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Genetic architecture of a disease comprises the number,
frequency, and effect sizes of genetic risk alleles and the
way in which they combine together. Before the genomic
revolution, the only clue to underlying genetic architecture
of schizophrenia came from the recurrence risks to relatives
and the segregation patterns within families. From these
clues, very simple genetic architectures could be rejected,
but many architectures were consistent with the observed
family data. The new era of genome-wide association stud-
ies can provide further clues to the genetic architecture of
schizophrenia. We explore models of genetic architecture
by description rather than the mathematics that underpins
them. We conclude that the new genome-wide data allow
us to narrow the boundaries on the models of genetic archi-
tecture that are consistent with the observed data. A genetic
architecture of many common variants of moderate (rela-
tive risk > approximately 1.2) can be excluded, yet there is
evidence that current generation genome-wide chips do tag
an important proportion of the genetic variation for schizo-
phrenia and that the underlying causal variants will include
common variants of small effect as well as rarer variants of
larger effect. Together, these observations imply that the
total number of genetic variants is very large—of the order
of thousands. The first generation of studies have generated
hypotheses that should be testable in the near future and
will further narrow the boundaries on genetic architectures
that are consistent with empirical data.
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Introduction

Family history is the most important risk factor for
schizophrenia,1 consistent with a genetic contribution
to its etiology. Traditionally, researchers, eg, McGue
et al,2,3 and Risch,4 employed genetic modeling to see
if they could gain insight into the genetic architecture
of schizophrenia. They compared patterns of recurrence
risks for different types of relatives with those expected
under different genetic models. They not only found
that multiple genetic models of genetic architecture
were consistent with observations but also showed that
some simple models could be rejected. The advent of ge-
nome-wide association studies (GWAS) has allowed the
identification of individual genetic risk loci or at least
markers linked to them. This article explores if the
new evidence provided from GWAS provides further
clues to elucidate an understanding of the genetic archi-
tecture of schizophrenia. In doing this, we fully acknowl-
edge the sentiment of the industrial statistician George
Box that ‘‘all models are wrong, but some are useful.’’
Simple models of genetic architecture allow us to devise
hypotheses that can be tested against observable data. A
model is useful until observable data allow it to be
rejected, thereby narrowing the boundaries on models
that remain consistent with observations. In this explora-
tion, we aim to minimize, where possible, the presenta-
tion of detailed mathematical foundations presented
elsewhere (N.R.W. and M.E. Goddard, PhD, unpub-
lished data, 2009).5

What Is Genetic Architecture?

To a complex trait geneticist, genetic architecture com-
prises 4 factors.

1. The number (n) of risk alleles that contribute to disease
in the population, which could include multiple risk
alleles within a gene.

2. The frequency (qi) in the population of each of the risk
alleles (i = 1 . n), which can be either the major or
minor allele.

3. The effect size of a risk allele that encompasses the
concept of penetrance.

4. The way in which risk alleles act together, additively or
with interaction.
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Both the way in which effect sizes are described and the
way in which we describe the interaction of risk alleles de-
pend on the scale of measurement. We will use the term the
‘‘risk scale’’ to mean the observed scale of disease. On this
scale, the phenotypic risk is either affected or not affected,
but the genetic risk can be expressed as a probability de-
pendent on the genotype of an individual. On this scale,
effect sizes can be expressed as either the relative risk or
odds ratio of a risk allele for disease. Risk alleles that com-
bine with interaction (or epistasis) on one scale can com-
bine additively on a transformed scale. Therefore, the same
genetic architecture can be described as either multiplica-
tive or additive and leads to confusion because the scale of
measurement is often not explicitly stated. Heritability of
schizophrenia is usually described on the ‘‘liability’’ scale;
on this notional scale, risk alleles are usually assumed to
combine additively so that the genetic variance (VG) is
the sum of the variances contributed by each variant,6

VG =+n

i = 1
2qi

�
1 � qi

�
a2
i ; ½1�

where ai is the effect size of a risk allele, using ‘‘a’’ to empha-

size additive action on this scale. From this equation, we see
that for a given effect size of a risk allele (ie, ai), one with fre-

quency qi = 0.5 will contribute the maximum variance com-

pared with risk variants of higher or lower frequency. Rare

variants (ie, qi close to zero) individually contribute little to

the overall variance because qi(1 � qi) is also close to zero.

