SSS,
and interestingly these can be both loss-of-function and gain-
of-function mutations. Consequently, the occurrence of SSS has
a considerable overlap with BrS (24) and LQT3 (25, 26). Loss-
of-function, i.e., a reduction of INa availability, decreases the
speed of the diastolic depolarization phase of SAN cells and
thereby pacemaker activity (25). The overlap of SSS and gain-
of-function mutations associated with LQT3 is more complex.
Although an increase in late INa results in faster pacemaker
activity (25), the concurrent changes in INa density and the
shifts in voltage dependency of activation and inactivation
counteract the enhanced late INa, resulting in a slower pacemaker
activity (25).
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FIGURE 1 | Schematic drawings of the cardiac sodium channel NaV1.5 encoded by the SCN5A gene (A), and important biophysiological properties and function of

the current generated by SCN5A (here named INa), including peak INa (B), late INa (C), window INa (D), and recovery from inactivation (E).

Progressive cardiac conduction defect (PCCD) is
characterized by progressive conduction slowing through
the His-Purkinje system. PCCD is associated with PQ- and
QRS-interval prolongation, complete atrio-ventricular (AV) and
right and/or left bundle branch block, syncope and SCD. PCCD
is often observed in BrS patients, and similar to BrS, is due to
loss-of-function mutations (18).

Multifocal ectopic Purkinje-related premature contraction
(MEPPC) is characterized by frequent premature ventricular
contractions originating from the Purkinje system, especially
at rest (16). The SCN5A mutations underlying MEPPC are

typically gain-of-function mutations due to an increased window
INa, faster recovery from inactivation and/or increased channel
availability of NaV1.5 (see (16), and primary references cited
therein).

Sudden infant death syndrome (SIDS) is characterized by the
sudden unexplained death of a seemingly healthy infant younger
than 1 year. SIDS is a disease with multiple pathophysiological
mechanisms (27), and cardiac ion channel genemutations appear
to be involved in approximately 20% of the cases of SIDS, from
which more than half of the mutations are related to INa [for
review, see (28)]. These may include mutations in SCN5A, but
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also in the INa-modulatory β-subunits (SCN3B and SCN4B) and
other “regulatory genes” (CAV3, SNTA1, and GPD1-L), which
could result in either INa loss-of function or gain-of-function
mutations [see (28, 29), and primary references cited therein].

Dilated cardiomyopathy (DCM) is a structural heart
disease characterized by dilated chambers, pump failure, and
arrhythmia. DCM is a multifactorial disorder with several
proposed pathophysiological mechanisms (30), including
SCN5A mutations (31). Both loss-of-function and gain-of-
function are associated with DCM, but the pathophysiological
mechanisms of DCM secondary to SCN5A mutations are not
exactly known (2, 32). As reviewed by Wilde and co-workers,
DCM may be: (i) secondary to SCN5A mutation induced
arrhythmias and/or bradycardia; (ii) due to increased late INa
and consequent changes in intracellular Na+ and Ca2+; or (iii)
secondary to the non-electrical role of NaV1.5 as a potential
anchoring protein for structural and cytoskeletal proteins (33).

Arrhythmogenic right ventricular cardiomyopathy (ARVC)
is an inherited cardiomyopathy characterized by fibrofatty
replacement of the right ventricle, ventricular arrhythmias, and
SCD (34). Up to 60–70% of the ARVC index cases carry a causal
desmosomal [such as plakophilin-2 (PKP2) or desmoglein-2
(DSG2)] gene mutation, but various non-desmosomal genes may
also be involved (35, 36), including SCN5A (37). Although the
percentage of pathogenic SCN5A mutations in ARVC is very
low, PKP2 knockdown and overexpression of Dsg2 mutations
both result in a decrease in INa (38, 39), and such a decrease
in INa is proposed to be a critical factor in arrhythmogenesis in
ARVC (40).

