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Abstract

Background: Mechanisms that inactivate the p53 pathway in Acute Myeloid Leukemia (AML), other than rare

mutations, are still not well understood.

Methods: We performed a bioinformatics study of the p53 pathway function at the gene expression level on our
collection of 1153 p53-pathway related genes. Publically available Affymetrix data of 607 de-novo AML patients at
diagnosis were analyzed according to the patients cytogenetic, FAB and molecular mutations subtypes. We further

investigated the functional status of the p53 pathway in cytogenetically normal AML (CN-AML) and Acute
Promyelocytic Leukemia (APL) patients using bioinformatics, Real-Time PCR and immunohistochemistry.

Results: We revealed significant and differential alterations of p53 pathway-related gene expression in most of the
AML subtypes. We found that p53 pathway-related gene expression was not correlated with the accepted
grouping of AML subtypes such as by cytogenetically-based prognosis, morphological stage or by the type of
molecular mutation. Our bioinformatic analysis revealed that p53 is not functional in CN-AML and APL blasts at
inducing its most important functional outcomes: cell cycle arrest, apoptosis, DNA repair and oxidative stress
defense. We revealed transcriptional downregulation of important p53 acetyltransferases in both CN-AML and APL,
accompanied by increased Mdmx protein expression and inadequate Chk2 protein activation.

Conclusions: Our bioinformatic analysis demonstrated that p53 pathway is differentially inactivated in different
AML subtypes. Focused gene and protein analysis of p53 pathway in CN-AML and APL patients imply that
functional inactivation of p53 protein can be attributed to its impaired acetylation. Our analysis indicates the need
in further accurate evaluation of p53 pathway functioning and regulation in distinct subtypes of AML.

Background

Acute Myeloid Leukemia (AML) is the most common
acute leukemia affecting adults with an estimated 18,860
new AML cases in USA alone in 2014 [1]. AML is a
heterogeneous disease that can be divided into many
subtypes. Three classifications of AML patients are based
on cytogenetics (karyotype), the degree of myeloblast
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maturity (FAB, French-American-British system) or mo-
lecular mutations acquired by the myeloblasts. Specific
cytogenetic abnormalities can be found in many AML
patients and the type of chromosomal abnormality has a
prognostic significance [2], as well as the type of molecular
mutation [3]. In this work we studied 2 subtypes of AML:
the cytogenetically normal AML (CN-AML) and Acute
Promyelocytic Leukemia (APL). CN-AML comprises
almost half of all adult AML patients and is of intermediate
prognosis. APL comprises 5-10% of all AML cases. APL is
characterized by a chromosomal translocation t(15;17) that
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creates the fusion oncogene PML-RARA. APL is of good
prognosis and can be treated successfully with high doses
of vitamin A (ATRA).

Gene expression profiling (GEP) of ample of genes can
create a comprehensive picture of AML pathogenesis
[4]. Specifically, there has been an effort to identify
genome-wide expression signatures that distinguish
between different AML subtypes [5-10] and in particu-
lar between different subgroups of CN-AML [5, 11-14].
We used the wealth of GEP data to examine the p53
pathway in AML.

P53 is a multifaceted and omnipotent tumor suppres-
sor and its inactivation is an important requirement for
unrestrained growth of tumor cells [15]. Indeed, the p53
gene is mutated in half of all human tumors. However,
in hematological malignancies mutant p53 occurs only
in 11.1% of the cases according to version R15 of the
IARC database [16]. In AML, mutations in the p53 gene
were found in 4.5-15% of all cases [17-20] , with less
than 2.5% of CN-AML patients [21, 22] and none in
APL [23, 24] patients. We also sequenced p53 gene in
22 APL samples and found it to be wt in all (Additional
file 1). Mechanisms that allow hematopoietic malignant
cells to inactivate the p53 pathway are still mostly
elusive. We investigated the functional status and regula-
tion of the p53 pathway in AML, specifically in
CN-AML and APL patients.

The tight constraints on p53 are mainly wielded by its
negative regulators, Mdm2 and Mdmx. P53 regulates its
own intracellular level under normal physiological con-
ditions through an auto-regulatory feedback loop with
Mdm?2 in which p53 transcribes the Mdm2 gene, while
Mdm?2 protein ubiquitinates p53 and thus targets it for
degradation [25, 26]. Following stress, post-translational
modifications of Mdm?2 [27], that result in Mdm2 deg-
radation or inhibition, allow activation of p53. During
normal hematopoiesis Mdm?2 is required to regulate p53
levels and allow stem cell, lymphocyte and myeloid
progenitors survival [28, 29].

The other major negative regulator of p53, Mdmx
[30], is a structural homolog of Mdm?2 that lacks the E3
ligase function. Instead, Mdmx associates with the tran-
scriptional activation domain of p53 and inhibits p53
transcriptional activity by inhibition of p300/CBP-medi-
ated acetylation of p53 [31]. Overexpression of Mdmx
was associated with wild-type p53 in the majority of ma-
lignancies examined [32-36], suggesting that high levels
of Mdmx can inhibit the p53 pathway, substituting for
mutations in p53. Several studies demonstrated the sig-
nificance of Mdmx in the hematopoietic system [37-41].