Infinite combinations of n, qi, and ai can generate the same

VG. If effect sizes are small or if risk variants are rare, then

the number of risk loci must be large to account for the genetic
variance that we know exists from family studies.

The Evidence for a Genetic Etiology of Schizophrenia

Adoption studies7,8 and recurrence risk to relatives (ta-
ble 1) provide direct evidence for a genetic etiology of
schizophrenia. From disease prevalence (estimated as
0.72%9 lifetime morbidity risk) and recurrence risks,
we can estimate heritability on the liability scale.10 Her-
itability is high: A meta-analysis of twin studies estimated
heritability to be 81% (95% confidence interval (CI) =
73%–90%),11 and the estimate from a Swedish study
matching >7 million records from the national multigen-
eration database with hospital discharge records was
64.3% (95% CI = 61.7%–67.5%).12 Other risk factors in-
clude male gender, advanced paternal age, perinatal
events, and recreational drug use (reviewed in Sullivan1

and Tandon et al13) . In addition, shared family environ-
ment effects are estimated to be small but significant; they
explain 11% (95% CI = 3%–19%)11 and 4.5% (95% CI =
4.4%–7.4%)12 of the variance in the twin study meta-
analysis and Swedish study, respectively.

Despite the high heritability of schizophrenia, only
a small proportion of cases have a family history of
schizophrenia, reported to be less than one-third13 and

estimated to be only 3.81% (95% CI = 3.62–4.00) in
the Swedish national study12 (counting all identified
first-, second-, and third-degree relatives). Genotyping
studies have provided some direct evidence for a genetic
etiology for schizophrenia and direct evidence for genetic
architecture either in linkage studies14 or association
studies particularly genome-wide studies using both sin-
gle-nucleotide polymorphisms (SNPs) and copy number
variants (CNVs, submicroscopic structural variants in-
cluding insertions and deletions).15–20 Next generation se-
quencing studies are expected to provide evidence for the
relative importance of rare variants.

The Models Rejected Before the Era of GWAS

Although rare variants of large effect size do exist, such as
the translocation that disrupts 2 overlapping brain
expressed genes on chromosome 1 (DISC1 and DISC2)
in a Scottish pedigree,21 and major chromosomal abnor-
malities are present in a small proportion of cases (reviewed
in Tandon et al13), these are very much the exception rather
than the rule, and few large pedigrees have been identified.
Therefore, the simplest genetic architectures were rejected,
recognizing that the observed recurrence risks and segrega-
tion patterns within families could not be explained either
by a single genetic locus22 nor by multiple single loci.4 They
also could not be explained by models in which risk loci
combinetheireffectsadditivelyonthe scaleofrisk.4 Knowl-
edge of family history, differentiating between so-called
sporadic and familial cases, was found not to be useful
in understanding the etiology of schizophrenia,23,24 and in-
deed, sporadic cases are expected to be the norm in complex
genetic diseases of low prevalence without invoking new
mutations of large effect.25 However, beyond these broad
exclusions, a number of genetic models could all explain the
observed recurrence risks: either oligogenic models of a few
risk loci eachof relatively largeeffectorpolygenicmodelsof
a large number of loci each of smaller effect. Before impos-
ing the new information generated from GWAS, we will
explore some of these genetic models.

Visualizing a Multiplicative Model

We take over from where Risch4 left off, that the genetic
architecture of schizophrenia must be represented at least
by a few risk variants that combine in a multiplicative
way on the risk scale in order to generate a pattern of re-
currence risk to relatives similar to that observed. Can we
visualize this multiplicative model? Figure 1 shows simple
multiplicative models that are approximately consistent
with schizophrenia in that disease prevalence is approx-
imately 0.72% and heritability approximately 0.7. It
shows 3 relationships with number of risk loci on the
x-axis. Firstly, the bell-shaped curve shows the probabil-
ity distribution of individuals in the population having x
risk alleles; for x-axis a), 50 binomially distributed loci
take on a normal distribution about a mean of 2 3 50 3
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0.3 = 30 risk alleles. The S-shaped curve shows the prob-
ability of disease on the risk scale; for x-axis a) individuals
carrying less than 38 risk loci have probability of disease
close to 0, and for those with more than 43 risk loci, disease
is guaranteed. The straight line shows the increase in risk
or probability of disease on the log scale, illustrating that
on this scale the risks of alleles combine additively. Many
combinations of number of risk alleles, risk allele fre-
quency, and effect size are consistent with the observed re-
currence risks to relatives, illustrated by the alternative x-
axes; all generate a steep rise in probability of disease with
increasing number of risk alleles, implying that the genetic
architecture must include epistasis on the risk scale.4