VARIABLE EXPRESSIVITY IN SCN5A

CHANNELOPATHY

Patients harboring SCN5A mutations demonstrate a significant
variability in disease expression (41). Obviously, such variability
in SCN5A-releated diseases can be due to different severities
of the INa biophysical defect, with truncating SCN5A loss-of-
function mutations resulting in more pronounced conduction
slowing than missense SCN5A mutations (42). The range of
biophysical alterations induced by a particular genetic defect
in SCN5A (1) may also determine the capability of that
mutation to cause cardiac rhythm disorders. Importantly, the
variability in SCN5A-releated disease severity and expressivity
is also present in family members carrying the same mutation,
as exemplified in a large Dutch family with the SCN5A-
1795insD “overlap syndrome” mutation (43). Some mutation
carriers in this family display predominantly loss-of-function
phenotypes with BrS and/or conduction disease, while other
family members carrying this mutation show mainly a gain-
of-function phenotype resulting in QT-prolongation (44). In
addition, and apart from family members with a clear phenotype,
other family members carrying the same SCN5A-1795insD
mutation appear unaffected (43). Thus, independent of the
mutation-specific effects, individual-specific factors also appear
to contribute importantly to the regulation of disease expressivity
and severity in SCN5A channelopathy. Moreover, the variability

in NaV1.5 disease expression and severity is not only related to
INa defects, but likely also closely related to other cardiac ion
channels which contribute to the cardiac AP. Apart from INa, the
AP morphology is the consequence of a fine balance between the
inwardly directed L-type Ca2+ current (ICa,L; CaV), and various
outwardly directed K+ currents (KV) including the transient
outward K+ current (Ito), the inward rectifier K+ current (IK1)
and the slow and rapid delayed rectifier K+ currents (IKs and IKr,
respectively) (Figure 2A). Changes in these CaV and various KV

currents may affect the expressivity of SCN5A channelopathies.
For example, a decrease in ICa,L and/or increase Ito (Figure 2B,
in red) may increase phase-1 repolarization and lower the AP
plateau phase which may promote ST-segment elevation and BrS
(45), while an increase in ICa,L and/or decrease of KV currents
(Figure 2C, in red) will result in longer APs thus promoting
LQT3 (46).

Below, we provide an overview of various known genetic
and non-genetic disease modifiers of inherited cardiac SCN5A
channelopathies, which are summarized in Figure 3.

Genetic Modifiers of SCN5A
Channelopathy
Genetic background and modifiers are considered important
determinants of disease expressivity and/or severity in SCN5A
channelopathies, especially among patients carrying the same
mutation (47–49). This has been clearly demonstrated in
experimental studies where the impact on genetic variability on
disease severity was evaluated in two distinct strains (129P2 and
FVBN/J background) of mice carrying the Scn5a-1798insD/+
mutation, the equivalent to SCN5A-1795insD in humans. A
more severe phenotype was present in 129P2 mice as compared
to FVBN/J mice (50, 51). In addition, subsequently identified
potential modifiers of conduction disease severity were found.
Comparison of cardiac gene expression between the 129P2
mice and FVBN/J mice demonstrated that Scn4b (encoding a
ß-subunit of sodium channels) is an important modifier of
conduction disease severity (52). Furthermore, by performing
a system genetics approach on F2 progeny arising from these
two mouse strains, we showed that Tnni3k (encoding troponin 1
interacting kinase) is another modulator of AV conduction (53).
These genetic studies clearly underline the relevance of genetic
background and genetic modifiers in sodium channelopathy.

Single nucleotide polymorphisms, frequently observed in the
general population, may further determine disease expressivity
and/or severity. For example, H558R is the most commonly
found SCN5A polymorphism (with a 9–36% prevalence), and
its distribution varies between different ethnic populations
(54). Co-existence of this polymorphism and SCN5A mutations
may affect the functional consequences of the latter, including
plasma-membrane targeting of NaV1.5, INa density and/or INa
gating properties (55–60). Moreover, a combination of specific
polymorphisms [haplotype (HapB)] within the SCN5A promoter
region may affect conduction in BrS patients (61). HapB is
frequently present in Asians, andmay therefore partly explain the
high prevalence of BrS in individual with an Asian background.
In addition, polymorphisms in non-SCN5A genes may also
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FIGURE 2 | (A) Schematic drawing of the cardiac action potential (AP) and its underlying membrane currents. INa, Na
+ current; ICa,L, L-type Ca2+ current; Ito,

transient outward K+ current; IKs, slow component of the delayed rectifier K+ current; IKr, rapid component of the delayed rectifier K+ current; IK1, inward rectifier K+

current. (B) Schematic drawing of AP plateau suppressing ion channels changes (in red). (C) Schematic drawing of AP prolonging ion channels changes (in red).

contribute to disease expressivity in sodium channelopathy.
For example, Groenewegen et al. (62) demonstrated that
phenotype severity of SCN5A-D1275N mutation carriers was
importantly modulated by 2 closely linked polymorphisms
forming a haplotype within the promotor region of the GJA5,
the gene underlying the atrial-specific connexin-40 gap junction
protein. SCN5A-D1275N mutation carriers homozygous for
the GJA5 promoter polymorphisms exhibited atrial standstill,
while carriers without or with only a heterozygous GJA5
promoter polymorphism displayed only a mild PR-interval
prolongation (62).