The functional status of p53 pathway in different sub-
types of AML is yet to be revealed. We compared the
expression of p53 pathway-related genes in 27 AML
subtypes and found differential alterations among them.
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Although many papers addressed gene expression and
protein levels of p53 and Mdm2 in AML, only 1 study
tested Mdm?2 gene expression specifically in CN-AML
and APL [42]. All other p53 regulatory molecules
studied in this work were not previously examined in
CN-AML or APL. We performed in depth analysis of
p53 pathway-related gene and protein expression in CN-
AML and APL. We found that p53 is functionally inacti-
vated and suggest that this is probably by inhibition of
p53 protein acetylation. The fourth decade of the p53
pathway research brings new p53-based drugs to treat
cancer [43]. There is therefore a need in accurate evalu-
ation of p53 pathway functioning and regulation in
distinct subtypes of AML that can point to an appropri-
ate therapy for every patient.

Methods
Detailed information about the methods is available in
Additional file 1.

The parameters for choosing p53 pathway related genes
for bioinformatics-

We constructed a list of 1153 genes that are associated
with the p53 pathway. It includes genes related to the
key components of p53 pathway: p53, Mdm2, Mdmx,
Puma, Slug and Chk2. This list is a databases and
literature-curated collection of genes for which the asso-
ciation with key components of p53 pathway was
biochemically proved by at least one publication.

Patients and control samples

Bioinformatic analysis of p53 pathway-related gene
expression was performed on 4 previously published
gene expression arrays of de-novo AML samples at diag-
nosis [8, 9, 13, 44]. The raw data of these arrays were
submitted to the NCBI Gene Expression Omnibus data-
base. The 607 examined AML patients’ samples were
provided with clinical data that allowed us to classify
patients into 27 AML subtypes by cytogenetics, FAB and
molecular mutations parameters. Control group
included 74 nonmalignant disorders and normal bone
marrow (nBM) samples [10]. The arrays used in this
study were conducted on GeneChip® Human Genome
U133 Plus 2.0 Affymetrix Array.

Microarray data analysis

Analysis service was performed by The Center for
Cancer Computational Biology, Dana-Farber Cancer
Institute, Boston, MA. A linear model was developed to
produce gene expression contrasts between leukemic
samples and nBM. Using this model, we identified probe
sets with significant differential expression (log, Fold
Change > 1.5) and multiple comparison adjusted p-value
< 0.01, using Benjamini and Hochberg method.
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A probe set is a collection of probes that identify a
specific/single gene. A probe set, rather than a single
probe, is used in order to get a better signal for the spe-
cific transcript. There may be up to 11 probes in a probe
set and sometimes more than one probe set may be used
for a single gene. The list of differentially expressed
probe sets and differentially expressed genes (DEGs) for
each AML subtype are available on demand.

To evaluate whether p53 is active as a transcriptional
factor we analyzed p53 pathway-related DEGs by 2
unique approaches. Individual DEGs were classified into
functional outcome groups and each gene was placed in
the context of p53-dependent activation/repression
based on the knowledge from the literature. Addition-
ally, expression of our DEGs was compared to the litera-
ture-based gene expression signatures (discussed in the
text, raw data is not shown).

PCR

Real-Time PCR was performed on bone marrow samples
of 23 CN-AML and 28 APL patients at diagnosis
(Additional file 2). Normal bone marrow samples from
Hodgkin’s lymphoma patients without bone marrow in-
volvement served as controls (25 for CN-AML and 34
for APL). All RNA samples were originally collected for
clinical needs. Real-Time PCR was performed using ABI
TagMan gene expression assays.

Immunohistochemistry

Immunohistochemistry was performed on bone marrow
samples of 25 CN-AML and 23 APL patients at diagno-
sis (Additional file 2). Normal bone marrow samples of
35 non-hematological patients (mainly with fever of
unknown origin) served as controls. All samples were
originally collected for clinical needs.

Results

Database of p53 pathway-related genes

We constructed a comprehensive list of genes that are as-
sociated with key proteins of the p53 pathway: p53,
Mdm2, Mdmx, Chk2 (an upstream activator of p53 in the
DNA damage response pathway) [45-47], Puma (pro-
apoptotic p53 target gene [48, 49]) and Slug (an anti-
apoptotic p53 target gene, a repressor of Puma expression
[50, 51]). Our list consists of 1153 genes, 921 are p53-
related genes and the rest are related to the key proteins
of the pathway mentioned above. This list is a database
and literature-curated collection of all genes for which the
association with the key proteins of p53 pathway was sup-
ported biochemically in at least one publication (up to
April 2011). The complete list is presented in Additional
file 3. The distribution of the genes between key proteins
of p53 pathway and the overlap between them is pre-
sented in Additional file 4. The 1153 genes were
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categorized according to the functional outcomes of p53
protein and factors that regulate p53 pathway (Table 1).