Exchangeable Models

Other genetic models can generate the steep rise in prob-
ability of disease for a small proportion of the popula-

tion. For example, the liability threshold model6,26–28

assumes that individuals in a population possess an un-
seen liability to disease, and only those whose liability
exceeds a given threshold are affected. The liability has
genetic and environmental component on this notional
liability scale; risk alleles and environmental risks com-
bine additively. But on the risk scale, risk alleles (and en-
vironmental factors) combine with interaction. Figure 2
shows the equivalent relationships to those in figure 1; the
bell-shaped curve is the frequency distribution of the ge-
netic liability; the straight line shows (of course) that
genetic liability is additive on the liability scale, and
the S-shaped curve shows the probability of disease on
the risk scale (the Probit transformation of the genetic
liabilities). Heritability defines the steepness of the rise
in probability of disease, and the disease prevalence
determines the position of rise along the x-axis relative
to the population distribution of liability. Because the

Table 1. Observed Recurrence Risks to Relatives and Those Predicted Under the Liability Threshold Model

Observed
Predicted Using Liability
Threshold Modela

Risch4

Based on
McGue
et al2

Lichtenstein et al30

Estimates
95% Confidence
Intervals

Using Prevalence
and Sibling Risk
of Risch4

Using Prevalence
and Heritability of
Lichtenstein et al30

Lifetime prevalence (%) 0.85 0.407 0.85b 0.407c

Recurrence risks
Parent 9.43 8.26–10.8 8.6 8.6
Offspring 10.0 10.3 8.76–12.2 8.6 8.6

Offspring of 2 affected
parents

89 18.8–672 41 44

Full-sibs 8.6 8.55 7.61–9.60 8.6 8.6

Dizygotic twins 14.2 8.6 8.6

Half-sibs 3.5 2.52 1.56–4.05 3.4 3.3

Nephew/nieces 3.1 2.71 2.22–3.21 3.4 3.3

Grand children 3.3 2.95 1.81–4.81 3.4 3.3

Uncles/aunts 3.2 3.04 2.39–3.87 3.4 3.3

Grand parents 3.8 2.75–5.26 3.4 3.3

First cousin 1.8 2.29 1.71–3.07 1.9 1.9

Monozygotic 52.1 37 38

Proportion of individuals
with affected family members

—d 3.81e 3.62–4.00 32f 17f

aFrom simulations of 106 three generation families. Phenotypes (Y) of liability simulated as Y = A þ E, where A is additive genetic and
E is environmental component. E simulated as E;N(0,1 � h2), where h2 is heritability of liability. For founders, A;N(0,h2); for
nonfounders, A=1=2Amum þ 1=2Adad þ Aw; where Aw;N

�
0; 1=2h2

�
: Individuals are diseased if Y > T, where T truncates the normal

distribution at the proportion defined by the disease prevalence.
bUses a heritability of liability of 0.80 which is consistent with disease prevalence 0.85% and sibling recurrence risk of 8.610

cUses a heritability of liability of 0.64 that was estimated from this data.12

dNo estimate provided in these references, but frequency <33% suggested in review.13

eCounting all identified first-, second-, and third-degree relatives.
fAssuming nuclear family size of with Poisson mean 2.2 children and complete knowledge of disease status of all first-, second- and
third-degree relatives and assuming no assortative mating and no differences in fertility based on disease status.25
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threshold model produces the same steep rise (implying
epistasis27) in risk as the multiplicative model, and be-
cause the steep rise is a necessary requirement for a model
to generate the observed pattern of recurrence risks, it is
a useful model with which to develop theory. It requires
no explicit assumptions about 3 key features of genetic
architecture, number of loci, risk allele frequencies,
and risk allele effect sizes and is simply parameterized
in terms of the total variance they explain; there is no re-
quirement that risk variants are common. The mathemat-
ical development assumes a normal distribution of
liability that is approximately achieved even with a small
number of risk loci, and the model is quite robust to devi-

ations from normality as long as the distribution is unim-
odal.6 The mathematical tractability of the threshold
model makes it a useful way to summarize genetic archi-
tecture that applies equally to a range of ‘‘exchangeable’’5

genetic models that may appear to be described differ-
ently but that cannot be differentiated in practice.