Additionally, genetic variation due to the presence and
relative expression of two important SCN5A alternatively spliced
variants, i.e., SCN5A-Q1077del and SCN5A-Q1077 (63), may
further modulate sodium channelopathy severity. The BrS
phenotype severity associated with the SCN5A-G1406Rmutation
was enhanced in combination with the Q1077 variant (64).
Q1077del has furthermore been shown to modulate INa density,
gating properties, and recovery from inactivation of SCN5A
mutations associated with DCM (65).

Non-genetic Modifiers of SCN5A
Channelopathy
Gender
Gender is a clear modifier of disease severity in SCN5A
channelopathy, exemplified by the preponderance of BrS inmales
(66), and LQT3 in females especially in the 30–40 year age
range (67). In addition, within one family with the G1406R
loss-of-function mutation, females were found to have mostly
cardiac conduction defects whereasmales showed predominantly

a BrS phenotype (47). Gender, and particularly sex hormones,
has a significant impact on ion channels responsible for
repolarization, and is associated with a larger ICa,L and smaller
Ito and consequently higher QTc values in females [see (68),
and primary references cited therein]. This lower repolarization
reserve intrinsic to female hearts is thought to augment the
detrimental impact of a mutation-induced late INa. Barajas-
Martinez and colleagues reported a higher INa magnitude in
male epi- and endocardial myocytes compared to female (69). In
addition, they found in females a larger ventricular transmural
dispersion of INa density. They suggested that in the setting of
decreased INa, epicardial myocytes display more easily all-or-
none repolarization leading to BrS in males (with a smaller ICa,L
and larger Ito), while females with a smaller INa are more sensitive
to loss of conduction velocity.

Age
Age is another determinant of severity and expressivity of
SCN5A channelopathies (70–72). For example, carriers of the
SCN5A-1795insD mutation show QT-interval prolongation and
conduction disorders from birth, while features of BrS mostly
develop later in life (72). While peak INa density and INa
availability (i.e., AP upstroke velocity) does not appear to change
with age (73, 74), aging may result in an acceleration of INa
inactivation and an enhanced use-dependent decrease in INa
(73). In addition, aging myocytes also show AP prolongation
secondary to both an increase in late INa and a reduction in
KV currents (74). These ion channel changes, together with a
prolonged AP (74) (hence, a shorter time for recovery from
inactivation) may promote BrS, conduction delay, and LQT3.
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FIGURE 3 | Schematic drawing of genetic and non-genetic disease modifiers of inherited cardiac SCN5A channelopathies.

Furthermore, fibrosis due to aging is thought to play another
major role in modulating conduction and repolarization disorder
severity (75–77).

Medication
It is well known that many clinically used antiarrhythmic,
psychotropic, and anesthetics drugs may induce type-1 ECG
and/or arrhythmias in BrS patients (78, 79). These drugs with
potential adverse effects for BrS patients (for overview, see the
website www.brugadadrugs.org) are known to block INa and/or
CaV currents significantly, thereby increasing the susceptibility
for BrS. In addition, many clinically used drugs are also known
to result in QT-interval prolongation (71, 80). For an overview
of QT-interval prolonging drugs, see the website www.QTdrugs.
org. These drugs prolong the QT-interval due to blockade of
IKr or IKs, rather than an increase of late INa, and increase
the arrhythmia risk in patients with inherited LQTS, including
LQT3 (81).

Lifestyle
Evidence is increasing that lifestyle can have a significant impact
on SCN5A channelopathies by either a direct modulation of INa
properties or indirectly via impacting on KV and CaV channels,
making the heart more sensitive to (the consequences of) SCN5A
mutations.