Bioinformatic analysis of AML subtypes

Bioinformatic analysis of the p53 pathway was based on
publicly available data from Affymetrix gene expression
arrays performed on 607 AML samples and 74 nBM
controls. AML is a heterogeneous disease that can be di-
vided into many subtypes based on various criteria. We
grouped the 607 AML patients into 11 subtypes by

Table 1 Functional distribution of 1153 p53-related genes
analyzed by bioinformatics

Number of genes

P53-related functional outcomes-

apoptosis 131
cell cycle 103
DNA repair 49
oxidative stress 25
metabolism 58
nervous system 17
cytokines and inflammation 36
cytoskeleton/structural 41
extracellular matrix 29
senescence 17
hypoxia 9
nuclear receptors 8
localization 4
other 84

Regulation of p53 by

transcription machinery/translation 110
transcriptional activators 53
transcriptional repressors 36
chaperons 13
ubiquitination 48
deubiquitination 7
phosphorylation 21
dephosphorylation 8
acetylation 16
deacetylation 20
methylation 8
sumoylation 14
neddylation 3
isomerization 3
Other pathways related to p53 138
KEGG 44
Total 1153

The genes were categorized by functional outcomes of p53 pathway and
factors that regulate it
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cytogenetics, 8 subtypes by FAB or 8 subtypes by
molecular mutations (Table 2). The expression levels of
1153 p53 pathway-related genes were compared between
AML patients of each subtype and normal controls using
a linear model that was developed for this purpose and
statistically ~significant differentially expressed genes
(DEGs) were identified. For number of DEGs identified in
each AML subtype see Table 2. All the examined groups
showed differential gene expression between leukemia

Table 2 The number of analyzed patients and revealed
p53-related DEGs in 27 AML subtypes

AML subtypes

Number of
p53-related DEGs

Number of patients
included in analysis

Cytogenetic groups

Normal 290 147"
t(1517) 34 172"
t(821) 39 202"
inv (16) 37 147"
1123 10 165
-5/7 (@) 31 102"
trisomy 8 26 109
Complex 23 104
(69 5 176"
t(9,22) 3 78
9(a) 7 88
FAB groups
MO 48 145"
M1 136 90"
M2 157 37
M3 34 172"
M4 108 39
M4E 5 185"
M5 110 68"
M6 9 42
Molecular mutations
FLT3-ITD 132 128"
FLT3-TKD 46 64
NPM1 154 151
CEBPA 33 97
NRAS 44 143
KRAS 4 171
EV1 28 163"
RUNX1 11 143"

Total number of patients 607

“significant enrichment (p-value <0.01) for p53 pathway-related genes
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patients and controls. This result indicates that the p53
pathway is altered in AML in comparison to nBM.

To assess the specific enrichment of p53 pathway-
related genes, we performed bootstrapping procedure that
compared the p53 pathway related DEGs to the distribu-
tion of 1153 randomly selected genes within the chip
array. Significant over-representation of p53 pathway-
related DEGs (p < 0.01) was found in the majority of AML
samples when subtyped by cytogenetics, 5 out of 8 FAB
subtypes and in 6 molecular mutation subtypes (Table 2).
This significant enrichment of p53 pathway-related DEGs
in the majority of AML subtypes signifies that the alter-
ations in p53 pathway play a role in leukomogenesis.

Unsupervised hierarchical clustering of all AML cyto-
genetic subtypes based on their DEGs values (Additional
file 5A) showed that p53 pathway-related gene expres-
sion was not correlated with prognostic status of
cytogenetic subtypes. It was neither correlated with mor-
phological stage of blasts (by FAB) or with type of their
molecular mutation (Additional file 5B, C). This indi-
cates the need to separately examine each AML subtype
for alterations in the p53 pathway, rather than grouping
by the accepted classifications.

The rest of this study is focused on CN-AML and
APL patients. The list of p53 pathway-related DEGs in
CN-AML and APL is presented in Additional file 6.
Differentially expressed probe sets in patients and con-
trols were graphically illustrated in a clustered heat map
(Fig. 1). In previous studies CN-AML patients were
divided into subgroups by overall gene expression profil-
ing [5, 6, 11-14]. Interestingly, we found that CN-AML
patients were divided into 3 subgroups also by the p53
pathway-related gene expression profiling (Fig. 1 and
Additional file 5A). As expected, APL patients displayed
homogeneous pattern of gene expression [52]. Despite
the differences between the 2 leukemias, our bioinfor-
matic analysis revealed that 41.6% of DEGs were com-
mon to both CN-AML and APL blasts and their
expression was correspondingly upregulated or down-
regulated in comparison to nBM (Additional file 7).

Analysis of the p53 pathway in CN-AML and APL
To evaluate whether p53 is active as a transcriptional
factor in CN-AML and APL patients we analyzed the
p53 pathway-related DEGs (Additional file 6) by 2
approaches: individual DEGs and literature-based gene
expression signatures.

DEGs were classified into functional outcome groups
(Table 1). Herein we present the most important ones: cell
cycle, apoptosis, DNA repair and oxidative stress defense.