Visualizing the Liability Threshold Model

In order to better visualize the liability threshold model,
consider an analogy with height. We are all so familiar
with the variation in human height that we are intuitively
comfortable in recognizing that about 80% of the varia-
tion in height that we observe is of genetic origin (ie, the
heritability is 80%). Adult children of short parents tend
to be shorter than those of tall parents, yet there is var-
iation between the children within families. Indeed, half
of the genetic variation in populations occurs between
families (the variance of the family means), and half
the variation occurs within families,6 resulting from
the unique set of genetic effects received by each child
from each parent in the meiotic sampling process. Imag-
ine the ‘‘disease’’ of ‘‘loftiness’’ that affects the top 0.72%
of the population. If we lined up the population in height
order, then they would be ranked on their phenotypic li-
ability to loftiness. If the population were ordered on
their genetic liability, then the order would change but
not too much because the heritability is high. Intuitively,
we recognize that relatives of those with loftiness would
also have an increased risk of loftiness. However, we can
also visualize that 0.72% is a small proportion of the pop-
ulation and even families we consider tall might not have
many individuals who pass the threshold into loftiness.

Fig. 2. Visualizing the Genetic Architecture of Complex Genetic
Disease Under a Liability Threshold Model for a Disease With
Frequency 0.72% and Heritability of 0.7. The model is expressed in
terms of the genetic variance and so can represent an infinite
combination of number of loci, risk allele frequencies, and effect
sizes. The black dashed bell-shaped line represents the frequency
distribution of liabilities. The straight dot-dashed line represents the
additive genetic action on the liability scale. The solid line shows that
on the risk scale the risk alleles combine nonadditively.

Fig. 1. Visualizing a Genetic Architecture Where Risk Alleles Act
Multiplicatively. All examples represent a disease with frequency
0.72% and heritability of ;0.7. Under a simple multiplicative
model ofn risk loci contributing to disease each with relative riskR,
the probability of disease in an individual carryingx risk loci out of
the possible 2n is P(Djx) 5 BRx,, assuming multiplicativity of risk
alleles both within and between loci. B is the probability of disease
in individuals carrying no risk loci, ie,P(Djx50)5BR05B, withB
defined so that RP(Djx)P(x) 5 disease prevalence. Because B is
very close to 0, x must be high before Rx is big enough to raise BRx

from being close to 0. P(Djx) is constrained to have a maximum of
1. Risch4 did not recognize the need to impose this constraint that
impacts on his predicted results (discussed elsewhere5). The dashed
bell-shaped line represents the frequency distribution of risk alleles
P(x), the straight dot-dashed line represents the additive
genetic action on the log(risk) scale, log(P(Djx)) 5 log(BRx) 5
xlog(BR), and the solid line represents the multiplicative action of
risk alleles on the risk scale, P(Djx) . The same shapes of
distributions are seen for different genetic architectures as shown
by alternative x-axes a)-d).
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Our analogy continues by recognizing that liability to
schizophrenia also has a high heritability and that the
prevalence of schizophrenia in the population approxi-
mately 0.72%, but of course we cannot see liability to
schizophrenia, and all we can observe are those individ-
uals who cross the threshold of disease. The epidemiolog-
ical parameters that we can measure (the combination of
disease prevalence and recurrence risks to relatives) fit
with what we would expect under the liability threshold
model (table 1), further suggesting that it remains a useful
model. Under this simple model, apparently sporadic dis-
ease is the norm (table 1)25; our predicted proportion of
affected relatives is higher than that observed in the
Swedish national study, but we assume full knowledge
of true disease status of all relatives regardless of age.
The frequency of sporadic cases was given at least
two-thirds in the recent review of Tandon et al,13 not in-
consistent with the predictions. The simple modeling
ignores observations of the epidemiology of schizophre-
nia that could impact on genetic variance over genera-
tions: Decreased fertility29 of diseased individuals
would decrease genetic variance while assortative mat-
ing,30,31 and mutations accumulating over generations
(including de novo mutations associated with paternal
age32) would serve to increase genetic variance.

Can GWAS Help Our Understanding of the Genetic
Architecture of Schizophrenia?