Alcohol
Alcohol consumption has been associated with BrS (82). Alcohol
intoxication may have pro-arrhythmic actions through INa
channel inhibition, therebymimicking the actions of INa blocking
drugs (83, 84). Furthermore, ethanol shortens the AP through
multiple effects on CaV and KV channels [see (84), and primary
references cited therein]; hence, alcohol could theoretically
reduce QT-interval prolongation and arrhythmias in the setting
of LQT3. On the other hand, episodic excessive alcohol intake
is associated with an increase in QT duration dispersion due to

cardiac autonomic imbalance (85), which may in fact promote
repolarization abnormalities.

Recreational drug use
Recreational drug use is another well-known factor in BrS,
especially cocaine (79). Cocaine has multiple indirect and direct
effects on the electrical activity of the heart as demonstrated by
increases in PR-, QRS-, and QT-intervals due to inhibition of
CaV, KV and NaV currents (86). The decrease in INa appears to be
caused by slower recovery from inactivation in combination with
a shift in voltage dependency of inactivation (86). The cocaine-
induced QT-prolongation is importantly due to a blockade of IKr,
and predisposes to the occurrence of EADs and TdP (86).

Tobacco
Tobacco use has many detrimental effects on general health.
In addition, nicotine and carbon monoxide (CO), a major
component of smoke, also cause changes in cardiac development
as well as ion channel remodeling (87, 88). For example, a low
plasma concentration of nicotine increased peak INa and late INa,
with shifts in both inactivation and activation kinetics resulting
also in a larger INa window current (88). In addition, sublethal
CO exposure is frequently associated with cardiac arrhythmias,
and it has been demonstrated that its effects may be due to
NaV1.5 channel modulation, causing an increase in late INa, but a
decrease of peak INa (89).

Exercise
Exercise, especially swimming, may trigger most types of LQTS
(90), but paradoxically appears to lower arrhythmia risk in LQT3
patients (91). On the other hand, exercise may aggravate the
ECG defects observed in BrS patients (92). These acute effects
of exercise on BrS and LQT3 may be explained by vagal activity
and rapid heart rates, resulting in less recovery from inactivation
in combination of a lower driving force of Na+ ions due to
intracellular Na+ accumulation (91–93). Regular low intensity
exercise and endurance training can also lead to structural and
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electrical remodeling of the heart [for review, see (92)]. A well-
known effect of exercise training is a reduction of resting heart
rate, partially via a decrease of the hyperpolarization-activated
current, If (94). Theoretically, such a lower resting heart rate
may itself increase the susceptibility to both BrS and LQT3. On
the other hand, exercise training does not affect the expression
of SCN5A mRNA (95), but reduces Ito in epicardial myocytes
thereby reducing the transmural gradient of Ito significantly (96).
This could potentially suppress BrS, but may increase LQT3 due
to AP prolongation (96).

Diet and dietary supplements
Diet may have both beneficial and detrimental effects on SCN5A-
related diseases, but underlying mechanisms appear complex.
For example, acute application of polyunsaturated fatty acids, in
particular those of the n-3 class (PUFAs), inhibits INa (97) and
therefore may facilitate BrS. Yagi et al. (98), however, suggested
that n-3 PUFAs may prevent ventricular fibrillation in BrS, likely
due to additional blockade of various other cardiac ion channels
(68), including Ito (99). High cholesterol and fat intake may
constitute additional diet-related modulatory factors. Both are
associated with a slower recovery from INa inactivation, but with
a more negative voltage dependence of INa activation, which
may lower the threshold for excitation of NaV1.5 channels (100).
To date, the clinical impact of high cholesterol and fat intake
on LQT3 and BrS patients are as yet unknown. Interestingly,
consuming a large meal, resulting in vagal stimulation, may
trigger sudden cardiac arrest in BrS (101, 102). In addition,
glucose load (alone and in combination with insulin infusion), as
well as Thai high glycemic index (HGI) meals are known to affect
ST-segment elevation in BrS patients (see (103), and primary
references cited therein). The mechanism behind this effect may
be related to glucose-induced insulin secretion. In myocytes,
insulin results in activation of the Na/K pump (104), and
consequently, in an increased outwardly directed current during
the AP thereby theoretically promoting repolarization. On the
other hand, insulin in myocytes enhanced the depolarizing ICa,L
(105), while it inhibits IKr (106) and IKs (107), thereby prolonging
the QTc in humans (108) which may favor LQTS. More studies
are required to elucidate the exact role of glucose/insulin on BrS
and LQT3, and to explain the so-called diabetic death-in-bed
syndrome as mentioned by Skinner et al. (109). Furthermore,
high salt and glucose intake can result in hypertension and
diabetes, respectively. Both diseases have significant impact on
ion channel function, and hence likely also modulate disease
expressivity and severity in the setting of SCN5A mutations (see
also below).