Genes associated with cell cycle
One of the most important functional outcomes of the
activation of the p53 pathway is cell cycle arrest. The list
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nBM (n=64) CN-AML (n=290)

Patient and control samples

Differentially exp_ressed probe sets

Fig. 1 Heat maps of differentially expressed p53-related probe sets in CN-AML and APL. a CN-AML, b APL. Red -upregulation of gene expression,
green-downregulation of gene expression, black-no change in gene expression. Numbers of enrolled patients (red) and controls (blue) are indicated on
top and color coded. Subgroups of CN-AML patients are designated as 1,2 and 3

B nBM (n=74) APL (n=39)

Patient and controi samples

J

of cell cycle-related DEGs in CN-AML and APL is avail-
able in Additional file 8. First, we positioned cell cycle-
related DEGs to the cell cycle phases. In both CN-AML
and APL there was an increase in the expression of
genes essential for progression through the G1 phase,
such as CDK6 and Cyclin D2. However, in both
CN-AML and APL there was also downregulation of
about 20 cell cycle promoting genes, including Cyclin E1
in CN-AML, Cyclins A2, Bl and B2 in both CN-AML
and APL and CDC2 in APL (Fig. 2a and b). Cyclin
Alwas upregulated in APL, in agreement with published
results [53]. Interestingly, cyclin A1 was shown to induce
cell arrest and apoptosis in carcinoma cells [54]. Overall,
the upregulation of G1 cell cycle genes together with the
downregulation of other cell cycle promoting genes in-
cluding essential cyclins and CDC2 beyond the G1 phase
indicate that AML blast cells in these two sub-types do
not proceed in cell cycle, but accumulate in the G1
phase. To confirm these results we examined the prolif-
eration in BM biopsies of CN-AML and APL patients
diagnosed in our hematology department by the prolifer-
ation marker KI-67. IHC demonstrated that the percent-
age of KI-67+ cells were not significantly different
between normal bone marrow (20%) and either APL
(<15%) or CN-AML (25%) biopsies (Fig. 2c and
Additional file 9). This result is in agreement with low
white blood cell count characteristic to APL patients.
Yet, CN-AML patients are characterized by increased
white blood cell count (Additional file 2 and [55]). In-
deed, we found a significant positive correlation between
KI-67 and white blood cell (WBC) count in CN-AML
patients (correlation coefficient 0.59, p-value 0.0016)

suggesting that the slight increase of KI-67 is associated
with increased WBC count. The notion that CN-AML
and APL are not highly proliferative malignancies is not
well recognized despite the agreement with previous
studies [56—67] and should be explored further.

Next, we evaluated the transcriptional activity of p53
in leukemic cells. None of the canonical p53-induced
cell cycle arrest genes (p21 [68], 14-3-3 [69], reprimo
and mcgl0 [70]) were DEGs in our bioinformatic ana-
lysis (Additional file 8), while cell cycle arrest gene
Gadd45 was downregulated in APL. With regards to
p53-dependent cell cycle arrest by transcriptional repres-
sion, a panel of 69 cell cycle regulatory genes subjected
to p53-dependent transcriptional repression following
DNA damage was identified [71, 72]. We examined 40
of these genes and found that 17 were repressed DEGs
in each of CN-AML and APL subtypes. These 17genes,
as well as additional downregulated cell cycle promoting
genes are depicted in Fig. 2a and b. Importantly, it has
been demonstrated that the pattern of activated p53 in-
cludes induction of cell cycle arrest genes together with
the repression of cell cycle promoting genes [73, 74].
While we observed repression of cell cycle regulatory
genes, our bioinformatics analysis did not present induc-
tion of the most important cell cycle arrest genes in CN-
AML and APL samples. Taken together, our results
suggest impaired transcriptional activity of p53 probably
resulting in impaired p53-dependent cell cycle arrest.

Genes associated with apoptosis
Another important functional outcome of the activation of
the p53 pathway is initiation of apoptosis by transcriptional
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Fig. 2 Cell cycle in CN-AML and APL. a, b DEGs that are typically repressed by p53 and are associated with the cell cycle in CN-AML (a) and APL (b).
Canonical cyclins in each phase of the cell cycle are in bold black. DEGs implicated in the different phases of the cell cycle are placed near the appropriate
phase. Upregulated DEGs are in red and downregulated DEGs are in green. Most of the DEGs arrest proliferation, while only CCND2, CDK6 and NAP1L1
genes support proliferation. Most of the genes originate from 2 gene expression signatures [71, 72], Additional 13 genes are marked with*. CCNET (a) is the
only DEG not repressed by p53. ¢ Percent of KI-67 positive cells. Immunohistochemistry was performed on bone marrow samples of 25 CN-AML and 23
APL patients at diagnosis and 35 nBM samples. The boundaries of the blue box indicate the 25" percentile (bottom boundary) and the 75" percentile
(top boundary) of KI-67 level, median is displayed by the thick line in the box, mean by rhombus sign
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induction of pro-apoptotic genes [75], transcriptional re-
pression of anti-apoptotic genes [76] or via its well estab-
lished transcriptional-independent role [77]. The list of
apoptosis-related DEGs is available in Additional file 10.
First, we analyzed DEGs that are related to the Bcl2 family
and found a significant upregulation of the anti-apoptotic
Bcl-2 and Bcl-xL genes in CN-AML and APL respectively,
accompanied by a downregulation of proapoptotic genes,
Bid in both subtypes and Bik and Bim in CN-AML. The
only pro-apoptotic gene to be upregulated in CN-AML
was Noxa gene. Due to these results we conclude that
the Bcl2 family does not induce apoptosis in either CN-
AML or APL.

In addition, our analysis of a collection of 24 canonical
p53-dependent pro-apoptotic genes [75] demonstrated
that the expression of most of the genes (19/24 and 20/
24) was unaltered in both CN-AML and APL patients
(Fig. 3a).