Technological advances allow us to measure genetic poly-
morphisms at several 100 000 locations across the ge-
nome in large cohorts of individuals. GWAS are designed
to identify SNPs or CNVs associated with case-control
status.33 This has the potential to describe the genetic eti-
ology of complex disease in quite different terms to the
recurrence risks to relatives. In order to understand
how these studies can contribute to an understanding
of genetic architecture, we must recognize what the stud-
ies are designed to detect. The earlier generation of can-
didate gene association studies had led us to ensure that
sample sizes of GWAS were large, allowing detection of
risk alleles of small effect (relative risk > approximately
1.3) despite the unprecedented level of multiple testing.
Nonetheless, there was a hope that our poor selection
of genes in the era of candidate studies underlay the small
number of associated variants that had been detected and
that common variants of moderate effect size did exist. As
an example, we use the International Schizophrenia Con-
sortium (ISC) study16 that was one of the larger first-
generation GWAS, with 3322 case subjects and 3587
control subjects. The detailed power calculations pro-
vided in that study show that it had 100% power to detect
a risk allele with frequency 0.2 and relative risk 1.5 at the
stringent genome-wide level of significance of 5 3 10�8

.

The ISC samples were genotyped on either the Affyme-
trix 5.0 or 6.0 chips, so that at least 300 000 SNPs sur-

vived quality control checks on all samples, but
imputation using HapMap samples and the knowledge
of correlations between known SNPs allowed association
analysis of >1.6 million SNPs. Deep sequencing studies
have estimated that the Affymetrix chips tag approxi-
mately 70%–80% of the total genomic variance of
SNPs34 and the majority of CNVs.35,36

What GWAS Have not Found

Other reviews37,38 have focused on the handful of inter-
esting rare and common variants that have been identi-
fied through GWAS15–20,39–41 including de novo
mutations.42 In particular, there is mounting evidence
that rare CNVs of moderate effect size play an important
role in schizophrenia (reviewed in O’Donovan et al43).
However, an equally important result is perhaps not
what GWAS have found but what they have not found.
In the ISC study, not one SNP and only one imputed
SNP reached genome-wide significance. Because there
was 100% power to detect common variants with relative
risk of 1.5 and because a high proportion of the genomic
variance was tagged by the genotyped SNPs, we can im-
mediately narrow down our expectation of the genetic ar-
chitecture of schizophrenia by excluding a model based
on a relatively small number of common variants of mod-
erate effect. However, from this first observation, we can-
not exclude common variants of small effect size or rare
variants of small or moderate effect size (important con-
tributions to genetic variance by rare variants of large
effect size were already excluded—see above). Either
way, we must conclude (from equation 1) that a large
number of variants must underlie the genetic etiology
of schizophrenia. Can GWAS help us go further in nar-
rowing the genetic architecture of schizophrenia?

Standard association analyses are geared to identify as-
sociated loci that are unlikely to be false positives. This is
important ifweare goingtofollowupidentified loci in time-
consuming and costly functional studies. In the supplemen-
tary informationoftheISCstudy,powerwasexploredfrom
a different angle. The example of an associated variant with
relative risk 1.05 and frequency 0.2 was considered. The
power was 0 to detect association of this variant at the ge-
nome-wide significance type I error rate because it would be
expected to have allele frequency of 0.2079 in case subjects
and 0.1999 in control subjects. Even with 10 000 case sub-
jectsand 10 000 control subjects, power at therelatively low
threshold of 1 3 10�6 was only 0.2%. Yet, these power cal-
culations can be turned on their head to recognize that 46%
of the time wewould expect toseevariants of this size withP
values less than 0.2, and 72% of the time they will feature in
the top half of the list. So if our genotyped SNPs were as-
sociated with low effect size, we might expect to see an en-
richment of small P values. If many weakly associated
variants were detected in an association study, then we
would expect the quantile-quantile (Q-Q) plot of
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genome-wide associations to rise above the line of expecta-
tion. The Q-Q plot represents the relationship between the
ranked P values obtained from the GWAS and the ranked
P values expected under the null hypothesis of no associa-
tion. The Q-Q plot from the ISC study (figure S2 of Purcell
et al16) shows more small p-values than expected by chance.
This is typical of Q-Q plots from GWAS of complex traits
(eg, Easton et al44), but the excess of lowly associated var-
iants may reflect unknown biases such as population strat-
ification or technical artifacts.

Is the Excess of Lowly Associated Variants in GWAS of
Complex Diseases an Artifact or Real?