These days, dietary supplements, natural drugs, and/or
traditional Chinese medicines are increasingly used (110). Some
ingredients in these preparations shorten the cardiac AP due
to INa and ICa,L inhibition [for review, see (110)], thus caution
for BrS patients seems appropriate. Other compounds, such
as Wenxin Granule [for review, see (111)], may however have
a therapeutic effect on BrS. Although Wenxin Granule was
shown to reduce INa, it also suppressed the electrocardiographic
and arrhythmic manifestations of BrS due to inhibition of Ito
(112). It has also been shown to reduce late INa (113, 114),
and therefore may also have an impact in LQT3 patients.

Resveratrol, a polyphenol compound that is primarily derived
from grapes, also inhibits late INa as well as ICa,L (110); hence,
LQT3 patients may have some benefit from such natural and
readily available supplements. Another example of a traditional
Chinese medicine is dimethyl lithospermate B (dmLSB), an
extract of Chinese herbal Danshen. dmLSB slows INa inactivation,
thereby potentially eliminating the arrhythmogenic substrate
responsible for BrS (115). Other ingredients of natural drugs
and/or traditional Chinese medicines are known to prolong the
AP due to KV blockade which may consequently predispose to
arrhythmias in LQT3 patients [for review, see (110)]. Finally,
apart from direct action om membrane currents, diet and
dietary supplements may lead to electrolyte changes, which
may have an indirect impact on ion channel function and
thereby modify disease expression. For example, higher K+

levels may shorten the QT-interval in LQT3 patients while
hypokalemia is a well-known trigger of QT-interval prolongation
and arrhythmias in patients with LQTS (116). Thus, diet and
dietary supplements may impact on various SCN5A- related
conditions, but randomized clinical trials are required to assess
their potential beneficial and/or detrimental effects in SCN5A
channelopathy patients.

Environmental conditions
Environmental conditions should also be considered as potential
disease modifiers in SCN5A channelopathies. Particulate air
pollution, for example, has been associated with increased QTc
duration (117), and thus may theoretically increase disease
severity in LQT3. In addition, sudden noises are well-known
to trigger SCN5A-related arrhythmias (1), but evidence is
increasing that more chronic, environmental noise pollution
also increased incidence of arrhythmias, especially AF (118).
The exact mechanism is yet unknown, but noise is a non-
specific stressor that activates the autonomous nervous system
and endocrine signaling with multiple effects on human health
[for review, see (119)].

Fever
Some SCN5A mutations may induce BrS-associated symptoms
especially during fever episodes, with may be due to changes
in INa channel gating properties in response to increasing
temperature (120, 121). We and others have shown that
specific SCN5A mutations promote slow inactivation of INa
at higher temperatures (i.e., enhanced slow inactivation),
thereby causing reduced peak INa availability (122, 123). To
date, specific LQT3-associated SCN5A mutations which display
enhanced temperature sensitivities have not been described
(121). In general, increased temperature does not affect the ratio
between late and peak INa (124), but enhances the transmural
repolarization dispersion thus facilitating the occurrence of
torsade de pointes (TdP) during LQTS (125). While these
observations suggest an increased sensitivity for LQT3 during
fever, evidence for this is as yet lacking.

Diabetes
Patients with diabetes aremore vulnerable for the development of
arrhythmias, independent of other risk factors like hypertension
and atherosclerosis (126). QT-interval prolongation is more
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often observed in diabetic patients as compared to non-diabetic
individuals (127). QT prolongation, due to downregulation of
KV4 channels, is also observed in rat and mouse models of
diabetes (126, 128). Interestingly, diabetic mice also show an
enhanced late INa (126). It is therefore plausible that diabetes
increases disease severity in LQT3 patients, but evidence for such
a modulatory effect is currently lacking. On the other hand, a
decrease in NaV1.5 expression and INa has been reported in rabbit
and rat models of diabetes (129, 130), which may have important
implications for BrS.