Potential induced and repressed targets of p53 during
genotoxic stress-induced apoptosis were identified by
Kho et al. [78]. Of 38 genotoxic stress-induced genes 31
were included in our p53 pathway-related list. Only 1 of
these 31 genes, was induced in CN-AML and none in
APL indicating that there was no induction of p53-
dependent apoptotic genes in the examined leukemias.
Of the 175 genotoxic stress-repressed genes [78] 38 were
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A
Apoptosis-related DEGs-
CN-AML APL
DEGs upregulated 2 2
DEGs downregulated 3 2
Not DEGs 19 20

Fig. 3 DEGs associated with apoptosis. a Apoptosis-related DEGs in CN-AML and APL among canonical p53-dependent pro-apoptotic genes [75].
We extended some gene families (e.g. PIGs) and the resultant gene collection includes 24 genes. The table summarizes the numbers of genes
that were found to be upregulated DEGs, downregulated DEGs or not identified as DEGs in our study. b Puma protein levels by IHC in nBM, and
in CN-AML and APL patients’ BM. Symbols of box plots are as in Fig. 2; outlying value is marked by red circle; tails of the distribution depicted
only in one direction indicate that the values are skewed towards that side of the average
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included in our p53 pathway-related list. Of these, 10
were downregulated in both CN-AML and APL, how-
ever only 1 of the downregulated genes, KLF5, was
apoptosis-related, while the rest 9/10 were not
apoptosis-related. Taken together, the bioinformatic
analysis indicates that p53-dependent apoptosis is not
activated in CN-AML and APL.

Lastly, Puma is a potent upstream regulator and
downstream mediator of p53-dependent apoptosis in
hematopoietic cells [79-81]. We examined Puma protein
levels by IHC and found that it was not upregulated in
leukemic cells (Fig. 3b, mainly by SQ-IHC score). This is
in agreement with the absence of p53-dependent tran-
scriptional induction of apoptosis in CN-AML and APL
leukemias revealed by the bioinformatics.

Genes associated with DNA repair

P53 participates in the modulation of DNA repair and
recombination through both transcriptional-dependent
and independent functions. In our bioinformatics
analysis most DNA repair-related genes were downregu-
lated in both leukemias, including canonical p53 tran-
scriptional targets important for DNA repair, like RRM2
(Additional file 11). Of 91 literature-based DNA repair-
related genes [52, 71, 82] 43 were included in our p53
pathway-related list, but none was upregulated and 2
were downregulated in both leukemias. Therefore we
conclude that there was no induction of p53-related
DNA repair in CN-AML and APL.

Genes associated with oxidative stress defense

Under mild levels of reactive oxygen species (ROS) p53
is expected to induce the transcription of anti-oxidant
genes [83, 84]. However p53 did not induce any of its 7
anti-oxidant target genes in our analysis (Additional file
12). This result suggests that there is no p53-dependent

anti-oxidant defense in CN-AML and APL. High levels
of ROS lead to oxidative stress which induces a
p53-dependent transcription of pro-oxidant and pro-
apoptotic genes facilitating apoptotic cell death [83, 84].
Our bioinformatic analysis showed that only 1 of 4 pro-
oxidant genes was induced in APL and none in
CN-AML. Moreover, bioinformatic analysis of a further
9 p53 target genes identified to be upregulated during
oxidative stress [85] showed no change in expression in
the CN-AML and APL patient cells. Taken together, the
above analyzes indicate no induction of p53-dependent
oxidative stress defense.

Literature-based gene expression signatures

We compared the expression of our DEGs to literature-
based gene expression signatures that correspond to
DNA damage-induced response enriched for p53 path-
way genes [71-74, 78, 85-90]. The analysis of several
literature-based signatures related to cell cycle, apoptosis
and oxidative stress defense [71-74, 78, 85] was
presented above. Analysis of additional 5 signatures is
summarized in Table 3. Only a few signature genes were
upregulated or downregulated as expected by the signa-
ture, while several others were expressed in the opposite
direction. The expression of the majority (78%) of exam-
ined p53-related genes was unaltered (119/152). Thus
we conclude that there is no activation of the p53
pathway in CN-AML and APL.

Regulation of the p53 pathway in CN-AML and APL

So far our bioinformatic analysis of the p53 pathway in
CN-AML and APL indicates that p53 protein is inactive
in leukemia. We next investigated the mechanism
responsible for p53 inactivation. We examined proteins
that regulate p53 transcription, stability and posttransla-
tional modifications both at the mRNA level, using
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Table 3 Comparison of our bioinformatics results to literature-based gene expression signatures of DNA damage-induced response

Ref  System

Literature-based gene signature

Our bionformatic results

Number of genes altered in

the signature

[85]  p53-dependent transcriptional response of 16 1
cell lines to 9 DNA-damaging agents

[86]  transcriptional response of human cells to 199 149 |
jonizing radiation

[87]  healthy PB cells irradiated ex vivo 61°

[88] 34 patients before and after irradiation” 23°

[89] 7 AML patients before and after 301 [113 T]d
chemotherapy®
Total

Number of genes included ~ DEGs in CN-AML ~ DEGs in APL
in our p53 list

121 0111 011}
59111} 116} 11 7]

29 3 5

12 1 1

291 1124 013}

152 33/152 DEGs, 119/152 not DEGs

We compare how many of upregulated/downregulated genes in the signature are indeed upregulated or downregulated DEGs in our analysis of CN-AML and

APL, 1- upregulated gene expression, |- downregulated gene expression

?Only the list of the signature genes was provided, without the specific names of up- and down-regulated genes. Therefore, we present the overall number of

upregulated and downregulated DEGs

PAll are hematological patients

5 are CN-AML patients and 1 is APL

930 of the upregulated 113 genes are associated with p53 regulation

bioinformatics and Real-Time PCR tools, and at the pro-
tein level using IHC.