In the ISC study, the analysis team set out to investigate if
the excess of lowly associated variants reflected true pos-
itives, arguing that although we could not distinguish in-
dividual true from false positives, sets of lowly associated
SNPs would be (mildly) predictive of disease status in
other datasets if those sets did indeed contain an excess
of true positives. The basic idea was that by combining
the estimated effect sizes of many SNPs simultaneously
we could detect a genome-wide signature of association.
We used sets of SNPs including all those with P values
less than thresholds of 0.1, 0.2, 0.3, 0.4, and 0.5 identified
from the ISC study, recognizing that by chance alone 0.1,
0.2, etc, of the SNPs would fall into these categories. For
clarity, we used sets of SNPs in linkage equilibrium, al-
though this restriction had little impact on our results.
For each SNP in a SNP set, we recorded the associated
allele and its odds ratio. For each individual from other
(‘‘target’’) GWAS, we generated a score regardless of their
case-control status. The score was a weighted sum of the
log(odds) for each associated allele harbored by an indi-
vidual. Logistic regression of case-control status on profile
score in the target studies provided evidence that the SNP
sets were indeed predictive of case-control status. The
scores only explained 3% of the variance in schizophrenia
case-control status, but the large sample sizes ensured that
this was highly significant (up to P = 2 3 10�28). Does this
result unequivocally represent the detection of true com-
mon causal genetic variants? In the ISC study, the analysis
team considered carefully whether systematic differences
between cases and controls across study samples could ex-
plain the results. Population stratification seems an un-
likely confounder because the same population strata
would be needed in cases and controls between geograph-
ically diverse samples. However, unknown technical arti-
facts such as consistent differences across studies in
storage conditions of clinical cases vs population sampled
controls may still prevail. Stronger confirmation that the
result could not be explained away came from using the
Wellcome Trust Case Control Consortium studies of 7
complex genetic diseases as target study samples; criti-
cally, the same control sample was compared with each
disease sample. For the target samples of coronary artery

disease, Crohn’s disease, hypertension, rheumatoid ar-
thritis, type I diabetes, and type II diabetes, the ISC-iden-
tified SNP sets were not predictive of case-control status
(P > .05), but for bipolar disorder, the scores explained
approximately 2% of the variance in case-control status
atP = 1 3 10�12, adding to the growing literature that sup-
ports a shared genetic etiology of schizophrenia and bipo-
lar disorder.12,38,40 The unequivocal conclusion is that
current generation genome-wide SNP chips do tag some
of the causal genetic variation for schizophrenia. Could
these results provide any further insight into the genetic
architecture of schizophrenia?

Using GWAS to Generate Hypotheses About the Genetic
Architecture of Schizophrenia

As part of the ISC study, the ISC analysis team used sim-
ulation to explore what genetic architectures could explain
the pattern of results we saw. The simulations used the
same sample size and SNPs as in the real data. The param-
etersvariedwere (i) theproportionofgenotypedSNPsthat
taggedassociatedcausalvariants, (ii) themeaneffectsizeof
the causal variants, (iii) the distribution of the effect size of
the causal variants, and (iv) the linkage disequilibrium be-
tween the genotyped and causal variants. The simulated
data were analyzed in the same way as the real data and
combinations of parameters that generated the same pat-
ternofvarianceexplainedusingdifferentthresholdsforthe
SNP sets used in the target samples were identified. Many
combinations of the parameters could be rejected, but
equally many combinations were consistent with the ob-
served results. As found in early studies relating genetic
models to recurrence risks, and as expected from equation
1, the driving force was the total variance explained by the
associated loci; many combinations of number of loci, fre-
quency of associated loci, and effect size of associated loci
generate the same variance explained. But the simulations
did allow some models to be excluded and to generate hy-
potheses that can be tested as sample sizes, and genotyping
density increase.

The simulations allowed the exclusion of models where
the number of associated variants is less than approxi-
mately 100. In these situations, the effect sizes of the asso-
ciated variants needed to be large in order to generate
a profile that explained 3% of the variance in case-control
status.But if theeffectsizeswerelarge, thentheywereeasily
detected with low association P values. This meant that
a SNP set defined by a stringent P value threshold ex-
plained a high proportion of the variance in case-control
status,andaddingadditionalSNPsat less stringent thresh-
olds simply added noise; this did not fit with observations.