Obesity
Obesity, marked by excessive fat accumulation and weight gain,
may result in various chronic disorders such as dyslipidemia,
insulin resistance, hypertension, hyperglycemia, and type
2 diabetes (131). Thus, it has multiple similarities with a
number of other topics discussed in this review. Therefore,
it is not unexpected that obesity can lead to various cardiac
electrical disorders including AF, (supra)ventricular arrhythmias
(128, 132), and LQTS (133). At this moment, it is not known
whether obesity impacts on disease expressivity and/or
severity in SCN5A-related channelopathies. However, given
its QT-prolonging effect through an increase in ICa,L and a
decrease of various KV channels (132), it is conceivable that
obesity may exacerbate LQT3-associated features. Direct
effects of obesity on peak and late INa have only been
investigated in limited fashion, with contrasting results (for
review, see (132), and primary references cited therein).
Nevertheless, since the number of obese individuals is
steadily rising, further studies are essential to elucidate
potential obesity-related ion channel remodeling and
consequences for arrhythmogenesis in the setting of ion
channelopathies.

Hypertension
Hypertension may lead to progressive myocardial remodeling,
ultimately resulting in the development of cardiac hypertrophy
and associated electrical, homeostatic and structural alterations
(134). The latter may act synergistically with biophysical
alterations secondary to a SCN5A mutation resulting in
an enhanced pro-arrhythmogenic substrate (135). Due to
its progressive nature, the impact of hypertension-induced
pro-arrhythmic remodeling is expected to increase with
age. Indeed, we have recently demonstrated that co-existing
hypertension increased arrhythmia risk and reduced the
efficacy of pacemaker treatment in carriers of the SCN5A-
1795insD mutation above the age of 40 years. Enhanced late
INa, a known consequence of hypertrophy, was shown to
be at least partly involved and may constitute a promising
therapeutic strategy by additionally preventing intracellular
sodium/calcium dysregulation (51, 136, 137). Other studies
have shown a similar interaction between hypertension and
disease severity and outcome, for example in hypertrophic
cardiomyopathy (138). Hence, careful monitoring of
hypertension and hypertrophy in addition to aggressive
anti-hypertensive treatment should be considered in SCN5A
mutation carriers.

Coronary Artery Disease
Coronary artery disease may enhance the risk for cardiac
events in BrS and LQTS patients. Co-existence of BrS and
coronary spasm has been observed in Japanese patients (139–
142), but not in European patients (143). The relation to
SCN5A mutations were not mentioned in these studies, but van
Hoorn and colleagues found that the prevalence of coronary
artery disease was significantly higher among BrS patients with
SCN5A mutations than among BrS patients without SCN5A
mutations (144). Interestingly, Kujime and coworkers reported
that coronary artery vasospasm could be a risk factor for cardiac
events in patients with BrS (145). Coronary artery disease was
reported to augment the risk for LQTS-related cardiac events
in LQTS patients over age the age of 40 years (146), but no
subdivision into the various types of LQTS was performed. The
exact reason for such an augmentation is not known, but may
be related to longer QTc intervals in patients with coronary
artery disease (147, 148). Alternatively, it may be consequent to
alterations in the tissue substrate (e.g., ischemia, scar formation,
reduced ejection fraction) which may lower the threshold for
afterdepolarizations in LQTS, a critical factor in the initiation
of torsade de pointes that is thought to be the arrhythmogenic
mechanism in LQTS-related cardiac events [see (146)]. Thus, it
appears that coronary artery disease may enhance the risk for
cardiac events in both BrS and LQTS patients, but further clinical
studies are required to substantiate these observations.

CONCLUSIONS

Genetic modifiers, (common) co-morbidities, environmental
influences, and life style factors including diet and exercise may
modify disease expressivity and severity, and as such significantly
modulate the risk for arrhythmia occurrence and survival in
SCN5A channelopathy. Importantly, the impact of modulatory
factors may differ between distinct mutations, but may also vary
with age and gender. Hence, clinical management of patients
with SCN5A mutations should include careful and continuous
assessment of co-existing diseases and other modulatory factors,
in addition to rigorous treatment of relevant co-morbidities.
Identification of disease modifiers will be an essential step in
further research related to SCN5A channelopathies and may help
to design better risk stratification algorithms and to improve
development of novel diagnostic and therapeutic strategies.
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