Expression levels of genes regulating p53

The regulation of p53 is exerted mostly at the protein
level, yet assessment of this regulation at the gene
expression level might shed light on this process. Our
bioinformatic analysis showed upregulated expression of
p53 in both CN-AML and APL (Additional file 6). In-
deed, there were more DEGs that allow increased tran-
scription of p53 than those that indicate the opposite
(Additional file 13). The co-activators and co-repressors
DEGs of p53 transcriptional activity are presented in
Additional file 14, but their contribution is not clear.

Control of the levels of p53 protein occurs via
ubiquitin-dependent degradation through proteasome
[91]. None of the 14 most known E3 ligases [91, 92]
present in our p53-related list were DEGs either in CN-
AML or APL patient samples (Additional file 15). Also,
the number of DEGs that indicate increased stability of
p53 protein was higher than the number of genes that
indicate the opposite, especially in CN-AML. Taken
together, these results imply that the regulation of the
p53 protein stability is not impaired in the examined
leukemic groups.

The expression of genes implicated in post-translational
regulation of p53 is presented in Additional file 16. Our
bioinformatics analysis showed almost no DEGs related to
methylation and sumoylation of p53, along with the in-
conclusive impact of phopshorylation-related DEGs.
Acetylation of p53 protein is essential for its transcrip-
tional function [93, 94]. Interestingly, we found downregu-
lation of p300 and P300/CBP-associated factor (PCAF),
important 53-acetylating acetyltransferases, in both CN-

AML and APL. Importantly, we detected a significant 4
fold downregulation of the PCAF gene in our CN-AML
and APL patients (p <0.01) by Real-Time PCR (data not
shown). Additionally, CARM1 (coactivator-associated ar-
ginine methyltransferase 1), which has a positive coopera-
tive effect with p300 on p53-dependent transcription [95],
was also downregulated in both CN-AML and APL.
Mdmyx, a key negative regulator of p53, inhibits p53 tran-
scriptional activity by inhibition of p300/CBP-mediated
acetylation of p53 [31]. Mdmx expression was increased
in both CN-AML and APL in our bioinformatic analysis
(Additional file 6-Mdm4) although only by 1 out of 7 array
probe sets. Nonetheless, we found significant upregulation
of Mdmx in CN-AML patients (1.72 fold, p-value < 0.01)
by Real-Time PCR analysis. Taken together, the acetylating
pathway that activates p53 showed overall impairment
and thus p300, PCAE, CARM-1 and Mdmx, are promising
candidates to play a role in deregulation of the p53 path-
way in leukemia.

Protein levels of key p53 pathway components
The protein levels of key p53 pathway proteins (p53,
Mdm?2, Mdmx and Chk2) were evaluated by immuno-
histochemistry (IHC) staining (Additional file 9). IHC re-
sults are interpreted by a SQ score (semi-quantitative)
that is a multiplication of percent stained cells and in-
tensity of the staining (Additional file 17). Intensity of
staining allows examining the level of protein at the sin-
gle cell level, whereas SQ score considers the total cell
population, similarly to western blot analysis.
Non-functional p53 pathway can be a result of inad-
equate levels of p53 protein. However we observed
significantly increased p53 levels in BM of both CN-
AML and APL vs nBM (SQ score Means 3.57, 3.64



Abramowitz et al. BMC Medical Genomics (2017) 10:18

and 1.30, respectively) (Fig. 4a). This increase was a re-
sult of a significantly higher fraction of leukemic cells
expressing p53 (75%) compared to nBM (10%). Notably
however, the intensity of p53 protein was similarly low
in both normal and leukemic BM, especially in compari-
son to several occasional cells exhibiting high level of
p53 (Additional files 9 and 17).

Mdm?2 is a well known regulator of the p53 protein
levels. We observed a significant increase of Mdm2 SQ
score in both CN-AML and APL vs nBM (Means 6.89,
8.04 and 4.68, respectively) (Fig. 4b). This increase was a
result of a significantly higher fraction of leukemic cells
expressing Mdm2 (93%) compared to nBM (30%). The
intensity of Mdm2 staining was (however) not elevated
in leukemic blasts.

High levels of Mdmx protein can explain a non-
functional status of p53 protein as a transcription factor.
Indeed, we revealed an increased Mdmx SQ score in
both CN-AML and APL (Means 7.68, 8.36, respectively)
vs nBM (2.71) (Fig. 4c). The fraction of cells expressing
Mdmx protein in CN-AML and APL (75%) was
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significantly increased compared to nBM (20%). In
addition, the intensity of Mdmx staining was also signifi-
cantly increased by 37% and 50% in APL and CN-AML,
respectively (Additional file 17).