The simulations also allowed the exclusion of models
of only rare variants. Acknowledging that the current
generation of genome-wide chips overrepresent common
SNPs, a genetic architecture of ungenotyped rare causal
variants whose effects could only be detected through
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linkage disequilibrium with genotyped SNPs was investi-
gated. Models with only rare variants of very large effect
could not generate the pattern of variance explained in
case-control status observed with decreasingly stringent
SNP sets. A model with only rare variants of moderate
effect could generate this pattern, but in this case, the
contribution that alleles of different frequencies made
to the variance explained did not match the observed
results. Simulation of rare variants only showed that
SNPs with low allele frequency would be expected to con-
tribute more to the variance explained in case controls
status than was observed. This is because the linkage dis-
equilibrium (r2) will be higher for SNPs whose minor
alleles are coupled to the rare variant,45 and so they
are more likely to generate smaller P values in an asso-
ciation test. A model of only rare variants, with multiple
rare variants present on common haplotype back-
grounds, also could not explain the results.

Consistent with equation 1, the ISC simulations
showed that we could not distinguish between a small pro-
portion of the genotyped variants having small effect size
and all genotyped variants having a very small effect size
and therefore the multitude of combinations in between.
However, the consistent combinations all pointed to a ge-
netic variance of liability of 32%–36% tagged by the gen-
otyped SNPs. The simulations have generated hypotheses
that will become testable in a relatively short time frame.

1. As sample size increases, using the same genotyped
SNPs, the proportion of variance in case-control sta-
tus explained will increase but will still reflect the same
32%–36% of variance in liability.

2. As sample size increases, the pattern of variance
explained in case-control status by SNP sets defined
by the stringency of P values will change (because
there is more power to detect variants of small effect
and they will filter toward the top of the P value list).
The change in pattern may allow us to exclude addi-
tional genetic architectures (see figure S8 in Purcell
et al16) and may shed more light on the relative con-
tributions of rare and common variants.

3. The next generation of SNP chips represents more of
the common genomic variance and would be expected
to explain a higher proportion of the liability variance.
But perhaps the proportion of variance explained will
not be much higher because it is likely that a propor-
tion of the liability variance detectable through recur-
rence risk may never be detectable through association
or sequencing if there are many rare causal variants of
very small effect.

Visualizing a Polygenic Model

The results from GWAS point strongly to a genetic ar-
chitecture of many (poly) genetic variants. They also im-

ply that both common15,16,18 and rare variants17,41 of
small effect contribute to the genetic architecture of
schizophrenia. Only time will tell the genetic architecture
of the unaccounted variance. Evolutionary genetics leads
us to expect an L-shaped46(or U shaped47 with pleiot-
ropy) distribution of risk allele frequencies and an inverse
correlation between risk allele frequency and effect size.46

From equation 1, we expect that, individually, rare var-
iants will contribute only a very small part of the overall
genetic variance. Their overall contribution to the vari-
ance depends on how many there are.

A polygenic model is not inconsistent with the pheno-
typic heterogeneity that characterizes schizophrenia be-
cause each individual will carry their own unique
portfolio of risk alleles that may generate a spectrum of
phenotypes and phenotypic heterogeneity. For example,
for simplicity, let us assume that there are 1000 genetic var-
iantscontributingtoriskofdiseaseeachwith frequency0.1
(figure1,x-axisd).Frombinomial theory,all individuals in
the population carry at least 150 risk alleles, an average in-
dividual carries 200 risk alleles, and when disease preva-
lence is approximately 0.72% and heritability
approximately 0.7, most of those with disease carry 230–
250 risk alleles. Each will carry a different set of risk alleles
out of the maximum of 2000 (2 per locus).

One consequence of there being many risk variants is
that the impact of a given risk variant depends on the ge-
netic (and environmental) background of an individual.
In our simplified example, there is no noticeable differ-
ence in probability of disease for individuals with 200
or 201 risk loci, yet there is a difference between individ-
uals with 240 or 241 risk loci (figure 1 x-axis d). This means
that risk variants detected with a small genotype relative
risk can still be biologically very important. Therefore,
identified truly associated common variants are worthy
of functional investigation even if their estimated effect
sizes are very small.