Importantly, we found a significant association (log-
rank p <0.01) between the Mdmx SQ score and disease
free survival (DFS) of APL patients. The Kaplan-Meier
curve (Fig. 4d) shows that patients with high levels of
Mdmx (SQ =9) comprise a high risk group with sooner
and more occurrences of relapse compared to patients
with lower levels of Mdmx (SQ <9) forming a low risk
group.

In the previous years it was common to estimate the
percent of patients that overexpress the examined pro-
tein. Our analysis showed that p53, Mdm2 and Mdmx
proteins were overexpressed in more than 60% of CN-
AML or APL patients compared to percentile 90 of
nBM expression (Additional file 18).

Chk2 is an immediate upstream activator of p53
during DNA damage response since Chk2-mediated
phosphorylation of p53 promotes the association of p53
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with p300 and positively regulates its transcriptional ac-
tivity [46, 96-98]. Therefore, in order to evaluate up-
stream activation of p53, we examined the protein levels
of Chk2 (total, tChk2) and activated Chk2 (phosphory-
lated on Thr68, pChk2). We observed a significant SQ
increase of both tChk2 and pChk2 levels in both CN-
AML and APL (Fig. 5a and b). Importantly, while the
ratio of pChk2 to tChk2 (median SQs) in nBM was 2.2,
it was onlyl.3 in CN-AML and 1.1 in APL (Fig. 5¢). A
similar trend of decreased pChk2/tChk2 ratio in
leukemia was observed when calculated by percentage of
stained cells or by intensity. The decrease of the
pChk2/tChk2 ratio in leukemias was statistically sig-
nificant and points to reduced activation of Chk2 in
leukemias. This is in line with previously published
research regarding low levels of Chk2 activation in
AML [99, 100] and APL [101].

Discussion

The wealth of the gene expression data allows examining
molecular signaling pathways at the gene expression
level. The focus of this study was the p53 pathway.
Mutations in p53 gene are rare in AML leading to the
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assumption that the p53 pathway is inactivated by alter-
native mechanisms. We investigated the functional sta-
tus and the regulation of the p53 pathway in different
AML subtypes, particularly in patients with CN-AML
and APL. We first constructed a comprehensive list of
1153 p53 pathway-related genes which is to the best of
our knowledge, the most comprehensive record of p53
pathway-related genes, updated to April 2011
(Additional file 3). This list can contribute to further
multifaceted research in the field of p53.

We detected significant enrichment of p53 pathway-
related DEGs, above the genomic background, in most
of the AML subtypes (Table 2). This finding illustrates
that changes in p53 pathway play a role in AML leuko-
mogenesis. We found that p53 pathway-related gene
expression was not correlated with the accepted group-
ing of AML subtypes such as by cytogenetically-based
prognosis, morphological stage or by the type of molecu-
lar mutation (Additional file 5). Interestingly, Haferlach
et al. [10] demonstrated similar results of whole genome
expression in prognostically different AML cytogenetic
subtypes. Our findings signify that analysis of the p53
pathway should not be performed on grouped AML
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subtypes, but rather separately for each subtype. Thus,
in this study we investigated 2 cytogenetic subtypes of
AML, CN-AML and APL.

Endogenous DNA damage and defective DNA repair
in AML blasts [99, 100, 102—-110] should activate the
p53 pathway. However, our bioinformatic analysis re-
vealed that p53 is not functional as an activating tran-
scription factor in CN-AML and APL blasts as we did
not find induction of genes related to various p53-
functional outcomes, cell cycle arrest, apoptosis, DNA
repair and oxidative stress defense (Additional files 8, 10,
11, 12). We observed repression of several p53-target
genes (mostly related to cell cycle) however this by itself
does not indicate p53 activation since the pattern of acti-
vated p53 includes both induction and repression of tar-
get genes [73, 74, 76, 78]. Analysis of literature-based
gene expression signatures further indicated that p53 is
transcriptionally non-functional in CN-AML and APL
blasts (Table 3). These results are in agreement with the
previously observed repression of p53 transcriptional ac-
tivity in APL mice [111]. Taken together, our results
show that p53 is transcriptionally inactive in APL and
CN-AML patients.

Negative regulation of p53 pathway-

Functional inhibition of p53 can be initiated at various
levels of its regulation. Our bioinformatic analysis revealed
that p53 expression is not inhibited at the transcriptional
level (Additional file 13) and that p53 protein stability is
probably also not impaired (Additional file 15) in the ex-
amined leukemic groups. Percent of AML patients ex-
pressing p53 protein is a matter of controversy in the
literature [111-117] [20, 24, 118-121]. We found that p53
was overexpressed in more than 60% of CN-AML and
APL patient samples compared to normal BM samples
(Additional file 18) and it was expressed in approximately
75% of the leukemic cells in the BM sample (Additional
file 17A). Yet, p53 level was previously shown to be low to
moderate in AML cells [114, 116, 122], with heterogeneity
in different AML subtypes [123, 124]. We found low p53
staining intensity in CN-AML and APL blasts, similar to
that of nBM (Additional file 17B), in accord with an inac-
tivated p53 pathway. Low levels of p53 in CN-AML were
also found by Kornblau et al. [124].

Mdm?2 is a well-known negative regulator of p53
protein levels. Previous studies reported overexpression of
the Mdm2 gene in AML [42, 123, 125-127]. In contrast,
our bioinformatic analysis did not demonstrate overex-
pression of the Mdm?2 gene in APL, CN-AML (Additional
file 6) or any other examined AML subtypes (data not
shown). Our Real-Time PCR results also demonstrated
that there was no significant increase of Mdm2 gene ex-
pression in APL and CN-AML patients (data not shown).
This result is consistent with an inhibited p53-dependent
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transcription, since Mdm?2 is one of the most important
p53 target genes [128, 129]. Regarding Mdm2 protein
levels, it was previously demonstrated to be increased in
47-82% of AML patients [42, 130—132], with the need for
examining different AML patient subtypes separately as
stressed by Faderl et al. [130]. Consistent with this, we
found that Mdm2 was overexpressed in 60% of CN-AML
and 74% of APL patient samples compared to normal BM
samples (Additional file 18). Mdm2 was also significantly
increased in the leukemic BM sample by the percentage of
stained cells and consequently SQ score (Fig. 4b), consist-
ent with the present dogma of Mdm?2 protein overexpres-
sion in AML. Increased Mdm?2 protein may lead to low
levels of p53 protein. Mdm?2 can also inhibit p53 by other
mechanisms such as directly interfering with recruitment
of the acetyltransferases to p53 protein [133, 134]. On the
other hand, the intensity of Mdm2 staining was not sig-
nificantly increased in leukemic cells, questioning Mdm?2-
dependent p53 inhibition at the level of single CN-AML
and APL cells.

A possible mechanism for p53 pathway inactivation is in-
hibition of p53 transcriptional activity by Mdmx [31, 32].
Indeed, our Real-Time PCR analysis revealed upregulation
of Mdmx gene expression in CN-AML, though bioinfor-
matic result was inconclusive. We also found significantly
increased Mdmx protein levels in CN-AML and APL
leukemia cells compared to nBM by both the percentage of
Mdmx-positive cells as well as the intensity of staining
(Fig. 4c and Additional file 17). This is in agreement with
inhibition of p53 transcriptional activity in CN-AML and
APL as was demonstrated by our various bioinformatic an-
alyzes. Importantly, we found that the increased level of
Mdmx protein is correlated with higher occurrences of re-
lapse and shorter disease free survival time in APL patients
(Fig. 4d). This result positions Mdmx protein as an import-
ant inhibitor of the p53 pathway especially in APL as well
as in CN-AML. Our findings are in line with reports that
revealed upregulated Mdmx protein in various human ma-
lignancies [32-35, 37, 38, 40] including AML with complex
karyotype [41] and showed the ability of Mdmx to inhibit
p53 activity in AML cell lines [135]. Here we present evi-
dence for the link between Mdmx levels and functional in-
hibition of p53 in CN-AML and APL patients.

High level of Mdmx may impede p53 transcriptional
activity by inhibition of p53 acetylation [31] that is
essential for its activation [93, 94]. Additionally, our bio-
informatic analysis demonstrated downregulation of the
important acetylation genes: PCAF (downregulation of
PCAF was shown also by Real-Time PCR), p300 and
CARM-1 in both CN-AML and APL (Additional file
16). High level of Mdm2 may also contribute to inhib-
ition of p53 acetylation [133, 134] and we indeed found
overexpression of Mdm2 in our patients. Inadequate
Chk2 protein activation (Fig. 5¢) may also be responsible
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for the impaired acetylation of p53 by p300 [46]. Taken
together our data suggest that impaired acetylation of
p53 may play an important role in functional inhibition
of p53 in CN-AML and APL. These routs of impaired
acetylation of p53 protein can accompany p53 deacetyla-
tion by HDAC, as it was demonstrated in APL mouse
models as a result of p53 deacetylation by HDAC [111].
Our proposition can be evaluated further by examining
the effect of acetylation-related therapeutic strategies in
CN-AML and APL cells, such as Mdmx inhibitors [136,
137], dual inhibitors of Mdm2 and Mdmx [138, 139] ,
and their combination with HDAC inhibitors [140].
Mdm?2 inhibitor Nutlin-3 might be beneficial since it
also enhances acetylation of p53 [141].

Interestingly, bioinformatics analysis revealed a 41.6%
similarity between the p53-related gene expression pro-
files of CN-AML and APL blasts in comparison to nBM
(Additional file 7). Analysis of p53 functional outcome
genes gave similar results in both groups. Similarly,
acetylation-related genes demonstrated analogous ex-
pression in both leukemias. Lastly, protein levels of p53
regulators were also parallel in CN-AML and APL BM
in comparison to nBM (Fig. 4, Additional file 17). Thus
we conclude that CN-AML and APL have a similar pat-
tern of p53 pathway inhibition in comparison to nBM,
albeit a different underlying molecular etiology of these
diseases.

Conclusions

We constructed the list of 1153 p53 pathway-related genes.
Bioinformatic analysis based on this gene collection dem-
onstrated that p53 pathway is differentially inactivated in
different AML subtypes. In depth bioinformatics analysis of
the p53 pathway in CN-AML and APL subtypes revealed
functional inactivation of p53 protein. Further gene and
protein analysis suggested that this may be attributed to im-
paired acetylation of p53. Our results position Mdmx pro-
tein as an important inhibitor of the p53 pathway
particularly in APL as well as in CN-AML patients.
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