We have shown that the constraints of low disease
prevalence and high heritability imply a steep increase
in probability with disease for individuals with a high
burden of risk alleles. Therefore, a normal phenotype
is maintained when individuals harbor a manageable
number of risk variants. This implies that biological sys-
tems can compensate for minor deviations from the nor-
mal equilibrium, eg, through alternate pathways, so that
the disease phenotype is only revealed when the system
cannot compensate for a large number of perturbations.
This further implies a considerable degree of redundancy
of genetic material that is completely consistent with
a range of studies, eg, knocking out an entire gene of
known function often has no or unexpected impact on
the phenotype,48–51 and protein interaction studies
have shown that the vast majority of known disease genes
are individually nonessential.52 This robustness allows
accumulation of mutations.53 Moreover, while theories
of balancing selection argue against common variants
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of large effect but not against many common variants of
small effect.54 Indeed, if each complex genetic disease and
trait is underpinned by thousands of genetic variants,
models of multiple pleiotropy of each risk variant55 are
necessarily inferred (ie, a variant that has a negative effect
on some characteristics may have a positive effective on
others). Multiple pleiotropy is a mechanism to maintain
genetic variance47,56 because the contribution to fitness of
a risk allele reflects its average contribution across its
pleiotropic functions.

Prediction of Genetic Risk

Genetic variants that confer only a small increase risk to
disease are individually not useful in predicting a person’s
genetic risk to disease. However, a risk equation combin-
ing presence/absence of each risk variant and its effect size
can generate a personalized prediction of genetic risk. We
investigated this problem using simulation of GWAS.57

Our simulations showed that only when GWAS comprise
about 10 000 cases and controls, would it be possible for
a useful proportion of variance in disease status to be
explained, even though the risks conveyed by individual
variants are small. If associated variants explain half of
the known genetic variance in liability of schizophrenia,
then a multilocus genetic risk profile would generate an
area under the receiver operator characteristic curve
(a well-established tool for determining the efficacy of
clinical diagnostic and prognostic tests in correctly clas-
sifying diseased and nondiseased individuals) of approx-
imately 0.9 (N.R.W., J. Yang, PhD, M.E. Goddard, PhD,
P.M.V., 2009 unpublished data,).

Prediction of genetic risk is perhaps likely to generate
the most immediate impact of the results of GWAS in
the clinical setting. This is because in prediction of ge-
netic risk, the associated SNPs (or other markers) do not
have to be the causative mutations: They just need to be
correlated with the causative mutations ensuring that
there is a consistent association between the variants
used in prediction and disease risk. Ethical considera-
tions58 govern the use of genetic risk prediction, but
to some extent these issues have been bypassed through
the availability of direct to consumer testing (necessarily
with very limited efficacy at this point). Despite ethical
concerns, prediction of genetic risk may be an important
tool for identifying schizophrenia in its prodromal phase
that is the key to early intervention.59 Around the world,
protocols have been developed for identification of
patients at ultrahigh risk of developing psychosis60 that
includes genetic risk through family history; but, as we
have shown, a very high proportion of schizophrenia
case subjects will have no close relatives with the disorder.
Moreover, as half the genetic variance occurs within
families,6 each child of a parent with schizophrenia will
have a different genetic risk for disease even though their
risk based on family history is the same. Individuals

whose genetic risk coincides with the steep rise in
probability of disease (figures 1 and 2) are those most vul-
nerable to environmental risk factors such as recreational
drug use.

Conclusion

Early studies showed that many different genetic archi-
tectures could explain the observed recurrence risks in rel-
atives of schizophrenics. However, those studies were
able to exclude the most simple genetic models and con-
cluded that each individual with schizophrenia harbored
at least ‘‘a few’’ genetic risk variants that act multiplica-
tively.4 Recent GWAS have allowed us to exclude addi-
tional genetic architectures, showing that a genetic
architecture of less than 100 risk variants and a genetic
architecture of only rare variants are both not consistent
with observed data. The GWAS provide evidence that
perhaps half of the known genetic variance is tagged
by common variants some of which is directly attribut-
able to common causal variants of small effect. As
GWAS sample sizes increase and as genotyping chips ac-
count for more of the genomic variance, the genetic ar-
chitecture will become clearer. Genetic theory expects us
to anticipate that some of the genetic variance so far not
accounted for will be explained by rare variants, even
though individually the contribution of each variant
will be very small. We would expect the spectrum to in-
clude rare variants of small effect, which may never be
identified. Several genetic models that represent the
way in which risk variants combine to contribute to
risk of disease can all explain observed results, and it
is unlikely that we will be able to differentiate between
them. All models require epistasis on the risk scale, which
is essential to produce the steep rise in probability of dis-
ease necessary to generate the pattern of observed recur-
rence risks to relatives. The most tangible and immediate
outcome of the GWAS may be prediction of genetic risk
to disease, which may be an important tool in ensuring
early intervention treatments.
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